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Abstract

Surprisal theory (Hale, 2001; Levy, 2008)
posits that a word’s reading time is propor-
tional to its surprisal (i.e., to its negative log
probability given the proceeding context). It
has been empirically tested using surprisal
estimates from language models (LMs).
Under the premise that surprisal theory
holds, we would expect that higher quality
language models, whose predictions are more
accurate, provide more powerful predictors
of human reading behavior—a conjecture
we dub the quality–power (QP) hypothesis.
Unfortunately, empirical support for the QP
hypothesis is mixed. Some studies in English
have found correlations between LM quality
and psychometric predictive power, but other
studies using Japanese data, as well as using
larger English LMs, find no such correlations.
In this work, we conduct a systematic crosslin-
guistic assessment of the QP hypothesis.
We train LMs from scratch on small- and
medium-sized datasets from 13 languages
(across five language families) and assess their
ability to predict eye tracking data. We find
correlations between LM quality and psycho-
metric predictive power in eleven of these
thirteen languages, suggesting that, within the
range of model classes and sizes tested, better
language models provide better predictors of
human language processing behaviors.

https://github.com/rycolab/
quality-power-hypothesis

1 Introduction

The relationship between a word’s predictability
and its reading time (RT) is an important object of
study in psycholinguistics because it allows us to
draw insights about how humans process sentences
(Smith and Levy, 2013; Kuperberg and Jaeger,
2016; Shain et al., 2022). Extensive prior research—
across many datasets, populations, reading-time
measurement methodologies and even languages—
has found that the more predictable a word is, the
faster it will be to process (Kuribayashi et al., 2021;
Meister et al., 2021; Smith and Levy, 2013; Wilcox

et al., 2020, 2023; Shain et al., 2022; de Varda
and Marelli, 2022, 2023). Beyond these empirical
findings, the relationship between predictability
and reading time has received formal treatment,
forming the basis of surprisal theory (Hale,
2001; Levy, 2008). In surprisal theory, a word’s
predictability is operationalized in terms of its
surprisal, or contextual negative log-likelihood:
s✓(wt | w<t) = − log p✓(wt | w<t).1 In
practice, however, we do not know the contextual
probability of words according to the data-
generating distribution p✓. Thus, it is common
to estimate surprisal using the distribution over
words from a language model pθ instead, i.e.,
sθ(wt | w<t) = − log pθ(wt | w<t).

Recent advances in language modeling have
drastically increased the quality of surprisal
estimates from language models (Hoffmann et al.,
2022; Chowdhery et al., 2022; OpenAI, 2023).
The topic of interest of this work is whether this
increased quality also leads to an increase in a
language model’s psychometric predictive power
(Frank and Bod, 2011; Goodkind and Bicknell,
2018), i.e., how well its surprisal estimates can be
used to predict RTs. To put it simply, we ask: Are
better language models more powerful predictors
of human behavior? If surprisal theory holds, we
would expect this power to correlate positively
with language models’ quality. We will refer to
this conjecture as the quality–power hypothesis,
abbreviated as the QP hypothesis.

Empirical evidence for the QP hypothesis is
mixed. When tested on English corpora, some
studies have found that models that place higher
probability on held-out data do tend to be better
at predicting the pattern of human reading times
(Goodkind and Bicknell, 2018; Wilcox et al., 2020).
More recent work, however, has discovered two em-

1Empirical results mostly support the existence of a linear
relationship between surprisal and reading times (Smith and
Levy, 2013; Shain et al., 2022; Wilcox et al., 2023): They
find that surprisal is a better psychometric predictor than raw
probabilities, and that non-linear functions of surprisal are not
better than linear ones.
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pirical exceptions: The first empirical shortcoming
was presented in Kuribayashi et al. (2021)—the
only2 non-English study (to the best of our
knowledge) investigating the quality–power rela-
tionship.3 Specifically, Kuribayashi et al. find that
the QP hypothesis does not hold in Japanese. The
second shortcoming was identified by Shain et al.
(2022) and Oh and Schuler (2023), who observe
that the quality–power relationship does not hold
for the best (and most recent) language models,
suggesting state-of-the-art language models might
not be aligned with human incremental predictions.

