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Abstract

3D visual grounding aims to localize the target
object in a 3D point cloud by a free-form lan-
guage description. Typically, the sentences de-
scribing the target object tend to provide infor-
mation about its relative relation between other
objects and its position within the whole scene.
In this work, we propose a relation-aware one-
stage framework, named 3D Relative Position-
aware Network (3DRP-Net), which can ef-
fectively capture the relative spatial relation-
ships between objects and enhance object at-
tributes. Specifically, 1) we propose a 3D
Relative Position Multi-head Attention (3DRP-
MA) module to analyze relative relations from
different directions in the context of object
pairs, which helps the model to focus on the
specific object relations mentioned in the sen-
tence. 2) We designed a soft-labeling strategy
to alleviate the spatial ambiguity caused by re-
dundant points, which further stabilizes and en-
hances the learning process through a constant
and discriminative distribution. Extensive ex-
periments conducted on three benchmarks (i.e.,
ScanRefer and Nr3D/Sr3D) demonstrate that
our method outperforms all the state-of-the-art
methods in general.

1 Introduction

Visual grounding aims to localize the desired ob-
jects based on the given natural language descrip-
tion. With the rapid development and wide appli-
cations of 3D vision (Xia et al., 2018; Savva et al.,
2019; Zhu et al., 2020; Wang et al., 2019) in re-
cent years, 3D visual grounding task has received
more and more attention. Compared to the well-
studied 2D visual grounding (Yang et al., 2019;
Kamath et al., 2021; Yang et al., 2022; Li and Si-
gal, 2021; Deng et al., 2021; Plummer et al., 2015;
Kazemzadeh et al., 2014), the input sparse point
clouds in the 3D visual grounding task are more
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Figure 1: 3D visual grounding is the task of grounding a
description in a 3D scene. In the sentences, all the words
indicating the relative positions of the target object are
bolded. Notice that relative position relations between
objects are crucial for distinguishing the target object,
and the relative position-related descriptions in 3D space
are complex (e.g., "above", "on the left", "in front of",
and "next to", etc.)

irregular and more complex in terms of spatial po-
sitional relationships, which makes it much more
challenging to locate the target object.

In the field of 3D visual grounding, the previ-
ous methods can be mainly categorized into two
groups: the two-stage approaches (Chen et al.,
2020; Achlioptas et al., 2020; Zhao et al., 2021b;
Yuan et al., 2021; Huang et al., 2022; Cai et al.,
2022; Huang et al., 2021; Wang et al., 2023) and the
one-stage approaches (Luo et al., 2022). The for-
mer ones follow the detection-and-rank paradigm,
and thanks to the flexibility of this architecture,
they mainly explore the benefits of different ob-
ject relation modeling methods for discriminating
the target object. The latter fuse visual-text fea-
tures to predict the bounding boxes of the target
objects directly, and enhance the object attribute
representation by removing the unreliable proposal
generation phase.

However, these two methods still have limi-
tations. For two-stage methods, the model per-
formance is highly dependent on the quality of
the object proposals. However, due to the spar-
sity and irregularity of the input 3D point cloud,
sparse proposals may leave out the target object,
while dense proposals will bring redundant com-
putational costs and make the matching stage too
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complicated to distinguish the target object. As
for the one-stage methods, although the existing
approach (Luo et al., 2022) achieves better perfor-
mance, they can not capture the relative spatial rela-
tionships between objects, which makes it often fail
in samples that rely on relative relation reasoning.
As shown in Fig.1, the majority of sentences in 3D
visual grounding contain relative spatial relation
descriptions. Furthermore, due to the spatial com-
plexity of the 3D scene, there are various relative
position-related descriptions from different orienta-
tions. To further illustrate that relative position is a
general and fundamental issue in 3D visual ground-
ing tasks, we analyze the frequency of relative po-
sition words in ScanRefer and Nr3D/Sr3D, and the
results show that at least 90% of the sentences de-
scribe the relative position of objects, and most of
them contain multiple spatial relations. Detailed
statistics can be found in supplementary materials.

To alleviate above problems, we propose a one-
stage 3D visual grounding framework, named
3D Relative Position-aware Network (3DRP-Net).
Our 3DRP-Net combines and enhances the advan-
tages of the two-stage approaches for relations mod-
eling and the one-stage approaches for proposal-
free detection while avoiding the shortcomings of
both methods. For the relations modeling, we
devise a novel 3D Relative Position Multi-head
Attention (3DRP-MA) module, which can capture
object relations along multiple directions and fully
consider the interaction between the relative posi-
tion and object pairs which is ignored in previous
two-stage methods (Yuan et al., 2021; Zhao et al.,
2021b; Huang et al., 2021).

