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Abstract

Modeling multi-party conversations (MPCs)
with graph neural networks has been proven ef-
fective at capturing complicated and graphical
information flows. However, existing methods
rely heavily on the necessary addressee labels
and can only be applied to an ideal setting
where each utterance must be tagged with an
“@” or other equivalent addressee label. To
study the scarcity of addressee labels which
is a common issue in MPCs, we propose
MADNet that maximizes addressee deduction
expectation in heterogeneous graph neural
networks for MPC generation. Given an MPC
with a few addressee labels missing, existing
methods fail to build a consecutively connected
conversation graph, but only a few separate
conversation fragments instead. To ensure
message passing between these conversation
fragments, four additional types of latent edges
are designed to complete a fully-connected
graph. Besides, to optimize the edge-type-
dependent message passing for those utter-
ances without addressee labels, an Expectation-
Maximization-based method that iteratively
generates silver addressee labels (E step), and
optimizes the quality of generated responses
(M step), is designed. Experimental results on
two Ubuntu IRC channel benchmarks show that
MADNet outperforms various baseline models
on the task of MPC generation, especially un-
der the more common and challenging setting
where part of addressee labels are missing.

1 Introduction

The development of intelligent dialogue systems
that are able to engage in conversations with
humans, has been one of the longest running
goals in artificial intelligence (Kepuska and Bo-
houta, 2018; Berdasco et al., 2019; Zhou et al.,
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Figure 1: (a) A randomly sampled MPC instance from
the Ubuntu IRC dataset (Ouchi and Tsuboi, 2016)
where a few addressee labels, i.e., “@”, are missing.
(b) Illustration of the graphical information flow and
conversation fragments of the instance above established
in HeterMPC (Gu et al., 2022). Here, the bidirectional
edges are merged for simplicity.

2020). Thanks to breakthroughs in sequence mod-
eling (Sutskever et al., 2014; Vaswani et al., 2017)
and pre-trained language models (PLMs) (Radford
et al., 2019; Devlin et al., 2019; Lewis et al., 2020),
researchers have proposed various effective models
for conversations between two participants (Serban
et al., 2016; Wen et al., 2017; Zhang et al., 2020).
Recently, researchers have paid more attention to a
more practical and challenging scenario involving
more than two participants, which is well known
as multi-party conversations (MPCs) (Ouchi and
Tsuboi, 2016; Zhang et al., 2018; Le et al., 2019;
Hu et al., 2019; Wang et al., 2020; Gu et al., 2021,
2022). Unlike two-party conversations, utterances
in an MPC can be spoken by anyone and address
anyone else in this conversation, constituting a
graphical information flow.
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Encoding MPC contexts with either homoge-
neous (Hu et al., 2019) or heterogeneous (Gu et al.,
2022) graph neural networks (GNNs) has been
proven effective at modeling graphical informa-
tion flows. These methods rely heavily on the
necessary addressee labels and can only be applied
to an ideal setting where each utterance must be
tagged with an “@” or other equivalent addressee
label, to establish a consecutively connected graph.
However, interlocutors in MPCs do not always
strictly obey the talking rule of specifying their
addressees in each utterance, as shown by a
randomly sampled MPC instance in Figure 1(a).
Statistics show that addressees of 55% of the
utterances in the Ubuntu IRC dataset (Ouchi and
Tsuboi, 2016) are not specified. In this common
case, the expected conversation graph in previous
work became fragmented (Hu et al., 2019; Gu
et al., 2022) as shown in Figure 1(b). Therefore,
nodes without direct connections cannot exchange
information between each other through one-hop
message passing. Despite disconnected nodes can
instead be accessed indirectly via other detours
through multi-hop passing, inevitable information
loss and passing latency will affect generation
performance significantly. But this common issue
has not been studied in previous work.