In this work we present two empirical studies
that investigate these shortcomings. First, we
conduct a systematic crosslinguistic analysis of
the QP hypothesis, using small- and medium-sized
LMs.4 We train 104 language models from scratch
on data from 13 languages, using subsamples of
the Wiki40b dataset (Guo et al., 2020). Within
each language, we operationalize LMs’ qualities
as their average per-word cross entropy on a test
set. We then use the surprisals under these models
to predict human reading times on a multilingual
corpus of eye tracking data. We find that, in eleven
out of thirteen languages, there is a significant
correlation between a language model’s quality
and its surprisals’ psychometric predictive power.

To investigate the second shortcoming, we note
that a (potential) issue with the findings presented
in Oh and Schuler (2023) and Shain et al. (2022)
is that the training data for these models is not
publicly available, and might plausibly includes
the reading time corpora against which their
psychometric predictive power was evaluated.
We discuss why this might present an issue,
and perform an investigation of the relationship
between data leakage and model’s predictive
power in §5, albeit with null results.

2 Surprisal vs Reading Times

Originally proposed by Hale (2001), surprisal the-
ory posits that the amount of effort (and there-

2Concurrent to this study, de Varda and Marelli (2023)
investigate the QP hypothesis in a crosslinguistic setup. Un-
like our work, they rely on pre-trained multilingual models
whereas we make use of in-house trained monolingual models.
This allows them to investigate larger models than us, but also
it introduces biases inherent to the use of multilingual models.

3See Blasi et al. (2022) for a survey on the importance of
testing cognitive hypotheses beyond English.

4Note that our best in-house trained language models are
still of far lower quality than the large language models ana-
lyzed by Shain et al. (2022) and Oh and Schuler (2023).

fore time) a reader must spend to process a word
is a monotonically increasing function of its sur-
prisal, where surprisal is a measure of a word’s
information content (Shannon, 1948; Cover and
Thomas, 2006). Surprisal theory has attracted lots
of attention over the years, by both the natural
language processing and cognitive science com-
munities (Hale, 2001, 2003, 2016; Keller, 2004;
van Schijndel and Schuler, 2016; van Schijndel
and Linzen, 2018; Shain, 2019, 2021; Shain and
Schuler, 2021, 2022; Wilcox et al., 2020; Meister
et al., 2021, 2022; Hoover et al., 2022; Oh et al.,
2021; Oh and Schuler, 2022, 2023; Kuribayashi
et al., 2021, 2022, inter alia).

One way surprisal theory has been evaluated
is by quantifying surprisal’s predictive power. If
a word’s surprisal influences reading times, we
should see evidence in naturalistic reading data.
Psycholinguists thus train regressors pϕ to predict
reading times: r(wt) ∼ pϕ(r | ·), where pϕ’s
input is defined as a vector of baseline features xt,
comparing the regressors’ performances when sur-
prisal is included and when it is not. Specifically,
the predictive power of surprisal is quantified as
the difference in the log-likelihood (llh) of reading
time data under the two different regressors:

∆llh = llh(pϕ(r | xt, s✓))− llh(pϕ(r | xt)) (1)

Note that this is an ideal ∆llh, which assumes we
have access to surprisals from the data-generating
distribution, which we write as s✓ (as a shorthand
for s✓(wt | w<t)).

2.1 Estimated Surprisal
As noted in §1, we do not have access to p✓ and
thus, we cannot compute s✓(wt |w<t) directly. We
must therefore estimate it, which we do with the
use of a language model pθ. Formally, the language
models pθ that we discuss here are autoregressive
probability distributions over V def

= V ∪ {EOS}, de-
fined as the conditional distribution pθ(· | w<t).

A language model’s parameters are typically cho-
sen with the objective of minimizing its cross en-
tropy with the true distribution:5

H✓→θ(W ) =
∑

w∈S
p✓(w)

|w|∑

t=1

sθ(wt | w<t) (2)

5In practice, as we do not have access to p✓, this is done
using a Monte Carlo estimator and a training dataset Dtrn =

{w(n)}Nn=1, where w(n) are assumed to be sampled i.i.d.

from p✓: H✓→θ(W ) ≈ 1
N

∑N
n=1

∑|w(n)|
t=1 sθ(w

(n)
t | w(n)

<t )
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where S def
= V∗ ◦ {EOS}. A language model’s train-

ing, then, pushes it towards being a better surprisal
estimator. This can be shown clearly when we
rewrite the cross entropy as the sum of p✓’s en-
tropy and the Kullback–Leibler (KL) divergence
between p✓ and pθ:

H✓→θ(W ) = H✓(W ) + KL(p✓ || pθ) (3)

where the KL measures a statistical “distance” be-
tween two distributions, being zero only when
pθ = p✓. Importantly, language models are not
perfect estimates of p✓, and so they do not achieve
this minimum. Intuitively, H✓→θ(W ) should then
give us a sense for how similar pθ is to p✓, and,
thus, how similar sθ is to s✓. These surprisal esti-
mates sθ are then in turn used to estimate surprisal’s
predictive power

∆̂llh = llh(pϕ(r | xt, sθ))− llh(pϕ(r | xt)) (4)

We can now state the QP hypothesis in terms of
these more formal definitions: the QP hypothesis
predicts that as the cross entropy H✓→θ(W )
decreases, a model’s surprisal values should
become better predictors of reading times, leading
to larger ∆̂llh.

3 Experimental Setup

Measuring Predictive Power. As discussed
in §2, and following previous work in this area
(Goodkind and Bicknell, 2018; Wilcox et al.,
2020), we quantify a language model’s predictive
power as its delta log likelihood (∆̂llh). When
predicting the reading time of word wt in context,
we will use features associated with wt and its two
preceding words wt−1, and wt−2 to account for
spillover effects.6 We will refer to this combined
set of three words as our target words. The vector
of variables in our baseline regressor xt include
the log unigram frequency and the length (in
characters) of our target words. The variables
for our comparison regressor include xt plus two
additional variables: the surprisal and the Rényi
entropy of our target words. Rényi entropy is a gen-
eralization of Shannon entropy which measures the
expected surprisal of a word, given its context, and
has been shown previously to impact reading times
above and beyond surprisal (Pimentel et al., 2023).
Results from regressors that use just surprisal, or

6Spillover effects, common in reading, are when properties
of a word impact the reading times of subsequent words.

just Rényi entropy as additional predictors are
presented in App. A and B. To quantify the power
of the language model, we report ∆̂llh (as laid out
in eq. (4)) measured across ten folds of held-out
data. A positive ∆̂llh means that including surprisal
and entropy as predictors increases predictive
power over reading times. A negative value of
∆̂llh is also possible and it implies overfitting.

Eye Tracking Data. We measure ∆̂llh on
MECO (Siegelman et al., 2022), a multilingual
corpus of eye tracking data collected on simple
Wikipedia-style articles from thirteen different
languages. Breaking the languages into their
respective families, we have eight Indo-European
languages (Dutch, English, German, Greek, Italian,
Norwegian, Russian and Spanish), two Uralic
languages (Finnish, Estonian), one Afro-Asiatic
language (Hebrew), one Koreanic language
(Korean) and one Turkic language (Turkish).
Articles in the MECO dataset undergo a multi-step
translation process to ensure that meaning was
preserved across languages. Following previous
studies (Smith and Levy, 2013; Wilcox et al.,
2020), we use each word’s gaze duration as our
measure of reading time.7 For dependent variables
in our regressors, we use cross-participant averages,
and treat skipped words as having a reading time
of zero (as previously done by Rayner et al., 2011;
Pimentel et al., 2023; Wilcox et al., 2023).

Language Models. We train language models on
different language sections of the Wiki40B dataset
(Guo et al., 2020). The data for each language is
pre-split into a training, validation and test set in
Wiki40B. Before training, we fit a UnigramLM
tokenizer with a vocabulary size of 32k to each lan-
guage’s entire training set. This tokenizer is then
shared across all LMs within that language. We
then subsample each language’s training set into
sets with 1M, 3M, 10M, 30M, 100M, 300M and
1B tokens. We train models independently on each
of this subsets, as well as on the entire training set
available for that language. All models are trained
using fairseq (Ott et al., 2019), following their rec-
ommended language modeling hyper-parameters.
We use a standard decoder-only transformer with
6 layers, a context window size of 512 tokens, and
shared input–output embeddings. We train our
models using Adam (Kingma and Ba, 2015), with

7Gaze duration is the amount of time between a readers
first fixation on a word and the first time their gaze leaves the
word.
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Figure 1: Results. Error bars are 95% confidence intervals on heldout data. Log training tokens is given in base 10. Fits are
linear lines of best-fit and 95% confidence intervals. Blue labels show the r- and p-value of a Pearson correlation test between
cross entropy and delta log-likelihood. We find a negative correlation in 11 out of 13 languages tested.

a learning rate of 5e-4, 4000 warm-up updates, and
dropout of 0.1. We evaluate our models after each
full epoch on their respective validation sets, using
early stopping with a patience of 3 epochs. As our
measure of language model quality, we report their
cross entropy on the MECO dataset.