Specifically, we first extract features from the
point cloud and description, and select key points.
Then, the language and visual features interacted
while considering the relative relations between
objects. For the relation modeling, We introduce
learnable relative position encoding in different
heads of the multi-head attention to capture object
pair relations from different orientations. Moreover,
in sentences, the relative relations between objects
are usually described as "Object 1-Relation-Object
2", such as "tv is on the tv cabinet" and "curtain is
hanging on the window" in Fig.1. The relation is
meaningful only in the context of object pairs, thus
our relative position encoding would interact with
the object pairs’ feature, to better capture and focus
on the mentioned relations.

Besides, as discussed in (Qi et al., 2019), point

clouds only capture surface of object, and the 3D
object centers are likely to be far away from any
point. To accurately reflect the location of objects
and learn comprehensive object relation knowledge,
we sample multiple key points of each object. How-
ever, redundant key points may lead to ambiguity.
To achieve disambiguation while promoting a more
stable and discriminative learning process, we pro-
pose a soft-labeling strategy that uses a constant
and discriminative distribution as the target label
instead of relying on unstable and polarized hard-
label or IoU scores.

Our main contributions can be summarized as
follows:

• We propose a novel single-stage 3D visual
grounding model, called 3D Relative Position-
aware Network (3DRP-Net), which for the
first time captures relative position relation-
ships in the context of object pairs for better
spatial relation reasoning.

• We design a 3D Relative Position Multi-head
Attention (3DRP-MA) module for simultane-
ously modeling spatial relations from different
orientations of 3D space. Besides, we devise a
soft-labeling strategy to alleviate the ambigu-
ity while further enhancing the discriminative
ability of the optimal key point and stabilizing
the learning process.

• Extensive experiments demonstrate the ef-
fectiveness of our method. Our 3DRP-Net
achieves state-of-the-art performance on three
mainstream benchmark datasets ScanRefer,
Nr3D, and Sr3D.

2 Related Work

2.1 3D Visual Grounding
Recent works in 3D visual grounding can be sum-
marized in two categories: two-stage and one-stage
methods. We briefly review them in the following.
Two-stage Methods. Two-stage approaches fol-
low the detection-and-rank scheme. In the first
stage, 3D object proposals are generated by a pre-
trained 3D object detector (Chen et al., 2020) or
with the ground truth (Achlioptas et al., 2020).
In the second stage, the best matching proposals
would be selected by leveraging the language de-
scription. Advanced two-stage methods achieve
good performance by better modeling the relation-
ships among objects. Referit3D (Achlioptas et al.,
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Figure 2: 3DRP-Net is a transformer-based one-stage 3D VG model which takes a 3D point cloud and a description
as inputs and outputs the bounding box of the object most relevant to the input expression. In the stacked transformer
layer, the 3DRP-MA captures the relative relations between points in the 3D perspective. Specifically, the two
self-attentions based on 3DRP-MA capture the relative relations between objects, while the cross-attention between
key points and seed points enhances the global position information.

2020) and TGNN (Huang et al., 2021) make use
of the graph neural network (Scarselli et al., 2008)
to model the relationships between objects. 3DVG-
Transformer (Zhao et al., 2021b) utilize attention
mechanisms (Vaswani et al., 2017) to enable inter-
actions between proposals, and the similarity ma-
trix can be adjusted based on the relative Euclidean
distances between each pair of proposals.
One-stage Methods. One-stage approaches avoid
the unstable and time-consuming object propos-
als generation stage under the detection-and-rank
paradigm. The visual features extracted by the
backbone are directly and densely fused with the
language features, and the fused features are lever-
aged to predict the bounding boxes and referring
scores. 3D-SPS (Luo et al., 2022) first addresses
the 3D visual grounding problem by one-stage strat-
egy. It firstly filters out the key points of language-
relevant objects and processes inter-model interac-
tion to progressively down-sample the key points.

Our work utilizes the advanced one-stage frame-
work and introduces a novel relative relation mod-
ule to effectively capture the intricate relations be-
tween objects, enabling our model to achieve supe-
rior performance.

2.2 Position Encoding in Attention

The attention mechanism is the primary component
of transformer (Vaswani et al., 2017). Since the
attention mechanism is order-independent, infor-

mation about the position should be injected for
each token. In general, there are two mainstream
encoding methods: absolute and relative position
encoding.
Absolute Position Encoding. The original trans-
former (Vaswani et al., 2017) considers the absolute
positions, and the encodings are generated based
on the sinusoids of varying frequency. Recent 3D
object detection studies also use absolute position
encodings. In Group-free (Liu et al., 2021b), the
encodings are learned by the center and size of the
predicted bounding box, while the Fourier function
is used in 3DETR (Misra et al., 2021).
Relative Position Encoding. Recently, some ad-
vanced works in natural language processing (He
et al., 2020; Raffel et al., 2020; Shaw et al., 2018)
and image understanding (Liu et al., 2021a; Hu
et al., 2019, 2018) generate position encoding
based on the relative distance between tokens. Rela-
tive relation representations are important for tasks
where the relative ordering or distance matters.