In light of the above issues, we propose MADNet
that maximizes addressee deduction expectation in
heterogeneous graph neural networks to mitigate
performance degradation and to enhance model
robustness, for MPC generation conditioned on
incomplete addressee labels. Given an MPC with
a few addressee labels missing, existing methods
fail to build a consecutively connected conversation
graph, but only a few separate conversation frag-
ments instead (Hu et al., 2019; Gu et al., 2022). To
ensure message passing between these conversation
fragments, four additional types of latent edges
are designed to complete a fully-connected graph.
In this way, nodes without direct connections
can also directly interact with each other, and
be distinguished from existing edges by param-
eterization. Furthermore, edge-type-dependent
message passing has been verified effective at
MPC modeling (Gu et al., 2022). In order to
optimize edge characterization and message pass-
ing for utterances without addressee labels, a hard
Expectation-Maximization-based approach (Brown
et al., 1993; Shen et al., 2019; Min et al., 2019) is
designed for addressee deduction. On the one hand,

the expectation steps iteratively generate silver
addressee labels by considering the addressee of an
utterance as a discrete latent variable. On the other
hand, the maximization steps selects the addressee
with the highest probability from the addressee
distribution and optimize the generative dialogue
model. As the number of EM iterations increases,
the accuracy of the latent addressee distribution as
well as the quality of generated responses can be
improved simultaneously. Compared with previous
methods, MADNet can be applied to more common
and challenging MPC scenarios, indicating its
generalization and robustness.

To measure the effectiveness of the proposed
method, we evaluate the performance on two
benchmarks based on Ubuntu IRC channel. One
was released by Ouchi and Tsuboi (2016) where a
few addressee labels were missing. The other was
released by Hu et al. (2019) where addressee labels
were provided for each utterance. Experimental
results show that MADNet outperforms previous
methods by significant margins, achieving a new
state-of-the-art performance for MPC generation
especially in the more common and challenging
setting where a few addressee labels are missing.

In summary, our contributions in this paper are
three-fold: 1) To the best of our knowledge, this
paper makes the first attempt to explore the issue
of missing addressee labels and to target on more
common MPC scenarios. 2) A fully-connected
heterogeneous graph architecture along with EM
training is designed to help deduce the addressee
of an utterance for improving MPC generation.
3) Experimental results show that our proposed
model achieves a new state-of-the-art performance
of MPC generation conditioned on incomplete
addressee labels on two Ubuntu IRC benchmarks.

2 Related Work

Multi-Party Conversation Existing methods on
building dialogue systems can be generally catego-
rized into generation-based (Serban et al., 2016;
Wen et al., 2017; Young et al., 2018; Zhang
et al., 2020) or retrieval-based approaches (Wu
et al., 2017; Zhou et al., 2018; Tao et al., 2019;
Gu et al., 2020). In this paper, we study MPC
generation, where in addition to utterances, in-
terlocutors are also important components who
play the roles of speakers or addressees. Previous
methods have explored retrieval-based approaches
for MPCs. For example, Ouchi and Tsuboi
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(2016) proposed the dynamic model which updated
speaker embeddings with conversation streams.
Zhang et al. (2018) proposed speaker interaction
RNN which updated speaker embeddings role-
sensitively. Wang et al. (2020) proposed to track
the dynamic topic in a conversation. Gu et al.
(2021) proposed jointly learning “who says what
to whom" in a unified framework by designing
self-supervised tasks during pre-training. On the
other hand, Hu et al. (2019) explored generation-
based approaches by proposing a graph-structured
network (GSN). At its core was an utterance-
level graph-structured encoder that encoded the
conversation context using homogeneous GNNs.
Gu et al. (2022) proposed HeterMPC to model the
complicated interactions between utterances and
interlocutors with a heterogeneous graph (Sun and
Han, 2012), where two types of nodes and six types
of edges were designed to model heterogeneity.
Contemporaneous to our work, Li and Zhao (2023)
focus on predicting the missing addressee labels in
pre-training instead, but still only target at the ideal
setting during fine-tuning where each utterance
must be tagged with the addressee label.

Expectation-Maximization This algorithm is
used to find local maximum likelihood parameters
of a statistical model in cases where the equations
cannot be solved directly (Dempster et al., 1977;
Dayan and Hinton, 1997; Do and Batzoglou,
2008). Rather than sampling a latent variable from
its conditional distribution, a hard EM approach
which takes the value with the highest posterior
probability as prediction is designed (Brown et al.,
1993). This approach has been proven effective at
improving the performance of various NLP tasks
such as dependency parsing (Spitkovsky et al.,
2010), machine translation (Shen et al., 2019),
question answering (Min et al., 2019) and diverse
dialogue generation (Wen et al., 2023). In this
paper, we study whether considering addressees
as a latent variable and deducing with hard EM
is useful for modeling conversation structures and
improving MPC generation performance.

