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Abstract

Current approaches to Argument Mining (AM)
tend to take a holistic or black-box view of the
overall pipeline. This paper, in contrast, aims
to provide a solution to achieve increased per-
formance based on current components instead
of independent all-new solutions. To that end,
it presents the Deployment of Recombination
and Ensemble methods for Argument Miners
(DREAM) framework that allows for the (auto-
mated) combination of AM components. Using
ensemble methods, DREAM combines sets of
AM systems to improve accuracy for the four
tasks in the AM pipeline. Furthermore, it lever-
ages recombination by using different argu-
ment miners elements throughout the pipeline.
Experiments with five systems previously in-
cluded in a benchmark show that the systems
combined with DREAM can outperform the
previous best single systems in terms of accu-
racy measured by an AM benchmark.

1 Introduction

A well-known and open challenge in Argument
Mining (AM) is that approaches do not generalize
well across domains (Lippi and Torroni, 2016a).
Thus, a single system will not be able to solve
the task of extracting arguments from publications
across multiple research fields. Therefore, we in-
vestigate the use of ensemble methods (Opitz and
Maclin, 1999) to find combinations that are ex-
pected to help alleviate the issue.

Furthermore, the overview of AM approaches
presented by Lawrence and Reed (2019) shows that
papers typically introduce novel techniques or use
methods for AM that have demonstrated success in
other applications. As new systems tend to take the
holistic view of an end-to-end pipeline (Lawrence
and Reed, 2019), it has become evident that novel
approaches rarely investigate improvements of in-
termediate steps. By introducing a system with
ensemble methods and combinations, we aim to
improve smaller aspects of the pipeline.

Moreover, Lawrence and Reed (2019) also take
the same line by advocating for a unifying frame-
work to enable the harmonization of all AM tasks,
including the format of data and results. Such a
unification would be necessary to combine many
systems and facilitate the integration of additional
ones. Likewise, not every task receives the same
amount of attention, with approaches for identi-
fying argumentative relations being sparse (Al-
Khatib et al., 2021). Thus, they cover a smaller
range of domains or do not work well across them.
By using recombination, we hypothesize to in-
crease coverage and find yet untapped potential.

To this end, we formulate the following research
question:

RQ. How can we leverage (re-)combinations of Ar-
gument Mining systems to improve accuracy?

Thus, we build DREAM, a system that allows for
the Deployment of Recombination and Ensemble
methods for Argument Miners. For this en-
deavor, we base our approach and the evaluation
on BAM (Ruosch et al., 2022), our benchmark for
Argument Mining. We reuse the performance data
of five AM systems when evaluated by BAM as
well as its implementation for our purposes. Ac-
cordingly, we restrict the systems for the initial
combinations to these five argument miners and
adhere to the definition of the four tasks in the AM
pipeline (Lippi and Torroni, 2016a): sentence clas-
sification, boundary detection, component identifi-
cation, and relation prediction. Using these tools,
we try to outperform the current best accuracy for
every task of the AM pipeline by combining sys-
tems with the following ensemble methods: voting,
stacking, and bagging. Finally, we split the AM sys-
tems into “modules” according to the AM pipeline,
allowing their recombination to increase accuracy.

We present two main contributions in this paper.
First and foremost, we build the DREAM frame-
work to combine AM systems using ensemble
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methods and recombinations. Second, we show
the value of such combinations, as they outperform
some of the state-of-the-art systems used in the
AM benchmark.

The remainder of this paper is structured as
follows: Section 2 presents background and
the related work, and Section 3 introduces our
methodology. In the ensuing Section 4, we
describe our experiments and their results before
we evaluate them in Section 5. Then, Section 6
discusses limitations and future work. Finally, we
draw conclusions in Section 7.

2 Background

In this section, we lay the foundations by describ-
ing Argument Mining and presenting specific re-
lated work.

2.1 Argument Mining

The field of AM is wide-ranging and has differ-
ent interpretations (Wells, 2014) of what its tasks
consist of. We focus on the information extraction
approach (Budzynska and Villata, 2015; Lippi and
Torroni, 2016a): the automated analysis of argu-
ments in natural language text. To this endavor, we
consider the AM pipeline as described by Lippi
and Torroni (2016a), depicted in Figure 1. The in-
put text is processed in four stages: argumentative
sentence detection, argument component bound-
ary detection, argument component detection, and
argument structure prediction.

In the first step, sentences are classified as argu-
mentative if they contain parts of an argument and
as non-argumentative otherwise. Next, the bound-
aries of the argument components are identified
by segmenting the argumentative sentences. Then,
these argument components are classified accord-
ing to the representation of the arguments defined
beforehand. Finally, the structure (i.e., relations) of
the previously identified components is predicted
to form an argument graph. The annotated text (in
any format) is the output of the AM pipeline.

2.2 Specific Related Work

Combining approaches in AM has barely received
any attention in previous literature. The only ex-
ception is the work of Lawrence and Reed (2015),
where the authors implement and combine three
different AM techniques. They are evaluated with

respect to identified connections between proposi-
tions and use a fixed set of 36 pairs.

First, the presence of discourse indicators:
words such as “because” and “however”, indicat-
ing support- and conflict-relations, respectively, be-
tween adjacent statements. These words provide a
good signal (precision of 1.00), but the technique
fails to capture most relations (recall of 0.08) due
to their low number of occurrences in texts. Fur-
thermore, they can not be used to find relations for
non-adjacent propositions.