Our method extends relative position encoding to
3D Euclidean space and enhances relative relation
reasoning ability in 3D visual grounding.

3 Method

This section introduces the proposed 3D Relative
Position-aware Network (3DRP-Net) for 3D visual
grounding. In Sec.3.1, we present an overview of
our method. In Sec.3.2, we dive into the techni-
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cal details of the 3D Relative Position Multi-head
Attention (3DRP-MA) module and how to compre-
hensively and efficiently exploit the spatial position
relations in the context of object pairs. In Sec.3.3
and Sec.3.4, we introduce our soft-labeling strategy
and the training objective function of our method.

3.1 Overview
The 3D visual grounding task aims to find the ob-
ject most relevant to a given textual query. So there
are two inputs in the 3D visual grounding task. One
is the 3D point cloud which is represented by the
3D coordinates and auxiliary features (RGB val-
ues and normal vectors in our setting) of N points.
Another input is a free-form natural language de-
scription with L words.

The overall architecture of our 3DRP-Net is
illustrated in Fig.2. Firstly, we adopt the pre-
trained PointNet++ (Qi et al., 2017) to sample S
seed points and K key points from the input 3d
point cloud and extract the C-dimensional enriched
points feature. For the language description input,
by using a pre-trained language encoder (Radford
et al., 2021), we encode the L-length sentences to
D-dimensional word features. Secondly, a stack of
transformer layers are applied for multimodal fu-
sion. The features of key points are accordingly in-
teracted with language and seed points to group the
scene and language information for detection and
localization. Our new 3D relative position multi-
head attention in each layer enables the model to
understand vital relative relations among objects in
the context of each object pair. Eventually, we use
two standard multi-layer perceptrons to regress the
bounding box and predict the referring confidence
score based on the feature of each key point. As
shown in Fig.2, in the training phase, we generate
the target labels of referring scores based on the
IoUs of the predicted boxes. During inference, we
only select the key point with the highest referring
score to regress the target bounding box.

3.2 3D Relative Position Multi-head Attention
When describing an object in 3D space, relations
between objects are essential to distinguish objects
in the same class. Given the spatial complexity
of 3D space and the potentially misleading similar
relative positions between different object pairs, a
precise and thorough comprehension of the rela-
tive position relationships is crucial for 3D visual
grounding. However, existing 3D visual grounding
methods fail to effectively address complex spa-

tial reasoning challenges, thereby compromising
their performance. To address this limitation, we
propose a novel 3D relative position multi-head
attention to model object relations in the context
of corresponding object pairs within an advanced
one-stage framework.

3.2.1 Relative Position Attention

Before detailing our relative position attention, we
briefly review the original attention mechanism
in (Vaswani et al., 2017). Given an input sequence
x = {x1, ..., xn} of n elements where xi ∈ Rdx ,
and the output sequence z = {z1, ..., zn} with the
same length where zi ∈ Rdz . Taking single-head
attention, the output can be formulated as:

qi = xiW
Q, kj = xjW

K , vi = xiW
V (1)

ai,j =
qikj

T

√
d

, zi =

n∑

j=1

exp(ai,j)∑n
k=1 exp(ai,k)

vj (2)

where WQ,WK ,WV ∈ Rdx×dz represents the pro-
jection matrices, ai,j is the attention weight from
element i to j.

Based on the original attention mechanism, we
propose a novel relative position attention that in-
corporates relative position encoding between el-
ements. Since the semantic meaning of a relative
relation "Object 1-Relation-Object 2" is also highly
dependent on the object pairs involved, it is essen-
tial for the position encoding to fully interact with
object features in order to accurately capture the
specific relative relations mentioned in the descrip-
tion. To this end, the attention weight ai,j in our
proposed relative position attention is calculated as
follows:

ai,j =
qik

T
j + qir

k
p(dij)

T
+ rqp(dji)k

T
j√

3d
(3)

where dij represents the relative distance from el-
ement i to element j, while dji is the opposite.
p(d) ∈ [0, 2k) is an index function that maps con-
tinuous distance to discrete value, as detailed in
Eq.4. rkp(·), r

q
p(·) ∈ R(2k+1)×dz is the learnable rela-

tive position encoding. Considering a typical object
relation expression "Object 1-Relation-Object 2",
our attention weight can be understood as a sum
of three attention scores on object pairs and rela-
tion: Object 1-to-Object 2, Object 1-to-Relation,
and Relation-to-Object 2.
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3.2.2 Piecewise Index Function
The points in the 3D point cloud are unevenly
distributed in a Euclidean space, and the relative
distances are continuous. To enhance the relative
spatial information and reduce computation costs,
we propose to map the continuous 3D relative dis-
tances into discrete integers in a finite set. Inspired
by (Wu et al., 2021), we use the following piece-
wise index function:

p(d) =

{
[d], |d| ≦ α

sign(d)×min(k, [α+ ln(|d|/α)
ln(β/α) (k − α)]), |d| > α

(4)
where [·] is a round operation, sign(·) represents
the sign of a number, i.e., returning 1 for positive
input, -1 for negative, and 0 for otherwise.