Compared with GSN (Hu et al., 2019) and
HeterMPC (Gu et al., 2022) that are the most
relevant to this work, a main difference should be
highlighted. These methods target only on an ideal
setting where addressee labels of all utterances are
necessary, while the proposed method is suitable
for more common conversation sessions where a
few addressee labels are missing. To the best of

our knowledge, this paper makes the first attempt
to extend to more common MPC scenarios and to
explore the issue of missing addressee labels by
maximizing addressee deduction expectation for
MPC generation.

3 Preliminaries

Problem Formulation The task of response
generation in MPCs is to generate an appropriate re-
sponse r̄ given the conversation history, the speaker
of a response, and which utterance the response is
going to reply to. This can be formulated as:

r̄ =argmax
r

logP (r|G, c;θ)

= argmax
r

|r|∑

t=1

logP (rt|G, c, r<t;θ).
(1)

Here, G is a heterogeneous graph, c is the context
of dialogue history, θ is the model parameters. The
speaker and addressee of the response are known
and its contents are masked. The response tokens
are generated in an auto-regressive way. rt and r<t

stand for the t-th token and the first (t− 1) tokens
of response r respectively. |r| is the length of r.

Next, we briefly present the key process of the
HeterMPC baseline (Gu et al., 2022) to avoid
lengthy method descriptions, which shares the
GNN backbone with our method. Readers can
also refer to Gu et al. (2022) for more details.

Graph Construction Given an MPC instance
composed of M utterances and I interlocutors,
a heterogeneous graph G(V,E) is constructed.
Specifically, V is a set of M + I nodes. Each
node denotes either an utterance or an interlocutor.
E = {ep,q}M+I

p,q=1 is a set of directed edges, where
each edge ep,q describes the connection from node
p to node q. Six types of meta relations in
HeterMPC (Gu et al., 2022) and four additional
types of latent edges proposed in this paper are
introduced to describe directed edges between
nodes, which will be elaborated in Section 4.1. It
is notable that ep,q is set to NULL if there is no
connection between two nodes, so that interactions
between them can only be conducted indirectly via
detours through multi-hop passing.

Node Initialization Each node is represented
as a vector, and two strategies are designed to
initialize the node representations for utterances
and interlocutors respectively. Utterances are
first encoded individually by stacked Transformer
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Figure 2: Illustration of edges for utterances (a) with and (b) without addressee labels respectively in a fully-
connected MPC graph for the instance in Figure 1.

layers that can be initialized by PLMs, e.g. encoder
of BART (Lewis et al., 2020), to derive the
contextualized and utterance-level representations.
On the other hand, interlocutors in a conversation
are indexed according to their speaking order
and the embedding vector for each interlocutor is
derived by looking up an order-based interlocutor
embedding table (Gu et al., 2020) that is updated
during learning.

Node Updating The initialized node representa-
tions are updated by feeding them into the built
graph for absorbing context information. Het-
erogeneous attention weights between connected
nodes and message passing over the graph are
calculated in a node-edge-type-dependent manner.
Parameters are introduced to maximize feature
distribution differences for modeling heterogene-
ity (Schlichtkrull et al., 2018; Zhang et al., 2019;
Hu et al., 2020). After collecting the information
from all source nodes to a target node, a node-
type-dependent feed-forward network followed by
a residual connection (He et al., 2016) is employed
for aggregation. To let each utterance token
also have access to graph nodes, an additional
Transformer layer is placed for utterance nodes
specifically. After completing an iteration, the
outputs of utterance and interlocutor nodes are
employed as the inputs of the next iteration.

Decoder It follows the standard implementation
of Transformer decoder (Vaswani et al., 2017) for
generation, and can be initialized by PLMs, e.g.
decoder of BART (Lewis et al., 2020). In each
decoder layer, a masked self-attention operation is
performed where each token cannot attend to future
tokens to avoid information leakage. Then, a cross-
attention operation over the node representations
output by the graph encoder is performed to
incorporate graph information for decoding.