The second technique is based on changes in
the topic for consecutive propositions, which is as-
sumed to relate to the argumentative structure in
the text. The similarity of adjacent propositions
is calculated using the synsets of WordNet1, re-
sulting in a number on a scale from 0 to 1. A
preset threshold then determines whether the topic
remains the same, and, that being the case, it is
deduced that the propositions are connected. This
approach achieves a precision of 0.70 and a recall
of 0.54, respectively.

The third method uses argumentation
schemes (Walton et al., 2008): “common
patterns of human reasoning.” They avoid the need
for having the components and the structure of
arguments already annotated by instead focusing
on features of the parts of the present scheme. With
a list of propositions from the text and a Naïve
Bayes classifier, they can determine the particular
scheme and, therefore, detect information about
the structure of the argumentation. This results in
a precision of 0.82 and a recall of 0.69.

Finally, the techniques are combined to exploit
their respective fortes. The presence of discourse
indicators is used to infer connections among
propositions in the first step. Subsequently, com-
ponents are related after having determined argu-
mentation scheme instances. Lastly, previously
unconnected units are integrated based on topic
similarity. Combining the methods results in an
improved performance with precision and recall,
increasing to 0.91 and 0.77, respectively.

In contrast to the approach described above, we
aim to provide combinations on a larger scale and
a pipeline for a unifying framework that allows for
integrating additional components. We aim to
investigate if and how combinations (of parts of)
different AM system can be used to improve over-
all performance. Finally, our approach also differs

1http://wordnet.princeton.edu
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Figure 1: The Argument Mining pipeline adapted from Lippi and Torroni (2016a).

in that we do not look to combine techniques or
features but rather out-of-the-box argument min-
ers. This facilitates the integration of additional
systems.

3 Methodology

In this section, we first lay out our evaluation
hypotheses and then describe the concept of the
DREAM (re-)combination framework.

3.1 Hypotheses

We base both the evaluation and the conception
on the systems, data, and results of BAM, our
benchmark for Argument Mining (Ruosch et al.,
2022). We utilize the five systems included in BAM
(i.e., AURC, TARGER, TRABAM, ArguminSci,
and MARGOT) and evaluate the recombinations
using the provided implementation of the bench-
mark. That means the AM pipeline is split into four
tasks (Lippi and Torroni, 2016a): sentence classi-
fication, boundary detection, component identifi-
cation, and relation prediction. These tasks are
evaluated with their respective metrics from BAM
(i.e., micro F1, the boundary similarity measure
defined by Fournier (2013), and F1-score).

To evaluate the implemented recombination sys-
tem, we formulate the following hypotheses de-
rived from the research question and describe our
approach to assess their acceptance or rejection.

H1. For some tasks in the AM pipeline, ensem-
bles of systems exist for which accuracy will
be higher than for the most accurate single
system.

This hypothesis encapsulates two different but en-
tangled problems: finding the optimal set of sys-
tems to combine and testing whether they are more
accurate than the current top system. Thus, we split
it into two sub-hypotheses, which are the requisites
for accepting Hypothesis H1.

H1.1. There exists an ensemble of systems for ev-
ery task that is more accurate than any other
ensemble of systems (excluding single sys-
tems).

Since we already restrict the space of systems and
combinations that we need to explore by limiting
ourselves to the systems in BAM, we can test all
combinations of size n, where 1 < n ≤ 5, because
we require combinations of at least two and can
combine at most all five systems. Thus, it becomes
a matter of running all possible systems and com-
bining them using ensemble methods We accept
the hypothesis if we find one or more ensembles of
systems that exceed all others in terms of accuracy
as measured by BAM for all the tasks. It is impor-
tant to note that these ensembles might differ for
individual tasks.

H1.2. For some tasks in the AM pipeline, the most
accurate ensemble of systems will be more
accurate than the most accurate single system
for this task.

For the second sub-hypothesis, we can compare the
previously discovered combinations with the most
accurate single system and compare their numbers
for all the tasks. That means doing a pair-wise
comparison four times, namely once for every task,
and checking whether the combinations outperform
the single systems. Again, we accept the hypothesis
if we can confirm this for at least some of the four
tasks.

H2. For some tasks in the AM pipeline, the ac-
curacy for subsequent tasks will be higher if
intermediate data is used that has been pro-
duced by the system with the highest accuracy
for the preceding task instead of its own inter-
mediate data.

Subsequently, we investigate how to improve in
single tasks and how the intermediate results influ-
ence the ensuing tasks of the pipeline. Thus, we
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hypothesize that data of higher accuracy compared
to the ground truth will also result in an increase
in a system’s accuracy as opposed to its own in-
termediate results. Again, we try out all possible
pairs to answer this hypothesis. Any two systems
can be combined by using one’s output as the other
one’s input, provided that the former’s accuracy
was higher than the latter’s at the preceding task.
Considering the five systems and four tasks in the
benchmark, we have to try out a maximum of 60
pairwise combinations, every system acting as “in-
put provider” and “input taker” but never at the
same time. We compare the new highest accuracy
for every task and system to the previous results
and accept this hypothesis if the new numbers are
higher than the old ones.

H3. For some tasks in the AM pipeline, the accu-
racy will be higher if we use an ensemble of
systems and intermediate results as input pro-
duced by the most accurate system (ensemble)
for the preceding task.

The final hypothesis brings all possible combina-
tions together. We not only allow combining sys-
tems for tasks but also to “mix-and-match” for the
intermediate results in the hope of improving the
accuracy of the whole pipeline. We employ the
best combinations from Hypothesis H1 and com-
bine them with the insights from Hypothesis H2.
We compare the newly obtained accuracies to the
previous best per the benchmark and accept the
hypothesis if we outperform the top single system
for every task.