Eq.4 performs a fine mapping in the α range.
The further over α, the coarser it is, and distances
beyond β would be mapped to the same value. In
the 3D understanding field, many studies (Zhao
et al., 2021a; Misra et al., 2021) have demonstrated
that neighboring points are much more important
than the further ones. Therefore, mapping from
continuous space to discrete values by Eq.4 would
not lead to much semantic information loss while
significantly reducing computational costs.

3.2.3 Multi-head Attention for 3D Position
Till now, our relative position attention module can
handle the interaction between object features and
relative position information in continuous space.
However, points in 3D space have much more com-
plicated spatial relations than pixels in 2D images
or words in 1D sentences. As shown in Table 4,
relying on a single relative distance metric leads
to insufficient and partial capture of inter-object
relations. This makes it difficult to distinguish the
target object when multiple spatial relations are
described in the language expression. Therefore,
we attempt to capture object relations from multi-
ple directions. Specifically, we encode the relative
distances under x, y, z coordinates, and the Eu-
clidean metric, denoted as Dx, Dy, Dz , and De,
respectively. These four relative position metrics
represent most of object relations in the language
description (e.g., Dx for "left, right", Dy for "front,
behind", Dz for "top, bottom", De for "near, far").
Based on the architecture of multi-head attention,
each relative position encoding is injected into the
relative position attention module of each head.
Such a 3DRP-MA allows the model to jointly at-
tend to information from different relative relations
in 3D space.

Figure 3: Comparison of various labeling strategies.

3.3 Soft-labeling Strategy
Due to the object center are often not contained
in the given point clouds, we select multiple key
points for each object to better reflect its location.
Therefore, as shown in Fig.3, there will be lots of
accurately predicted boxes achieving high Intersec-
tion over Union (IoU) of target object. Previous
methods (Chen et al., 2020; Zhao et al., 2021b; Luo
et al., 2022) use one-hot or multi-hot labels to su-
pervise the referring score. The key points whose
predicted box has the top Ns highest IoU are set
to 1, and others are set to 0, which can encourage
the model to select the most high-IoU proposals.
However, the simple hard-labeling strategy results
in two problems: Firstly, proposals with similar
and high IoUs may be labeled differently as 1 and
0, which can cause an unstable training phase. Sec-
ondly, it becomes difficult to distinguish between
optimal and sub-optimal proposals, affecting the
model’s ability to accurately identify the most ac-
curate proposal.

To tackle these issues, we introduce a soft-
labeling strategy to smooth the label distribution
and encourage the model to effectively distinguish
the optimal proposal. To be specific, the soft-
labeling function can be calculated as follow:

ŝi = exp(− i2

2σ2
+ 1) (5)

where i ∈ {0, ..., Ns} represents the i-th highest
IoU. We set σ as [Ns/3] to control the smoothness
of the distributions. The target label of the key-
point whose predicted box’s IoU is i-th highest and
greater than 0.25 is set to ŝi, and others are set to 0.

Although this strategy is simple, its role is to do
more as one stroke, and the insight it provides is
non-trivial.

For discriminative ability, the soft-labels en-
hance the difference between the optimal and sub-
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optimal proposals, which enforces the model to
accurately identify the best key point for regressing
detection box. In contrast, when hard-labels or IoU
scores are used as the target labels, there is little dif-
ference between optimal and sub-optimal proposals
from the perspective of learning objectives. For sta-
bility, compared to hard-labels, our soft-labels can
cover a broader range of accurate proposals with a
smoother label distribution, and excluding the pro-
posals with low IoU further stabilizes the learning
process. Additionally, compared to directly using
IoU scores, the constant distribution in soft-labels
provides a more stable loss across different sam-
ples. For example, if we have two samples with
vastly different target objects, such as a large bed
and a small chair, the bed sample would have signif-
icantly more key points selected, resulting in more
proposals of the target object. Using IoU scores as
labels would ultimately lead to a much larger loss
for the bed sample than the chair sample, which is
clearly unreasonable.