4 Methodology

In this section, we first describe how to construct
a fully-connected conversation graph to ensure
message passing between conversation fragments.
Then, the expectation and maximization steps
for addressee deduction are defined. Finally, an
addressee initialization method is designed for
better convergence of the EM algorithm.

4.1 Fully-Connected Graph Construction

Six types of meta relations {reply, replied-by,
speak, spoken-by, address, addressed-by} are
introduced in HeterMPC (Gu et al., 2022) to
describe directed edges between nodes. However,
given an MPC with a few addressee labels missing,
existing methods usually return several separate
conversation fragments.

To build a consecutively connected conversation
graph and ensure message passing between these
conversation fragments, additional latent edges
are required for completing a fully-connected
conversation graph. In this paper, four additional
types of latent edges are designed to establish the
dependency of utterance nodes on all other nodes in
an MPC graph for conversation contextualization
as shown in Figure 2. There are two types of
them employed to characterize latent relationships
between two disconnected utterance nodes. In
detail, latent-reply characterizes directional edges
from latter utterances to previous ones which are
ordered by their appearance in an MPC, and vice
versa for latent-replied-by. On the other hand,
another two types of latent edges are employed
to characterize the relationships between an ut-
terance node and an interlocutor node. In detail,
latent-address characterizes directional edges from
utterance nodes to interlocutor nodes, and vice
versa for latent-addressed-by. By this means,
both utterances that do not reply to directly and
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Figure 3: Illustration of the EM training process for the instance in Figure 1, where the expectation and maximization
steps are performed alternately.

interlocutors that do not address to directly are
also useful for capturing the semantics contained
in graph nodes and for modeling complicated
interactions between nodes.

4.2 EM for Addressee Deduction

Figure 3 illustrates the EM training process, where
the expectation and maximization steps are per-
formed alternately. The addressee of an utterance
without a golden addressee label is modeled as a
discrete latent variable.

Expectation Step Given the observed MPC in-
stances with model parameters frozen, the condi-
tional distribution of the latent addressee variable
is calculated during the E steps. Here, a specific
addressee corresponds to a determined MPC graph.
To derive the probability distribution of the latent
addressee variable, a set of latent graphs are fed
into the generative model respectively to calculate
the probabilities of generating a response under
these latent graphs as P (r|GUi→Uj , c), where
GUi→Uj is a graph assuming Ui replies to Uj . The
derived probability distribution of generating a
response under these latent graphs serves as the
posterior of selecting the latent variable. The
latent addressee distribution of the latent variable
is estimated by applying Bayes’ rule as:

P (GUi→Uj |c, r;θ)

=
P (r|GUi→Uj , c;θ)P (GUi→Uj |c;θ)∑i−1
k=1 P (r|GUi→Uk

, c;θ)P (GUi→Uk
|c;θ)

.

(2)
A uniform prior for every context c as
P (GUi→Uj |c;θ) = 1/(i − 1) is assumed,

which simplifies Eq. (2) as:

P (GUi→Uj |c, r;θ) =
P (r|GUi→Uj , c;θ)∑i−1
k=1 P (r|GUi→Uk

, c;θ)
.

(3)

Maximization Step After deriving the approxi-
mate probability distribution of the latent addressee
variable, we maximize the expected log-likelihood
with respect to θ:

EG∼P (GUi→Uj
|c,r;θ)[logP (r,G|c;θ)]

=

i−1∑

j=1

P (GUi→Uj |c, r;θ) logP (r,GUi→Uj |c;θ).

(4)

Hard EM A hard EM method (Min et al.,
2019) that selects the addressee with the highest
probability as the silver label is adopted as:

Ūj = argmax
Uj

P (GUi→Uj |c, r;θ), j < i, (5)

and the maximization step is approximated as
logP (r,GUi→Ūj

|c;θ). Once the silver addressee
label is determined in this round, its corresponding
MPC graph is employed for regular training by
minimizing the negative log-likelihood loss of
responses.