3.2 The DREAM Framework

The basic idea behind the approach to combining
multiple AM systems is simple: Employ a multi-
tude of systems such that they can combine their
strengths and, at the same time, balance out their
weaknesses. Our framework, DREAM, is intended
for the (automated) recombination of multiple AM
systems according to predefined parameters. Fol-
lowing the aforementioned AM pipeline by Lippi
and Torroni (2016a), we first identify argumenta-
tive sentences, then we identify the boundaries of
the components and classify them (usually as either
claim or premise). Finally, we predict the relations
between the argumentative components (such as
supports or attacks).

Not every argument miner adheres to this
pipeline, which results in some of the argument

miners lacking the capabilities to solve one or more
of these tasks. Furthermore, Lawrence and Reed
(2019) point out that current systems tend to take
a holistic view of the end-to-end pipeline. This
is further emphasized by the fact that black-box
models, such as neural networks and, more specif-
ically, transformers, become increasingly preva-
lent. While they carry the advantage of improved
performance, they prevent a look into their inner
workings and modularization of their features.

Thus, we have access solely to the final outputs
of argument miners for our framework. However,
as we showed in BAM (Ruosch et al., 2022), we
can reconstruct the intermediate results necessary
for evaluating the tasks mentioned above of the AM
pipeline. We can use these reconstructed interme-
diate results for the recombination effort, with the
added benefit of not needing to re-train or re-run
any of the systems (i.e., we only perform post-hoc
combinations).

DREAM reads the output files from the argu-
ment miners and calculates the combinations ac-
cording to the specified parameters. There are sev-
eral different options when combining this data: the
list of employed systems, the method to calculate
the combination, and the targeted task.

Figure 2 visualizes the ways we combine sys-
tems. Figure 2a corresponds to what is described in
Hypothesis H1: using ensemble methods to com-
bine multiple systems for a single task. This is
what we call Vertical Integration. Meanwhile, Fig-
ure 2b illustrates Hypothesis H2: using different
systems throughout the AM pipeline (recombina-
tion). This is referred to as Horizontal Integration.
Tying these two together, we get the Combined In-
tegration, where we allow sets of systems to be
used for the intermediate results fed forward in
the pipeline to either other combinations or single
systems.

3.2.1 Vertical Integration
Vertical Integration gets its name because we
choose systems from the “column” of options as
illustrated in Figure 2a. The number of systems
used for the combination can vary from a minimum
of two to all available systems. The list of used
systems can be either specified or the recombina-
tion framework can try (all) possible combinations
(including power sets). This is how we approach
auto-experimentation for recombination.

As for the method to calculate the combination
of results, we follow the well-established ensemble
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(b) Recombining systems over the whole pipeline.

Figure 2: The two types of combinations employed in the framework.

methods (Opitz and Maclin, 1999). As simplest
method, we employ a hard voting scheme (Little-
stone and Warmuth, 1994), where systems can op-
tionally be assigned a weight. It is important to
note that systems may all receive a uniform weight
of one or be assigned arbitrary scores (e.g., bench-
mark results). Then, we calculate the score of the
available answers for a given item based on the
systems’ output and weights. Next, we use the
ensemble stacking method, which trains a meta-
classifier on the predictions the trained argument
miners produced. We employ multinomial logistic
regression (Greene, 2003) as the stacking model.
Our third ensemble method is bootstrap aggregat-
ing (bagging) (Breiman, 1996). Using bootstrapped
sets for training, we expect to strengthen the en-
semble of classifiers.

3.2.2 Horizontal Integration
Next, we allow combining systems across the bor-
ders of individual tasks (i.e., columns) by using
intermediate results and feeding them to other sys-
tems. This results in what we call Horizontal Inte-
gration, since we allow the combination of differ-
ent “rows”, as depicted in Figure 2b. The output
for all the tasks in the AM pipeline depends on the
input fed into the corresponding module. Although,
these modules may not be explicitly constructed
as such and may have to be inferred due to the
holistic view of AM systems (Lawrence and Reed,
2019). Still, we can generally describe the data
processing in the AM pipeline. In the first step,
the raw text supplied to the pipeline is split into
sentences, which in turn are classified as either ar-
gumentative or non-argumentative, depending on
the presence of argumentative components in them.
Thus, the output of the sentence detection depends
on its input because it will process (and output)
no more and no less than the text it has been sup-
plied with. Subsequently, the boundary detection
will find the delineations of components in only the

argumentative sentences since, by definition, only
they may contain argumentative components. The
same holds for the component identification: it will
only identify components whose boundaries have
been detected. Lastly, the relation prediction relies
on the previously identified components to find the
triples (subject and object are from the set of ar-
gumentative components) that constitute its output.
Thus, we can see that every subsequent step in the
AM pipeline depends on its predecessor’s output.

3.2.3 Combined Integration
Finally, we will also allow for the Vertically Inte-
grated ensemble learners to be used as the inter-
mediate result creators and, thus, bring it together
with Horizontal Integration to the Combined Inte-
gration. Since we hypothesize that both individual
Integrations increase accuracy, we hypothesized
their combination exhibits an even higher perfor-
mance. Thus, we make an effort to find sequences
of combined AM systems that further improve the
accuracy of the tasks in the pipeline.

4 Experiments

In this section, we discuss conducted experiments.
First, we describe the setup used. Then, we ex-
plain the implementation of the experiments and
the subsequent evaluation.