3.4 Training and Inference

We apply a multi-task loss function to train our
3DRP-Net in an end-to-end manner.
Referring Loss. The Referring loss Lref is cal-
culated between the target labels Ŝ discussed in
Sec.3.3 and predicted referring scores S of K key-
points with focal loss (Lin et al., 2017).
Keypoints Sampling Loss. Following the loss
used in (Luo et al., 2022), we apply the key points
sampling loss Lks to make sure the selected key
points are relevant to any object whose category is
mentioned in the description.
Detection Loss. To supervise the predicted bound-
ing boxes, we use the detection loss Ldet as an aux-
iliary loss. Following (Luo et al., 2022), the Ldet

consists of semantic classification loss, objectness
binary classification loss, center offset regression
loss and bounding box regression loss.
Language Classification Loss. Similar to (Chen
et al., 2020), We introduce the language classifica-
tion loss Ltext to enhance language encoder.

Finally, the overall loss function in the training
process can be summarized as

L = α1Lref + α2Lks + α3Ldet + α4Ltext (6)

where the balancing factors α1, α2, α3, α4 are set
default as 0.05, 0.8, 5, 0.1, respectively, and the
Lref and Ldet are applied on all decoder stages
following the setting in (Qi et al., 2019).

4 Experiment

4.1 Datasets and Metrics
ScanRefer. The ScanRefer dataset (Chen et al.,
2020) annotates 800 scenes with 51,583 language
descriptions based on ScanNet dataset (Dai et al.,
2017). Following the ScanRefer benchmark, we
split the train/val/test set with 36,655, 9,508, and
5,410 samples, respectively.
Nr3D/Sr3D. The Nr3D and Sr3D are two sub-
datasets in ReferIt3D (Achlioptas et al., 2020).
They are also annotated on the indoor 3D scene
dataset Scannet (Dai et al., 2017). Nr3D contains
41,503 human utterances collected by ReferItGame,
and Sr3D contains 83,572 synthetic descriptions
generated based on a "target-spatial relationship-
anchor object" template.
Evaluation Metric. For ScanRefer (Chen
et al., 2020), following previous work, we use
Acc@mIoU as the evaluation metric, where m ∈
{0.25, 0.5}. This metric represents the ratio of
the predicted bounding boxes whose Intersection
over Union (IoU) with the ground-truth (GT)
bounding boxes is larger than m. For Sr3D and
Nr3D (Achlioptas et al., 2020), the ground truth
bounding boxes are available, and the model only
needs to identify the described object from all the
bounding boxes. Therefore, the evaluation metric
of these two datasets is accuracy, i.e., the percent-
age of the correctly selected target object.

4.2 Quantitative Comparison
We compare our 3DRP-Net with other state-of-the-
art methods on these three 3D visual grounding
benchmarks.
ScanRefer. Table 1 shows the performance on
ScanRefer. 3DRP-Net outperforms the best two-
stage method by +4.20 at Acc@0.25 and +4.40 at
Acc@0.5 and exceeds the best one-stage method
by +2.45 at Acc@0.25 and +2.47 at Acc@0.5.
Even when compared to 3DJCG, which utilizes
an extra Scan2Cap (Chen et al., 2021) dataset to
assist its training, our 3DRP-Net still shows superi-
ority in all metrics. Specifically, for the "Multiple"
subset, 3DRP-Net achieves +2.66 and +2.34 gains
when compared with the advanced one-stage model
in terms of Acc@0.25 and Acc@0.5, which vali-
dates the proposed 3DRP-MA module is powerful
for modeling complex relative position relations
in 3D space and significantly contributes to distin-
guishing the described target object from multiple
interfering objects.
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Table 1: Comparisons with state-of-the-art methods on ScanRefer. We highlight the best performance in bold.

Methods Extra
Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Two-stage:

ScanRefer - 67.64 46.19 32.06 21.26 38.97 26.10
TGNN - 68.61 56.80 29.84 23.18 37.37 29.70

InstanceRefer - 77.45 66.83 31.27 24.77 40.23 32.93
SAT 2D assist 73.21 50.83 37.64 25.16 44.54 30.14

3DVG-Transformer - 77.16 58.47 38.38 28.70 45.90 34.47
MVT - 77.67 66.45 31.92 25.26 40.80 33.26

3DJCG Scan2Cap 78.75 61.30 40.13 30.08 47.62 36.14
ViL3DRel - 81.58 68.62 40.30 30.71 47.94 37.73

One-stage:
3D-SPS - 81.63 64.77 39.48 29.61 47.65 36.43

3DRP-Net (Ours) - 83.13 67.74 42.14 31.95 50.10 38.90

Table 2: Comparisons with state-of-the-art methods on Nr3D and Sr3D. We highlight the best performance in bold.