4.3 Addressee Initialization
The initialization of addressee labels is crucial to
EM for addressee deduction, as it helps converge
to optimal model parameters. Thus, an addressee
initialization method is designed for utterances
without addressee labels before EM training, to
select the most probable one as initialization.
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The encoder and decoder of the model are
initialized with PLMs, e.g., BART, which is pre-
trained on texts in the general domain. First,
domain adaptation is conducted based on the fully-
connected graph constructed in Section 4.1, with
the learning objective of minimizing the negative
log-likelihood loss of responses on the task training
set. By this means, the representation space can
be adapted to the task domain and to capture
the conversation semantics. Then, for a specific
utterance without an addressee label, each previous
utterance is assumed to be the replied utterance
respectively by setting the corresponding utterance-
utterance edges to reply and replied-by, as well as
setting the utterance-interlocutor edges to address
and addressed-by. This process is illustrated in the
left part of Figure 3. The probability of generating
a response under an assumed graph is calculated
following Eq. (2). Finally, the one with the highest
probability following Eq. (5) is chosen as the
initialization for the first round of M step.

5 Experiments

5.1 Datasets

We evaluated our proposed methods on two Ubuntu
IRC benchmarks. One was released by Ouchi
and Tsuboi (2016), in which the addressee labels
for part of the history utterances were missing.
Here, we adopted the version shared in Le et al.
(2019). The conversation sessions were separated
into three categories according to the session length
(Len-5, Len-10 and Len-15). In this paper, the
subset of session length 5 was employed due to
the limitation of computing resources. The other
dataset where addressee labels were provided for
each utterance was adopted following previous
work (Hu et al., 2019; Gu et al., 2022). Both
datasets were popularly used in the field of multi-
party conversations (Zhang et al., 2018; Wang et al.,
2020; Gu et al., 2021). Appendix A.1 presents the
statistics of the two benchmarks.

5.2 Baseline Models

We compared our proposed model with as many
MPC generative models as possible. Considering
that there are only a few research papers in
this field, several recent advanced models were
also adapted to provide sufficient comparisons
following Gu et al. (2022). Finally, we compared
with (1) non-graph-based models including GPT-
2 (Radford et al., 2019) and BART (Lewis et al.,

2020), as well as (2) graph-based models including
GSN (Hu et al., 2019) and HeterMPC (Gu et al.,
2022). Readers can refer to Appendix A.2 for
implementation details of these baseline models.

5.3 Metrics
To ensure all experimental results were comparable,
we used exactly the same automated and human
evaluation metrics as those used in previous work
(Hu et al., 2019; Gu et al., 2022). Hu et al. (2019)
used the evaluation package released by Chen et al.
(2015) including BLEU-1 to BLEU-4, METEOR
and ROUGEL, which was also used in this paper.1

Human evaluation was conducted to measure the
quality of the generated responses in terms of three
independent aspects: 1) relevance, 2) fluency and
3) informativeness. Each judge was asked to give
three binary scores for a response, which were
further summed up to derive the final score ranging
from 0 to 3.

5.4 Implementation Details
The corresponding parameters of MADNet fol-
lowed those in HeterMPC (Gu et al., 2022) for
fair comparison. Model parameters were ini-
tialized with pre-trained weights of bart-base
released by Lewis et al. (2020). The AdamW
method (Loshchilov and Hutter, 2019) was em-
ployed for optimization. The learning rate was
initialized as 6.25e-5 and was decayed linearly
down to 0. The max gradient norm was clipped
down to 1.0. The batch size was set to 128 with
2 gradient accumulation steps. The maximum
utterance length was set to 50. The number of
layers for initializing utterance representations was
set to 3, and the number of layers for heterogeneous
graph iteration was set to 3. The number of decoder
layers was set to 6. The strategy of greedy search
was performed for decoding. The maximum length
of responses for generation was also set to 50. All
experiments were run on a single Tesla A100 GPU.
The number of EM iterations was set to 2. The
number of epochs in each M step was set to 4, and
the learning rate was fixed to 5e-7. Each iteration
took about 9 and 6 hours for each E step and M
step respectively. The validation set was used to
select the best model for testing. All code was
implemented in the PyTorch framework2 and is
published to help replicate our results.3

1https://github.com/tylin/coco-caption
2https://pytorch.org/
3https://github.com/lxchtan/HeterMPC
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Models
Metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGEL

GSN (Hu et al., 2019) 6.32 2.28 1.10 0.61 3.27 7.39
GPT-2 (Radford et al., 2019) 9.12 3.40 1.93 1.39 3.28 8.92
BART (Lewis et al., 2020) 11.13 3.95 2.11 1.44 4.45 10.20
HeterMPC (Gu et al., 2022) 11.40 4.29 2.43 1.74 4.57 10.44

MADNet 11.82† 4.58† 2.65 1.91 4.90† 10.74†
MADNet w/o. EM for addressee deduction 11.62 4.48 2.59 1.88 4.80 10.63
MADNet w/o. latent-reply and latent-replied-by 11.76 4.43 2.47 1.74 4.83 10.67
MADNet w/o. latent-address and latent-addressed-by 11.54 4.44 2.57 1.87 4.72 10.52

Table 1: Evaluation results and ablations on the test set of Ouchi and Tsuboi (2016) in terms of automated evaluation.
Numbers in bold denoted that the results achieved the best, and those marked with † denoted that the improvements
were statistically significant (t-test with p-value < 0.05) comparing with the best performing baseline.

Models
Metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGEL

GSN (Hu et al., 2019) 10.23 3.57 1.70 0.97 4.10 9.91
GPT-2 (Radford et al., 2019) 10.37 3.60 1.66 0.93 4.01 9.53
BART (Lewis et al., 2020) 11.25 4.02 1.78 0.95 4.46 9.90
HeterMPC (Gu et al., 2022) 12.26 4.80 2.42 1.49 4.94 11.20

MADNet 12.73† 5.12† 2.64 1.63 5.31† 11.74†
MADNet w/o. latent-reply and latent-replied-by 12.54 4.91 2.53 1.59 5.20 11.60
MADNet w/o. latent-address and latent-addressed-by 12.45 4.92 2.52 1.55 5.18 11.60

Table 2: Evaluation results and ablations on the test set of Hu et al. (2019) in terms of automated evaluation. Results
except ours are cited from Gu et al. (2022). Note that EM for addressee deduction was not adopted on this dataset,
since addressee labels were provided for each utterance.

5.5 Evaluation Results

In our experiments, BART was selected to initialize
MADNet following Gu et al. (2022).

Automated Evaluation Table 1 and Table 2
present the evaluation results of MADNet and
previous methods on the test sets. Each model
ran four times with identical architectures and
different random initializations, and the best out
of them was reported. The results show that
MADNet outperformed all baselines in terms of
all metrics. Specifically, MADNet outperformed
the best performing baseline, i.e., HeterMPC by
0.42% BLEU-1, 0.29% BLEU-2, 0.22% BLEU-
3, 0.17% BLEU-4, 0.33% METEOR and 0.30%
ROUGEL on the test set of Ouchi and Tsuboi
(2016). Additionally, MADNet outperformed
HeterMPC by 0.47% BLEU-1, 0.32% BLEU-2,
0.22% BLEU-3, 0.14% BLEU-4, 0.37% METEOR
and 0.54% ROUGEL on the test set of Hu et al.
(2019). These results illustrated the effectiveness of
our proposed method in modeling MPC structures,
and the importance of message passing between the
utterance and interlocutor nodes in an MPC graph.

To further verify the effectiveness of each com-

ponent of our proposed method, ablation tests
were conducted as shown in the last few rows
of Table 1 and Table 2. First, EM for addressee
deduction was removed on the dataset of Ouchi
and Tsuboi (2016). The drop in performance
illustrated that accurate addressee labels were
crucial to the graphical information flow modeling
in MPCs. In addition, EM was an effective
solution to addressee deduction. Furthermore,
the latent-reply and latent-replied-by edges, or
latent-address and latent-addressed-by edges were
removed respectively. The drop in performance
illustrated the importance of modeling interactions
between indirectly related utterances, and those
between utterances and interlocutors for better
conversation contextualization.
Human Evaluation Table 3 presents the human
evaluation results on a randomly sampled test set
of Ouchi and Tsuboi (2016). 200 samples were
evaluated and the order of evaluation systems were
shuffled. Three graduate students were asked to
score from 0 to 3 (3 for the best) and the average
scores were reported. It can be seen that MADNet
achieved higher subjective quality scores than the
selected baseline models.
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Models
Metrics

Score

Human 2.09

GSN (Hu et al., 2019) 1.20
BART (Lewis et al., 2020) 1.54
HeterMPC (Gu et al., 2022) 1.62
MADNet 1.79

Table 3: Human evaluation results of MADNet and
some selected systems on a randomly sampled test set
of Ouchi and Tsuboi (2016).