4.1 Setup

We rely on the systems and data used by BAM (Ru-
osch et al., 2022), the results of which are shown
in Table 1. Thus, we consider five different AM
systems that have been benchmarked using the Sci-
Arg data set (Lauscher et al., 2018b). It represents
the only available collection of full argument an-
notated scientific papers in English and builds on
the Dr. Inventor data set (Fisas et al., 2016). The
corpus consists of publications from the field of
computer graphics and contains a total of 10,780
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System S B C R
AURC (Trautmann et al., 2020) 0.792 0.470 - -

TARGER (Chernodub et al., 2019) 0.653 0.483 0.656 -
TRABAM (Mayer et al., 2020) 0.832 0.506 0.662 0.021

ArguminSci (Lauscher et al., 2018a) 0.600 0.115 0.091 -
MARGOT (Lippi and Torroni, 2016b) 0.454 0.097 0.133 -

Table 1: Results of BAM, our benchmark for Argument Mining (Ruosch et al., 2022).

sentences that have been annotated with argumen-
tative components (background and own claims as
well as data) and relations (contradicts, supports,
semantically same, and part of ).

BAM uses individual evaluation measures for
each of the pipeline tasks. For the argumenta-
tive sentence classification, it employs the micro-
F1 (van Rijsbergen, 1979) score to avoid the skew-
ing effect of a possible label imbalance. For the
boundary detection task, BAM uses the boundary
similarity measure as proposed by Fournier (2013),
which compares the identified boundaries for two
segmentations for the same text. The argumenta-
tive component identification is evaluated by us-
ing the F1 as implemented for the task of Named
Entity Recognition (Segura-Bedmar et al., 2013).
Finally, relation prediction is treated as the classi-
fication of triples (subject, predicate, object) into
retrieved or missed and thus, BAM employs the F1-
score. Therefore, we obtain four individual scores
between 0 and 1, one per task in the AM pipeline,
where bigger signifies better.

We use the same five systems that have already
been evaluated in the initial showcase of BAM.
The first three were trained on the benchmark data
set, while the last two were already pre-trained
by the authors of the systems. AURC (Trautmann
et al., 2020) treats AM as a sequence tagging prob-
lem and employs the BiLSTM model of Reimers
et al. (2019) to identify argumentative spans in
texts. TARGER (Chernodub et al., 2019) also uses
a BiLSTM in conjunction with a CNN-CRF and
pre-computed word embeddings to label tokens
from free text input as belonging to either claims or
premises. TRABAM (Mayer et al., 2020) relies on
pre-trained transformers such as SciBERT (Beltagy
et al., 2019) in combination with neural networks.
TRABAM is the sole system in the benchmark that
solves all the pipeline tasks, tagging argumenta-
tive components and predicting relations between
them. ArguminSci (Lauscher et al., 2018a) was
trained on the data set that is also incorporated in

the benchmark. It consists of a range of different
tools to analyze rhetorical aspects, but we only use
the argument component identification functional-
ity. This module uses a BiLSTM to tag tokens as
one of three argumentative component types akin
to the annotations in the corpus: background claim,
own claim, or data. Finally, MARGOT (Lippi and
Torroni, 2016b) detects claims and evidences by
analyzing the sentence structures and uses a subset
tree kernel (Collins and Duffy, 2002) to compare
their constituency parse trees.

Data and code involved in the execution and
subsequent evaluation are available in the project’s
repository.2

4.2 Vertical Integration

The best results for each task using the Vertical In-
tegration are presented in Table 2.3 For context, we
also report the runner-up and the worst result, as in-
dicated in the Result column, and provide the mean,
median, and variance for each task. We round all
results to three decimal places for readability, ex-
cept where necessary to indicate differences. Each
task of the AM pipeline is represented by a row,
in which the accuracy (as measured by BAM), the
used ensemble method, and the systems involved
are indicated (the order matters therein as the first
system serves as the primary to which all other
annotations are aligned to). Notably, the relation
prediction score R is absent since only one system
performed it in BAM, and thus, there is no oppor-
tunity to apply an ensemble method. Also, because
no system explicitly disentangles the AM pipeline
into individual tasks, we perform the combination
on the final output and not on task-specific anno-
tations, akin to the way it is handled in BAM. We
tried every possible combination of all system lists
and ensemble methods to obtain the results and list
the best, second best, and worst here.

2https://gitlab.ifi.uzh.ch/DDIS-Public/DREAM
3The full results are omitted for brevity and are available

in the online repository.
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Task Result Score Method Systems

S
mean: 0.739 Best 0.8419 Stacking TARGER, AURC, MARGOT, TRABAM

median: 0.793 Second 0.8416 Stacking TARGER, AURC, TRABAM
variance: 0.011 Worst 0.513 Voting MARGOT, TARGER

B
mean: 0.379 Best 0.4972 Bagging TARGER, ArguminSci, MARGOT, TRABAM

median: 0.457 Second 0.4971 Bagging ArguminSci, MARGOT, TARGER, TRABAM
variance: 0.020 Worst 0.022 Voting MARGOT, ArguminSci

C
mean: 0.498 Best 0.673 Voting TRABAM, TARGER

median: 0.615 Second 0.671 Voting TRABAM, ArguminSci, TARGER
variance: 0.036 Worst 0.052 Voting MARGOT, ArguminSci

Table 2: Best, runner-up, and worst results per task for Vertical Integration (mean, median, and variance refer to all
results per task).3

From To B C R
TRABAM AURC 0.475 - -
TRABAM TARGER 0.494 0.630 -
TRABAM ArguminSci 0.281 0.345 -
TRABAM MARGOT 0.171 0.162 -

Table 3: Results per system for Horizontal Integration.