Method
Nr3D Sr3D

Easy Hard
View
Dep

View
Indep

Overall Easy Hard
View
Dep

View
Indep

Overall

ReferIt3DNet 43.6 27.9 32.5 37.1 35.6 44.7 31.5 39.2 40.8 40.8
InstanceRefer 46.0 31.8 34.5 41.9 38.8 51.1 40.5 45.4 48.1 48.0

3DVG-Transformer 48.5 34.8 34.8 43.7 40.8 54.2 44.9 44.6 51.7 51.4
LanguageRefer 51.0 36.6 41.7 45.0 43.9 58.9 49.3 49.2 56.3 56.0

SAT 56.3 42.4 46.9 50.4 49.2 61.2 50.0 49.2 58.3 57.9
3D-SPS 58.1 45.1 48.0 53.2 51.5 65.4 56.2 49.2 63.2 62.6

MVT 61.3 49.1 54.3 55.4 55.1 66.9 58.8 58.4 64.7 64.5
ViL3DRel 70.2 57.4 62.0 64.5 64.4 74.9 67.9 63.8 73.2 72.8

3DRP-Net(Ours) 71.4 59.7 64.2 65.2 65.9 75.6 69.5 65.5 74.9 74.1

Nr3D/Sr3D. Note that the task of Nr3D/Sr3D is dif-
ferent from ScanRefer, which aims to identify the
described target object from all the given ground-
truth bounding boxes. Therefore, the soft-labeling
strategy and the keypoint sampling module are re-
moved. We only verify the effectiveness of 3DRP-
MA on these two datasets. Besides, the data aug-
mentation methods in ViL3DRel (Chen et al., 2022)
are also used in our training phase for a fair compar-
ison. The accuracy of our method, together with
other state-of-the-art methods, is reported in Ta-
ble 2. 3DRP-Net achieves the overall accuracy of
65.9% and 74.1% on Nr3D and Sr3D, respectively,
which outperforms all existing methods by a large
margin. In the more challenging "Hard" subset,
3DRP-Net significantly improves the accuracy by
+2.3% in Nr3D and +1.6% in Sr3D, again demon-
strating our method is beneficial for distinguishing
objects by capturing the relative spatial relations.

4.3 Ablation Study

We conduct ablation studies to investigate the con-
tribution of each component. All the ablation study
results are reported on the ScanRefer validation set.

Relation Modeling Module. We compared our
proposed 3DRP-MA with the relation modules in
other 3D visual grounding methods. For fair com-
parisons, we also introduce distances in x, y, z
coordinates and Euclidean space to other relation
modules. The results are provided in Table 3, com-
paring rows 1, 2 and 6, our 3DRP-MA is far su-
perior to the relation modules in 3DVG-Trans and
3DJCG, and the performance improvement mainly
comes from the subsets that rely on relative re-
lationship reasoning for localization, namely the
"One-Rel" and "Multi-Rel" subsets.

Relative Position Encoding. In Sec.3.2.3, we dis-
cuss the complexity of relative relations in 3D
space and propose four relative position encod-
ings based on relative distance in x,y,z coordinates
(Dxyz), and the Euclidean metric (De), respec-
tively. From Table 3, both Dxyz and De can bring
significant improvement for subsets that require
relative relation reasoning. Row 6 demonstrates
that considering relative relations from multiple
directions further helps capture comprehensive and
sufficient object relations and distinguish the target
object from multiple distractors.
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Table 3: Ablation studies on relation position encoding and different relation modeling modules. None-Rel/One-
Rel/Multi-Rel represent subsets that contain zero/one/multiple relation descriptions in the original Multiple set of
ScanRefer, and the relative percentage improvements compared to the different settings are marked in green.

Row De Dxyz Rel Module Overall Multiple None-Rel One-Rel Multi-Rel

1 ✓ ✓ 3DVG-Transformer 36.85 30.16 34.89(+2.95%) 32.51(+5.51%) 28.03(+6.60%)
2 ✓ ✓ 3DJCG 36.43 29.62 35.51(+1.15%) 31.87(+7.62%) 27.35(+9.25%)

3 × × 3DRP-MA 32.74 26.39 34.18(+5.09%) 28.39(+20.82%) 23.94(+24.81%)
4 ✓ × 3DRP-MA 36.43 30.26 35.47(+1.27%) 32.54(+5.41%) 28.10(+6.33%)
5 × ✓ 3DRP-MA 37.13 30.56 35.30(+1.76%) 32.87(+4.35%) 28.46(+4.99%)

6 ✓ ✓ 3DRP-MA 38.90 31.91 35.92 34.30 29.88

Table 4: Ablation studies on 3DRP-MA in each trans-
former layer and pair-aware relation attention.