5.6 Analysis

Accuracy of addressee deduction. A key as-
pect of the proposed method is to deduce the
addressee information which in turn improves the
performance of response generation. Therefore,
the accuracy of addressee deduction was directly
evaluated with respect to a set of baselines to
explore its impact on response generation. To do
that, a modified dataset of Hu et al. (2019) was
constructed. Specifically, the golden addressee
label of the last utterance of the conversation
history was masked to derive the modified dataset.4

Results of five selected methods on this modified
dataset were compared as shown in Table 4: (1)
HeterMPC, (2) each utterance whose addressee
label was masked was randomly assigned a pre-
vious utterance as its reply-to utterance and fed
it to HeterMPC, denoted as HeterMPCrand, (3)
each utterance whose addressee label was masked
was assigned its preceding utterance as its reply-
to utterance and fed it to HeterMPC, denoted as
HeterMPCprec, (4) MADNet and (5) MADNet with
the oracle addressee labels, i.e., MADNet on the
original Hu et al. (2019) dataset. Results show that
the prediction of addressees significantly affects the
performance of MPC generation. Seriously wrong
predictions might even hurt performance. It can
be seen that the addressee deduction with EM in
MADNet outperformed the heuristic methods of
random selection by a margin of 12.7% accuracy,
and of selecting its preceding utterance by a margin
of 5.3% accuracy. As a result, the generation
performance was improved benefiting from ac-
curate addressee predictions. It is notable that
the prediction of addressee achieved only 50.1%
accuracy, which shows that this task is still difficult

4The dataset of Hu et al. (2019) was adopted here, since
the golden addressee labels were provided for each utterance
and can be used for evaluation.

Models
Metrics

Accuracy BLEU-4 METEOR ROUGEL

HeterMPC - 1.33 5.03 11.35
HeterMPCrand 37.4 1.29 4.94 11.23
HeterMPCprec 44.8 1.32 4.96 11.32
MADNet 50.1 1.51 5.17 11.65
MADNetorac 100.0 1.63 5.31 11.74

Table 4: Accuracy of addressee deduction and
automated evaluation results on the modified dataset of
Hu et al. (2019). rand, prec and orac were abbreviations
of random, preceding and oracle respectively.
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Figure 4: Performance of MADNet under different
numbers of EM iterations on the validation set of Ouchi
and Tsuboi (2016).

and there is a lot of room for further improvement.

Number of EM iterations. Figure 4 illustrated
how the performance of MADNet changed with
respect to different numbers of EM iterations on the
validation set of Ouchi and Tsuboi (2016). It can
be seen that the performance of MADNet was im-
proved as the number of EM iterations increased at
the beginning in terms of METEOR and ROUGEL,
showing the effectiveness of employing EM for
addressee deduction. Then, the performance was
stable with more EM iterations. The reason might
be that models have selected as many optimal
addressee labels as possible.

Case Study. A case study was conducted by
randomly sampling an MPC instance as shown in
Table 5. Given the conversation graph, the response
to generate addressed I.1, so the information
relevant to I.1 should be collected. It can be seen
from this instance that the addressee label was only
available for the third utterance, and the established
conversation graph was very fragmented due to
the lack of addressee labels. Conditioned on an
inconsecutively connected graph, previous methods
hardly capture the context semantics and can only
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Speaker Utterance Addressee
I.1 perhaps but not everyone uses that -
I.2 i ll ask him for his history log i

think
-

I.3
for people who do n t the
phased update percentages are n t
considered ok 0

I.1

I.1 true I.3 (Deduced)

I.3

i first thought it might be related
to https launchpad net ubuntu
source unity scopes api 0 6 19 15
(Human)