Stacking the systems TARGER, AURC, MAR-
GOT, and TRABAM using logistic regression is
the most accurate ensemble for sentence classifi-
cation with S = 0.8419. Bagging with TARGER,
ArguminSci, MARGOT, and TRABAM achieves
a score of B = 0.4972 for boundary detection,
which is the highest among the ensembles. Com-
bining the two systems TRABAM and TARGER
using the hard voting scheme results in C = 0.673
as the best score for component identification.

The main insight gained from these results is
that no ensemble method outperforms the others.
Rather, each of the three techniques achieves the
highest score for one task.

4.3 Horizontal Integration
Table 3 shows the complete results for the Hor-
izontal Integration. We used the most accurate
system from BAM, TRABAM, as listed in the
“From”-column to indicate where the intermedi-
ate results originated from. These were combined
with the output of the individual systems (in the
“To”-column) in the respective rows by using them
as the template for the subsequent annotations.

TARGER combined with TRABAM scores the
highest for both the boundary detection B = 0.494
and component identification C = 0.630. Again,
due to the lack of a system to combine TRABAM
with, the results for the relation prediction R are

omitted. The sentence classification is not consid-
ered for the Vertical Integration as its input is the
initial text, which is not considered an intermediate
result since it is the same for every system.

4.4 Combined Integration

In Table 4, we show the results of the Combined
Integration. We list the results achieved with the
previously identified most accurate single system
or ensemble (from the Vertical Integration) and
their score for each AM pipeline task. For each
row in the table, the output has been combined
with the output of the preceding row, according
to the Horizontal Integration. This results in the
Combined Integration.

The ensemble of TARGER, AURC, MARGOT,
and TRABAM stacked using logistic regression
is the most accurate for sentence classification
with S = 0.842. The single system TRABAM
achieves the highest boundary detection score with
B = 0.483. Combining TRABAM and TARGER
into an ensemble using voting results in C = 0.673
as the best score for component identification. Fi-
nally, TRABAM scores R = 0.019 for the relation
prediction. Interestingly, ensembles are only better
than single systems in two out of the three AM
pipeline tasks (relation prediction does not have an
alternative to TRABAM).

5 Hypotheses Evaluation

In this section, we evaluate the hypotheses individ-
ually. The results from BAM in Table 1 serve as
the baseline, more specifically, the best-performing
system nicknamed TRABAM in with the bold-
faced numbers. It achieved the following scores
for the AM tasks, where each of them is on a scale
from zero to one, and higher means better: sen-
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Task Score Method System(s)
S 0.842 Stacking TARGER, AURC, MARGOT, TRABAM
B 0.483 Single TRABAM
C 0.673 Voting TRABAM, TARGER
R 0.019 Single TRABAM

Table 4: Results per task for Combined Integration.

tence classification S = 0.832, boundary detection
B = 0.506, component identification C = 0.662,
and relation prediction R = 0.021. Unlike the
result reported in BAM, we use TRABAM’s inter-
mediate results as input for the last step, decreasing
the accuracy (from R = 0.318 when using the
ground truth components). We compare the newly
obtained scores to these numbers to evaluate the
hypotheses. The statistical significance testing re-
sults and the correction for multiple comparisons
can be found in Appendix A.

5.1 Hypothesis H1

This evaluation is based on the outcome of the Sub-
hypotheses H1.1 and H1.2. Thus, we assess these
two before giving the verdict on H1.

H1.1 Before collating previous and new results,
we look at the isolated findings from applying the
ensemble methods. We hypothesized that there
would be a set of systems that is the most accu-
rate compared to any other combination. We can
confirm this hypothesis by looking at the results
produced in the experiments by using the ensemble
methods. Due to the lack of a second system to
combine TARGER with, no ensembles can be built
to improve the relation prediction score R; thus, it
is omitted.

Table 2 shows the results for each task. From it,
we can see that the highest scores are unique num-
bers. This leads us to accept Sub-hypothesis H1.1.

H1.2 This hypothesis compares the results from
the benchmark and the Vertical Integration by
opposing the best results from Table 1 and Ta-
ble 2. For the sentence classification, the ensem-
ble of TARGER, AURC, MARGOT, and TRA-
BAM combined by stacking them (with logistic re-
gression) slightly outperforms the previously most
accurate single system TRABAM: S = 0.842
and S = 0.832, respectively. Statistical testing,
however, reveals that the difference is not signif-
icant (cf. Appendix A). For the component iden-
tification where the two systems TRABAM and

TARGER were combined using the voting method
(C = 0.673), they beat the previous best achieved
by TRABAM (C = 0.662), with the difference
being statistically significant. This is in contrast to
the boundary detection, where the best ensemble re-
sult does not reach the most accurate single system:
bagging TARGER, ArguminSci, MARGOT, and
TRABAM scored B = 0.497, while TRABAM
held the most accurate result in B = 0.506. As
explained in the previous hypothesis, the relation
prediction is omitted.

Since we found one of three ensembles to out-
perform single systems with a statistical signifi-
cance, this leads us to accept Sub-hypothesis H1.2.
Moreover, this indicates a correlation between the
systems’ errors since they do not seem to balance
out their weaknesses in all cases. An exhaustive
error analysis would be necessary to reveal more
detailed insights.

H1 We based the acceptance of Hypothe-
sis H1 on accepting both its corresponding sub-
hypotheses, which we did as explained above. This
means that we also accept Hypothesis H1.