4 Results of the Crosslinguistic Analysis

The results for our crosslinguistic analysis can be
seen in Fig. 1, with the languages in the different
facets, H✓→θ on the x-axis and ∆̂llh on the y-axis.
First, we note that the majority of language models
are able to achieve ∆̂llh above zero, indicating that
surprisal and entropy values from the models are
helpful in predicting reading times regardless of
their size. This is in line with previous work that
has found that surprisal and entropy have psycho-
metric predictive power. That being said, the sur-
prisal and entropy from our worse models (which
were trained on only 1 million words) typically do
not lead to positive ∆̂llh, which is not unexpected
from models that are such poor estimates of p✓ (as
evinced by their large cross entropy).

Turning to the relationship between cross
entropy and ∆̂llh, visually, it is quite clear that
the majority of languages exhibit a positive
relationship between language model quality and
psychometric predictive power, i.e., a negative
relationship between ∆̂llh and cross entropy. To

test this trend statistically, we fit linear regression
models with ∆̂llh as the sole dependent variable
and cross entropy as a predictor. We find a
significant effect of cross entropy on ∆̂llh in 11
out of our 13 analyzed languages.8 We do not
find a significant effect of cross entropy in Finnish
or German. Results are shown in Fig. 1, where
we also report the Pearson correlation coefficient
between the cross entropy and mean ∆̂llh of each
language model. The high value of r quantitatively
confirms the visual trends seen in Fig. 1.

Finally, we also run a regression model on all our
data, pooled across languages. Here, in addition to
the fixed effect of H✓→θ, we include random slopes
and intercepts for each language.9 In this regres-
sion we find a significant effect of H✓→θ on ∆̂llh

(β = −0.0026, p < 0.01). Together, these results
indicate that across a range of languages and model
sizes, there is a consistent relationship between a
language model’s quality and its predictive power.

8Dutch (β =−0.0047, p < 0.001), English
(β =−0.0021, p < 0.001), Greek (β =−0.0028, p <
0.001), Hebrew (β =−0.0013, p < 0.001), Italian
(β =−0.0088, p < 0.001), Norwegian (β =−0.0020,
p < 0.001), Russian (β =−0.0037, p < 0.001), Turk-
ish (β =−0.0031, p < 0.001), Spanish (β =−0.0016,
p < 0.01), Estonian (β =−0.0008, p < 0.05) and Korean
(β =−0.0009, p < 0.05).

9Our lmer call was dll ∼ x-ent + (x-ent | lang)
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5 Analysis of Data Leakage

As mentioned in the introduction, prior studies have
found that the relationship between LM quality and
psychometric predictive power does not hold for
large, contemporary LMs (Oh and Schuler, 2023;
Shain et al., 2022). One potential concern for both
of these studies is that they used models whose
training data is not publicly available, and is so
large in scale, that it quite feasibly suffers from data
leakage. That is, as human reading time datasets
were publicly available, models might have been
trained and tested on the same materials.

Motivation. There are a number of ways in
which a model’s surprisal estimates sθ for leaked
data could provide a poorer fit to reading times.
Importantly, models are likely to underestimate
surprisal on training data, and there could feasibly
be a difference in the degree to which high surprisal
vs. low surprisal values are underestimated. Such
a difference could hurt the ability to use surprisal
to predict RTs when restricted to linear regressors,
which are the main focus of many RT analyses
since the relationship between RT and surprisal
has been observed to be linear in nature (Smith and
Levy, 2008, 2013; Shain et al., 2022). Explicitly,
since the aforementioned underestimation might
disproportionately skew a subset of surprisal
estimates, linear regressors would be unable to
model this altered relationship.

Experimental Setup. To assess whether leakage
could be a confounding factors in previous
evidence against the QP hypothesis, we train
models with different amounts of leaked data and
investigate its impact on ∆̂llh. To do so, we create
versions of our full (i.e., not subsampled) training
datasets in each language that include 50% or
100% of the MECO materials for that language.
We then evaluate these models on MECO as before.