Row O1-R R-O2 SA1 CA SA2 Acc@0.25 Acc@0.5

1 × ✓ ✓ ✓ ✓ 48.83 38.46
2 ✓ × ✓ ✓ ✓ 48.30 37.56

3 ✓ ✓ ✓ × × 46.70 36.10
4 ✓ ✓ ✓ ✓ × 48.72 37.59
5 ✓ ✓ ✓ ✓ ✓ 50.10 38.90

Pair-aware relation attention. The typical de-
scription of a spatial relation can be expressed as
"Object 1-Relation-Object 2". Our pair-aware rela-
tion attention can be considered as the sum of two
scores: Object 1-to-Relation (O1-R) and Relation-
to-Object 2 (R-O2). To further verify the superi-
ority of capturing the relation in the context of an
object pair, we ablate the two scores, and the results
are illustrated in Table 4. From rows 1, 2 and 5,
both O1-R and R-O2 terms benefit the 3D visual
grounding task by capturing the relative relations,
and the joint use of O1-R and R-O2 provides a
more comprehensive understanding of spatial rela-
tion description and leads to the best performance.
3DRP-MA in each layer. We study the effect of
each 3DRP-MA module in the transformer layer.
SA1, CA and SA2 respectively denote whether to
replace the self-attention before interacting with
seed points, the cross-attention for key points and
seed points, and the self-attention before interact-
ing with language. Row 3 to 5 in Table 4 add each
3DRP-MA in turns and the performance is gradu-
ally improved to 50.10% and 38.90%.
Soft-labeling Strategy. Table 5 presents the per-
formance of different labeling strategies. In hard-
labeling, Ns represents the number of key points
whose IoU is in the top Ns and greater than 0.25,
which are labeled as 1. In soft-labeling, Ns is a
hyperparameter in Eq.5, which controls the num-

Table 5: Ablation studies on the labeling strategies.

Strategy Ns Acc@0.25 Acc@0.5

IoUs
Original 48.20 38.06
Linear 48.82 37.50

Hard
1 47.36 37.25
4 47.29 37.68
8 47.30 37.26

Soft
12 49.13 38.46
24 50.10 38.90
36 49.64 38.55

ber of soft labels. To further demonstrate that our
proposed strategy improves stability and discrimi-
nation, we also use IoUs score as a label. The "orig-
inal" setting directly uses IoUs as a label, while the
"linear" setting stretches IoUs linearly to the range
of 0 to 1 to enhance discrimination. Compared to
hard-labeling and IoUs methods, our soft-labeling
strategy improves discrimination and stability. Us-
ing the "original" IoUs method lacks discrimination
power and stability due to the unbalanced loss on
different samples. Even using linear scaling to en-
hance discrimination power, this instability cannot
be eliminated. Our method alleviates these prob-
lems with a discriminative constant distribution and
shows comprehensive superiority in Table 5.

5 Conclusion

In this paper, we propose a relation-aware one-
stage model for 3D visual grounding, referred to as
3D Relative Position-aware Network (3DRP-Net).
3DRP-Net contains novel 3DRP-MA modules to
exploit complex 3D relative relations within point
clouds. Besides, we devise a soft-labeling strat-
egy to achieve disambiguation while promoting a
stable and discriminative learning process. Com-
prehensive experiments reveal that our 3DRP-Net
outperforms other methods.
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6 Limitations

The datasets of 3D visual grounding task are all
stem from the original ScanNet dataset which
brings generalization to other scene types into ques-
tion. More diverse benchmarks are important for
the further development of the field of 3D visual
grounding.
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A Qualitative Analysis

In this section, we provide some visualization re-
sults in ScanRefer (Chen et al., 2020) for qualitative
analysis.

A.1 Analysis on Success Cases

To better understand our 3DRP-Net, we visualize
some success cases and comparisons with the other
one-stage method (Luo et al., 2022) in Figure 4.
From (a,b,c), both 3D-SPS (Luo et al., 2022) and
our 3DRP-Net accurately locate the target object
when the description does not involve too many
relative position relations and there are not many
interfering objects in the scene. However, as shown
in (d,e,f), when the relative position relation be-
tween objects is necessary for distinguishing the
target object from multiple objects of the same cat-
egory, the previous one-stage method 3D-SPS is
often confused by distractors. By modeling the
relative position in 3D space, our 3DRP-Net is able
to fully leverage the relative position descriptions
in the sentence for reasoning, which bring more
precise localization.