5.2 Hypothesis H2

Table 3 shows the results of using the annotations
produced by TRABAM (i.e., the most accurate sys-
tem in the benchmark) as the input to subsequent
steps for the other systems. The boldfaced numbers
indicate improvements over the initial results with
the system’s own data. We can see that, except
when combining TRABAM with TARGER for the
component classification, we consistently outper-
form the benchmark results, and the differences are
all statistically significant. Akin to the previous hy-
potheses, R cannot be improved as we do not have
another system to feed TRABAM’s intermediate
results into, or vice versa. Therefore, we also omit
the relation prediction from evaluating this hypoth-
esis. Since we could show that using more accurate
intermediate results can improve the subsequent
step of the AM pipeline, we accept Hypothesis H2.
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5.3 Hypothesis H3

This hypothesis merges the Vertical and the Hori-
zontal Integration into the Combined Integration
to improve the accuracy for all tasks in the pipeline
by also allowing intermediate data produced by en-
semble methods. The results are shown in Table 4
with the boldfaced numbers indicating the tasks
for which a new highest accuracy was achieved:
S = 0.842 and C = 0.673 outperform the previ-
ous best single systems from BAM, but only the
latter being statistically significantly different. This
is in contrast to B = 0.483 and R = 0.019, where
the former did not perform better, and the latter
even lowered the score. Still, we have evidence
that Combined Integration can be used to improve
at least some tasks in the AM pipeline. Thus, we
accept Hypothesis H3.

6 Limitations and Future Work

The major limitation of this work is that we imple-
ment post-hoc combinations. The reasons for not
re-training the systems are two-fold. First, out of
practicality to facilitate the addition of new AM
systems and existing ensembles. Second, to set the
scope of this research as opposed to works that look
to explicitly fuse models such as neural networks
by entangling the final classification layer such as
described in Ribeiro et al. (2020). The latter opens
up the future work of applying these techniques to
the current five AM systems and mixing their latent
representations, as opposed to only their outputs.

Another limitation is that all the included sys-
tems take a holistic view of the AM pipeline, and
none is explicitly split into the four modules we
infer for the ensemble methods. Given the success
of (re-)combinations of components in other do-
mains, this paper can, hence, be seen as a call to
action to systematically explore the effectiveness
of functional components of the AM pipeline and
share these for re-use by others. Indeed, more
broadly, the limited availability of AM systems and
benchmark datasets hampered our ability to system-
atically compare a larger design space of system
(component) combinations and limits the general-
izability of our findings to other domains/datasets.

The plans for future efforts in this direction in-
clude two main points. As the next step, we aim to
conduct an error analysis and explore the influences
of the systems on the results. This will help iden-
tify the strengths and weaknesses of the individual
systems and may provide insights about current

AM systems’ common weaknesses. Also, the new
analysis can incorporate the spatial and temporal
costs of the recombinations, which was omitted in
this paper. In the future, should the number of ar-
gument mining systems considerably increase, the
framework could be extended to include a predic-
tor to choose the sets and sequences of argument
miners for a given document that lead to an opti-
mal accuracy improvement. This would involve
developing a cost function.

7 Conclusions

This paper presented DREAM, a framework for
the Deployment of Recombination and Ensemble
methods for Argument Miners. Our work focuses
on improving accuracy in Argument Mining (AM)
and addresses the need for incremental improve-
ments as opposed to current approaches, which
tend to provide all-new solutions (Lawrence and
Reed, 2019). With the DREAM framework, we
implemented a flexible and automated approach for
(re)combining AM systems. It offers the Vertical
Integration (using ensemble methods for a single
task), the Horizontal Integration (using different
systems throughout the pipeline), and, finally, the
Combined Integration (allowing sets of systems for
the intermediate data).

Our findings confirmed the hypotheses formu-
lated in this work. We showed that ensemble meth-
ods (Opitz and Maclin, 1999) could be used to
improve accuracy for specific tasks in the AM
pipeline. Furthermore, we demonstrated that re-
combination by using intermediate data from the
most accurate system could lead to higher accu-
racy in the subsequent task. Finally, we highlighted
the potential of deploying ensemble methods and
recombination for AM. We hope this work will
contribute to the further improvement of state-of-
the-art and better generalizing AM systems across
domains, a prevalent and well-acknowledged prob-
lem (Lippi and Torroni, 2016a).
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A Appendix

A.1 Statistical Significance Testing

We report the p-values where we claim to outper-
form a previously best result (indicated in bold in
the original tables) in Table 5, Table 6, and Table 7.
Bold numbers indicate statistically significant dif-
ferences (p < 0.05), while * denotes small, **
medium, and *** large effect size. The testing
for the statistical significance of the results was
conducted with Autorank (Herbold, 2020). The de-
tailed reports on the conducted tests for statistical
significance, including all procedures and assump-
tions testing, are shown below.

S for TARGER, AURC, MARGOT, and TRA-
BAM (Stacking) vs. TRABAM The statistical
analysis was conducted for 2 populations with 12
paired samples. The family-wise significance level
of the tests is alpha=0.050. We failed to reject the
null hypothesis that the population is normal for
all populations (minimal observed p-value=0.328).
Therefore, we assume that all populations are nor-
mal. No check for homogeneity was required be-
cause we only have two populations. Because we
have only two populations and both populations
are normal, we use the t-test to determine differ-
ences between the mean values of the populations
and report the mean value (M) and the standard
deviation (SD) for each population. We failed to
reject the null hypothesis (p=0.180) of the paired
t-test that the mean values of the populations C-
trabam-test (M=0.834+-0.041, SD=0.054) and SB-
S-targer+aurc+margot+trabam (M=0.838+-0.039,
SD=0.052) are are equal. Therefore, we assume
that there is no statistically significant difference
between the mean values of the populations.