Results. Results for this experiment can be seen
in Fig. 2, which shows the average ∆̂llh across
languages. The average ∆̂llh for each amount of
leakage is also printed above the bars. Although
the version of MECO with 0% leaked data does
achieve the highest ∆̂llh, the confidence intervals
overlap with each other. To confirm this statisti-
cally, we first compute delta log likelihood esti-
mated for each word–RT pair in our corpus:

δ̂llh = log pϕ(r | xt, sθ))− log pϕ(r | xt) (5)
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Figure 2: Results of the Data Leakage Experiment: Error
bars are 95% confidence intervals averaged across languages.
Average values of ∆̂llh in each category are printed above the
bars.

and then fit a mixed-effects regression model with
these δ̂llh as the response variable and a single
categorical fixed effect indicating whether the δ̂llh
was derived from a data-leaked model or not. We
run separate tests comparing between 0% and 50%
and comparing between 0% and 100% leakage.
We included random slopes and intercepts for each
language. The degree of data leakage was not a
significant predictor of δ̂llh (p > 0.05). Although
our results can not be taken to show, definitively,
that the breakdown in the QP relationship observed
by Shain et al. (2022) and Oh and Schuler (2023) is
or is not due to data leakage, they suggest that this
is likely not the primary cause. We thus encourage
researchers to explore other hypotheses about why
these larger models appear to be poorer predictors
of human reading behavior.

6 Conclusion

This paper investigates the QP hypothesis, i.e., the
relationship between a language model’s quality
and its psychometric predictive power. It looks
specifically at two settings in which there is some
evidence against the hypotheses by providing (i) a
crosslinguistic assessment of its predictions and (ii)
an investigation of the role of data leakage in model
predictive power. Although our results demonstrate
that, at small- and medium-sized data scales, the
QP hypothesis holds in the large majority of lan-
guages tested, our results do raise some questions.
Perhaps the most pressing of these has to do with
our results for Finnish and German, which showed
negative (albeit non-significant) correlations be-
tween quality and power. Further testing in these
two languages, thus, is an important next step for
future research.
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Limitations

One empirical limitation of this study is that we did
not assess the QP hypothesis in Japanese (which is
not in the MECO dataset). Negative results in that
language were one of the primary motivations for
this work. Assuming that the negative Japanese re-
sults still hold, what should we make of this? One
possibility is that the results from Japanese might
be due to its writing system, which combines syl-
labaries (the kana) and logosyllabic characters (the
kanji). All of the scripts investigated here either use
alphabets or, in the case of Korean, blends between
alphabets and syllabaries. Our results strongly sug-
gest that the QP hypothesis does hold across lan-
guages that share a common approach to writing.
A next logical step would be to test this hypothesis
across writing systems in a more systematic way.
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of entropy (e.g., Goodkind and Bicknell, 2018), we
conduct a version of our analysis with surprisal as
the sole non-baseline predictor. Results are pre-
sented in Fig. 3. As with the results in the main
section, we find a negative relationship between
∆̂llh and H✓→θ across languages. To test this trend

statistically, we fit linear regression models with
∆̂llh as the response variable and H✓→θ as the sole
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∆̂llh on H✓→θ (p < 0.05). As before, we also run
a mixed-effects regression model that tests the ef-
fect cross-linguistically with random intercepts and
slopes for language and log-number of training to-
kens. We find a significant effect of ∆̂llh on H✓→θ

(p < 0.05). Overall, these results are consistent
with the results in the main body of the paper.

B Results with Entropy

Additionally, we conduct a version of our analy-
sis that includes only (Rényi) entropy as a non-
baseline predictor. Results are presented in Fig. 4.
Again, we find that the majority of languages show
a negative relationship between H✓→θ and ∆̂llh.
Conducting the same statistical analysis as dis-
cussed in the main body of the paper, we find a sig-
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Spanish (p < 0.05), but no effect in Finnish. We
find a positive effect in Estonian (p < 0.001). We
also run a mixed-effects regression model that tests
the effect cross-linguistically with random inter-
cepts and slopes for language and log-number of
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on H✓→θ (p < 0.05).
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Figure 3: Results with Surprisal Only: Error bars are 95% confidence intervals on heldout data. Fits are linear lines of best-fit
and 95% confidence intervals. Blue labels show the r- and p-value of a Pearson correlation test between cross entropy and delta
log-likelihood. We find a negative correlation in 10 out of 13 languages tested.
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Figure 4: Results for Entropy Only: Target models include Rényi entropy with α = 0.5 as an additional predictor. We find a
negative correlation in 11 out of 13 languages tested.
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