I.1

i do n t know how to do that but
i m not sure what you want to do
with the (GSN)
i m not sure if you can get a silo
for that but i m not aware of any
other (BART)
i m not sure if you can get that
to work for you but i think it s a
good (HeterMPC)
i think it s a bit of a corner case for
people who do n t have the phased
update (MADNet)

Table 5: The response generation results of a test sample.
“I." is an abbreviation of “interlocutor". We kept original
texts without manual corrections.

generate generic responses such as “i m not sure
...”. For MADNet, the missing addressee label
of the fourth utterance was deduced as I.3, which
was appropriate considering the MPC context.
Given the deduced addressee label, the message
of “phased update” in the third utterance can be
passed to the fourth utterance. Furthermore, the
response to generate was about to reply to the
fourth utterance, and this important message can
further captured for response generation.

6 Conclusion

We present MADNet to maximize addressee de-
duction expectation to study the issue of scarcity
of addressee labels in multi-party conversations.
Four types of latent edges are designed to model
interactions between indirectly related utterances,
and those between utterances and interlocutors
for conversation contextualization. Furthermore,
an EM-based approach is designed to deduce
silver addressee labels and optimize the quality
of generated responses. Experimental results show
that the proposed MADNet outperforms previous
methods by significant margins on two benchmarks
of MPC generation. It especially shows better
generalization and robustness in the more common
and challenging setting where a few addressee
labels are missing.

Limitations

Although the proposed method has shown great
performance to alleviate the scarcity of addressee
labels which is a common issue in multi-party
conversations, we should realize that the proposed
method still can be further improved. For example,
to derive the probability distribution of the latent
addressee variable, a substitute that the probabil-
ity of generating a response under the assumed
graph is considered as its approximation. This
assumption has shown its empirical improvement
in our experiments, and the theoretical analysis will
be a part of our future work to help derive more
accurate probability distribution. In addition, a
set of latent graphs are required and fed into the
generative model to calculate the probabilities of
generating a response under these latent graphs,
which consumes much computation resources.
Thus, optimization of the expectation steps with
less computation is worth studying. Besides,
benchmarking the baselines and evaluating the
proposed method on other appropriate datasets
to make it more representative of as many MPC
scenarios as possible will be part of our future
work.
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A Appendix

A.1 Datasets

Datasets Train Valid Test

Ouchi and Tsuboi (2016) 461,120 28,570 32,668
Hu et al. (2019) 311,725 5,000 5,000

Table 6: Statistics of the two benchmarks evaluated in
this paper.

A.2 Baseline Models
We compared our proposed model with as many
MPC generative models as possible. Considering
that there are only a few research papers in
this field, several recent advanced models were
also adapted to provide sufficient comparisons.
We followed previous work (Hu et al., 2019;
Gu et al., 2022) that the tags of speakers and
addressees were both used if they were available
when establishing the performance of baselines.
Finally, we compared with (1) non-graph-based
models including GPT-2 (Radford et al., 2019) and
BART (Lewis et al., 2020), as well as (2) graph-
based models including GSN (Hu et al., 2019) and
HeterMPC (Gu et al., 2022) as follows.

(1) GPT-2 (Radford et al., 2019) was a uni-
directional pre-trained language model. Following
its original concatenation operation, all context

utterances and the response were concatenated
with a special [SEP] token as input for encoding.
(2) BART (Lewis et al., 2020) was a denoising
autoencoder using a standard Tranformer-based
architecture, trained by corrupting text with an
arbitrary noising function and learning to recon-
struct the original text. In our experiments, a
concatenated context started with <s> and sepa-
rated with </s> were fed into the encoder, and
a response were fed into the decoder. (3) GSN
(Hu et al., 2019) made the first attempt to model
an MPC with a homogeneous graph. The core
of GSN was an utterance-level graph-structured
encoder. (4) HeterMPC (Gu et al., 2022) achieved
the state-of-the-art performance on MPCs. It
proposed to model the complicated interactions
between utterances and interlocutors in MPCs with
a heterogeneous graph, where two types of graph
nodes and six types of edges are designed to model
heterogeneity. Two versions of HeterMPC were
provided that were initialized with BERT and
BART respectively. The latter was adopted in this
paper which showed better performance.
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