C for TRABAM and TARGER (Voting) vs.
TRABAM The statistical analysis was conducted
for 2 populations with 12 paired samples. The
family-wise significance level of the tests is al-
pha=0.050. We rejected the null hypothesis that
the population is normal for the population C-V-
trabam+targer (p=0.024). Therefore, we assume
that not all populations are normal. No check
for homogeneity was required because we only
have two populations. Because we have only two
populations and one of them is not normal, we
use Wilcoxon’s signed rank test to determine the
differences in the central tendency and report the
median (MD) and the median absolute deviation
(MAD) for each population. We reject the null hy-
pothesis (p=0.021) of Wilcoxon’s signed rank test
that population C-trabam-test (MD=0.671+-0.062,
MAD=0.038) is not greater than population C-V-
trabam+targer (MD=0.691+-0.048, MAD=0.017).
Therefore, we assume that the median of C-V-
trabam+targer is significantly larger than the me-
dian value of C-trabam-test with a small effect size
(gamma=-0.461).

B for TRABAM and AURC (Recombination)
vs. AURC The statistical analysis was conducted
for 2 populations with 12 paired samples. The
family-wise significance level of the tests is al-
pha=0.050. We failed to reject the null hypoth-
esis that the population is normal for all popula-
tions (minimal observed p-value=0.052). There-
fore, we assume that all populations are normal. No
check for homogeneity was required because we
only have two populations. Because we have only
two populations and both populations are normal,
we use the t-test to determine differences between
the mean values of the populations and report the
mean value (M) and the standard deviation (SD)
for each population. We reject the null hypothesis
(p=0.000) of the paired t-test that the mean values
of the populations B-aurc-test (M=0.028+-0.009,
SD=0.012) and SB-R-(trabam)+(aurc) (M=0.488+-
0.036, SD=0.047) are equal. Therefore, we assume
that the mean value of SB-R-(trabam)+(aurc) is sig-
nificantly larger than the mean value of B-aurc-test
with a large effect size (d=-13.252).

B for TRABAM and TARGER (Recombination)
vs. TARGER The statistical analysis was con-
ducted for 2 populations with 12 paired samples.
The family-wise significance level of the tests is
alpha=0.050. We failed to reject the null hypoth-
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Task Method Systems Previous best p-value
S Stacking TARGER, AURC, MARGOT, TRABAM TRABAM 0.180
C Voting TRABAM, TARGER TRABAM 0.021 *

Table 5: The p-values corresponding to the results reported in Table 2.

From To B C R
TRABAM AURC 0.000 *** - -
TRABAM TARGER 0.018 * - -
TRABAM ArguminSci 0.000 *** 0.000 *** -
TRABAM MARGOT 0.000 *** 0.000 *** -

Table 6: The p-values corresponding to the results reported in Table 3.

esis that the population is normal for all popula-
tions (minimal observed p-value=0.189). There-
fore, we assume that all populations are normal. No
check for homogeneity was required because we
only have two populations. Because we have only
two populations and both populations are normal,
we use the t-test to determine differences between
the mean values of the populations and report the
mean value (M) and the standard deviation (SD)
for each population. We reject the null hypothesis
(p=0.018) of the paired t-test that the mean values
of the populations C-targer-test (M=0.485+-0.047,
SD=0.063) and C-R-(trabam)+(targer) (M=0.504+-
0.042, SD=0.056) are equal. Therefore, we assume
that the mean value of C-R-(trabam)+(targer) is
significantly larger than the mean value of C-targer-
test with a small effect size (d=-0.313).

B for TRABAM and ArguminSci (Recombina-
tion) vs. ArguminSci The statistical analysis
was conducted for 2 populations with 12 paired
samples. The family-wise significance level of the
tests is alpha=0.050. We failed to reject the null
hypothesis that the population is normal for all pop-
ulations (minimal observed p-value=0.120). There-
fore, we assume that all populations are normal. No
check for homogeneity was required because we
only have two populations. Because we have only
two populations and both populations are normal,
we use the t-test to determine differences between
the mean values of the populations and report the
mean value (M) and the standard deviation (SD)
for each population. We reject the null hypothesis
(p=0.000) of the paired t-test that the mean values
of the populations C-arguminsci-test (M=0.102+-
0.013, SD=0.018) and C-R-(trabam)+(arguminsci)
(M=0.287+-0.035, SD=0.047) are equal. There-

fore, we assume that the mean value of C-R-
(trabam)+(arguminsci) is significantly larger than
the mean value of C-arguminsci-test with a large
effect size (d=-5.227).

C for TRABAM and ArguminSci (Recombina-
tion) vs. ArguminSci The statistical analysis
was conducted for 2 populations with 12 paired
samples. The family-wise significance level of the
tests is alpha=0.050. We failed to reject the null
hypothesis that the population is normal for all pop-
ulations (minimal observed p-value=0.681). There-
fore, we assume that all populations are normal. No
check for homogeneity was required because we
only have two populations. Because we have only
two populations and both populations are normal,
we use the t-test to determine differences between
the mean values of the populations and report the
mean value (M) and the standard deviation (SD)
for each population. We reject the null hypothesis
(p=0.000) of the paired t-test that the mean values
of the populations C-arguminsci-test (M=0.093+-
0.016, SD=0.021) and C-R-(trabam)+(arguminsci)
(M=0.344+-0.040, SD=0.054) are equal. There-
fore, we assume that the mean value of C-R-
(trabam)+(arguminsci) is significantly larger than
the mean value of C-arguminsci-test with a large
effect size (d=-6.140).