A.2 Analysis on Failure Cases

To conduct a comprehensive qualitative evaluation,
we further elaborate on the failure cases and discuss
them in detail. These reasons for our 3DRP-Net
prediction errors can be roughly summarized into
three categories:

• Ambiguous annotations. Due to the com-
plexity and irregularity of 3D scenes, ambigu-
ous descriptions are difficult to be completely
avoided in 3D visual grounding datasets.
There may be multiple objects in a scene that
match the description, but only one of them
is considered correct by the annotation. As
shown in the cases (1,2,3) of Figure 5, both
ground-truth objects and our predicted objects
semantically match the natural language de-
scriptions, but according to the ground truth
box annotations, our predictions are com-
pletely wrong.

• Challenging target object. In 3D point
clouds, some objects are inherently difficult to
identify because of obscured or missing sur-
faces. In case 4 of Figure 5, the described
target object is a cabinet, but the point cloud
in the ground truth box is seriously missing,
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Figure 4: The visualization results of some success cases. The blue/green/red colors indicate the ground
truth/correct/incorrect boxes.

Figure 5: The visualization results of some failure cases.
The ground-truth boxes are labeled in blue and the in-
correctly predicted boxes are marked in red.

which makes it very difficult to identify the
cabinet in the scene.

• Challenging auxiliary objects. 3D visual
grounding task often requires the relations be-
tween the target object and auxiliary objects
to assist the localization. The challenging aux-
iliary objects may result in an incorrect pre-
diction. As shown in case 5 of Figure 5, the
target table is on "the left of the bed", but
the left and right side of a bed are difficult
to distinguish, which requires identifying the
direction of the bed according to the position
of pillows. This reasoning process is too com-
plex for our model, and our prediction actually
found the table on the right side of a bed. In

case 6, the auxiliary object is "chair of the
cubicles", which is challenging for the model
to recognize.

B Statistics of Relative Position Words

To further illustrate that relative position relation
is a general and fundamental issue in 3D visual
grounding task, we count some common words
representing relative spatial relations in three 3D
visual grounding datasets (i.e., ScanRefer (Chen
et al., 2020), Nr3D (Achlioptas et al., 2020) and
Sr3D (Achlioptas et al., 2020)) in Figure 6 and
7. From Figure 6, in ScanRefer, at least 97% de-
scriptions contain relative position relations, and
more than 63% sentences use multiple relative posi-
tion relations to indicate the target object. Besides,
about 90% sentences utilize the relative position
words in Nr3D, and almost all the samples in Sr3D
require relative position relations between objects
for localization. As shown in Figure 7, in ScanRe-
fer and Nr3D, which collected human utterances as
descriptions, most of the commonly used relative
position words appear in the sentences. This further
demonstrates the importance of modeling relative
position relations from different perspectives.

C Implementation Details.

We adopt the pre-trained PointNet++ (Qi et al.,
2017) and the language encoder in CLIP (Rad-
ford et al., 2021) to extract the features from
point clouds and language descriptions, respec-
tively, while the rest of the network is trained from
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Figure 6: Ratio of sentences containing the specific number of relative position words in three 3D visual grounding
datasets.

scratch. We set the dimension d in all transformer
layers to 384. The layer number of the transformer
is set to 4. Our model is trained in an end-to-end
manner with the AdamW (Kingma and Ba, 2014)
optimizer and a batch size of 15 for 36 epochs. The
initial learning rates of all transformer layers and
the rest of the model are set to 1e− 4 and 1e− 3,
and we use the cosine learning rate decay strategy
to schedule the learning rates. The seed point num-
ber M and keypoint number M0 are set to 1024
and 256. For the soft-labeling strategy, the label
number Ns is assigned as 24. In the piecewise in-
dex function, we set the α : β : γ = 1 : 2 : 4,
and the β is assigned as 20. When calculating the
relative position index, the coordinates of all points
are linearly scaled to [0, 100].

In the ablation study, we further divided the
"Multiple" set of ScanRefer into "Non-Rel/One-
Rel/Multi-Rel" subsets according to the number of
relational descriptions in the sentences. Specifi-
cally, we follow the statistical method in Sec. B to
count some common words representing relative
spatial relations.

D Prior Methods for Comparison

In order to validate the effectiveness of the pro-
posed 3DRP-Net, Sec. 4.2 comprehensively com-
pare it to many previous state-of-the-art methods:
1) ReferIt3DNet (Achlioptas et al., 2020) 2) Scan-
Refer (Chen et al., 2020); 3) TGNN (Huang et al.,
2021); 4) InstanceRefer (Yuan et al., 2021); 5)
LanguageRefer (Roh et al., 2022); 6) SAT (Yang
et al., 2021); 7) 3DVG-Trans (Zhao et al., 2021b);
8) MVT (Huang et al., 2022); 9) 3D-SPS (Luo
et al., 2022); 10) 3DJCG (Cai et al., 2022); 11)
ViL3DRel (Chen et al., 2022)
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Figure 7: Frequency of some commonly used relative position words in three 3D visual grounding datasets.
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