B for MARGOT and TRABAM (Recombina-
tion) vs. MARGOT The statistical analysis was
conducted for 2 populations with 12 paired sam-
ples. The family-wise significance level of the
tests is alpha=0.050. We failed to reject the null
hypothesis that the population is normal for all pop-
ulations (minimal observed p-value=0.133). There-
fore, we assume that all populations are normal. No
check for homogeneity was required because we
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Task Method Systems Previous best p-value
S Stacking TARGER, AURC, MARGOT, TRABAM TRABAM 0.180
C Voting TRABAM, TARGER TRABAM 0.021 *

Table 7: The p-values corresponding to the results reported in Table 4.

Hypothesis p-value Rank (i/m)α

B B-aurc-test SB-R-(trabam)+(aurc) 1.933E-12 1 0.006
C C-arguminsci-test C-R-(trabam)+(arguminsci) 2.133E-09 2 0.013
B C-arguminsci-test C-R-(trabam)+(arguminsci) 1.866E-08 3 0.019
B C-margot-test C-R-(trabam)+(margot) 2.032E-07 4 0.025
C C-margot-test C-R-(trabam)+(margot) 4.266E-04 5 0.031
B C-targer-test C-R-(trabam)+(targer) 1.822E-02 6 0.038
C C-trabam-test C-V-trabam+targer 2.124E-02 7 0.044
S C-trabam-test SB-S-targer+aurc+margot+trabam 1.795E-01 8 0.050

Table 8: Calculations of the Benjamini-Hochberg procedure.

only have two populations. Because we have only
two populations and both populations are normal,
we use the t-test to determine differences between
the mean values of the populations and report the
mean value (M) and the standard deviation (SD)
for each population. We reject the null hypothesis
(p=0.000) of the paired t-test that the mean val-
ues of the populations C-margot-test (M=0.098+-
0.014, SD=0.019) and C-R-(trabam)+(margot)
(M=0.171+-0.020, SD=0.026) are equal. There-
fore, we assume that the mean value of C-R-
(trabam)+(margot) is significantly larger than the
mean value of C-margot-test with a large effect size
(d=-3.210).

C for MARGOT and TRABAM (Recombina-
tion) vs. MARGOT The statistical analysis was
conducted for 2 populations with 12 paired sam-
ples. The family-wise significance level of the
tests is alpha=0.050. We failed to reject the null
hypothesis that the population is normal for all pop-
ulations (minimal observed p-value=0.347). There-
fore, we assume that all populations are normal. No
check for homogeneity was required because we
only have two populations. Because we have only
two populations and both populations are normal,
we use the t-test to determine differences between
the mean values of the populations and report the
mean value (M) and the standard deviation (SD)
for each population. We reject the null hypothesis
(p=0.000) of the paired t-test that the mean val-
ues of the populations C-margot-test (M=0.135+-
0.031, SD=0.042) and C-R-(trabam)+(margot)

(M=0.164+-0.029, SD=0.039) are equal. There-
fore, we assume that the mean value of C-R-
(trabam)+(margot) is significantly larger than the
mean value of C-margot-test with a medium effect
size (d=-0.743).

S for TARGER, AURC, MARGOT, and TRA-
BAM (Stacking) vs. TRABAM The statistical
analysis was conducted for 2 populations with 12
paired samples. The family-wise significance level
of the tests is alpha=0.050. We failed to reject the
null hypothesis that the population is normal for
all populations (minimal observed p-value=0.328).
Therefore, we assume that all populations are nor-
mal. No check for homogeneity was required be-
cause we only have two populations. Because we
have only two populations and both populations
are normal, we use the t-test to determine differ-
ences between the mean values of the populations
and report the mean value (M) and the standard
deviation (SD) for each population. We failed to
reject the null hypothesis (p=0.180) of the paired
t-test that the mean values of the populations C-
trabam-test (M=0.834+-0.041, SD=0.054) and SB-
S-targer+aurc+margot+trabam (M=0.838+-0.039,
SD=0.052) are are equal. Therefore, we assume
that there is no statistically significant difference
between the mean values of the populations.

C for (TRABAM and TARGER (Voting)) and
TRABAM (Recombination) vs. TRABAM The
statistical analysis was conducted for 2 popula-
tions with 12 paired samples. The family-wise
significance level of the tests is alpha=0.050. We
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rejected the null hypothesis that the population
is normal for the population C-R-(trabam)+(C-V-
trabam+targer) (p=0.024). Therefore, we assume
that not all populations are normal. No check
for homogeneity was required because we only
have two populations. Because we have only two
populations and one of them is not normal, we
use Wilcoxon’s signed rank test to determine the
differences in the central tendency and report the
median (MD) and the median absolute deviation
(MAD) for each population. We reject the null
hypothesis (p=0.021) of Wilcoxon’s signed rank
test that population C-trabam-test (MD=0.671+-
0.062, MAD=0.038) is not greater than population
C-R-(trabam)+(C-V-trabam+targer) (MD=0.691+-
0.048, MAD=0.017). Therefore, we assume that
the median of C-R-(trabam)+(C-V-trabam+targer)
is significantly larger than the median value of
C-trabam-test with a small effect size (gamma=-
0.461).

A.2 Multiple Comparisons Problem
With the results from the tests above, we correct
for the multiple comparisons problem by using
the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) with a critical value of α = 0.05.
Table 8 shows the details of the calculations. From
it, we see that all the differences are still statistically
significant, even after correcting for the multiple
comparisons problem.
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