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Abstract

Developing cultural adaptation methods is im-
portant, which can improve the model perfor-
mance on the low-resource ones and provide
more equitable opportunities for everyone to
benefit from advanced technology. Past meth-
ods primarily focused on multilingual and mul-
timodal capabilities, and the improvement of
multicultural competence is still an unexplored
problem. This is largely due to the difficulty
of data scarcity and expensive annotation. In
this paper, we navigate this uncharted territory
by leveraging high-resource cultures to facili-
tate comprehension of low-resource ones. We
first introduce an annotation-free method for
cultural-concept adaptation and construct a con-
cept mapping set. To facilitate the model’s
comprehension of cultural-concept mappings,
we propose a new multimodal data augmenta-
tion called CultureMixup. This approach em-
ploys a three-tier code-switching strategy on
textual sentences. Additionally, it uses a cul-
tural concept-based mixup method for the im-
ages. This combination effectively generates
new data instances across culture, phrase, word,
and image levels. For visually grounded reason-
ing across languages and cultures, experimental
results on five languages show that our method
consistently improves performance for four ex-
isting multilingual and multimodal models on
both zero-shot and few-shot settings.

1 Introduction

The computer vision (CV) and natural language
processing (NLP) communities have witnessed sig-
nificant strides in multilingual and multimodal re-
search in recent years. For instance, XLMs (Con-
neau and Lample, 2019) have substantially sur-
passed the previous benchmarks in cross-lingual
tasks. The UC2 model (Zhou et al., 2021) learns
to represent input tokens in a context-aware man-
ner by leveraging both linguistic and visual content.

∗Corresponding author: Yin Zhang.

Setting Multilingual Multimodal Multicultural
mBERT (Devlin et al., 2019) ✓

XLM-R(Conneau et al., 2020) ✓
Vilbert (Lu et al., 2019) ✓

Unicoder-VL (Li et al., 2020) ✓
M3P (Niet al., 2021a) ✓ ✓
UC2(Zhouet al., 2021) ✓ ✓

CCLM (Zeng et al., 2022) ✓ ✓
Our Method ✓ ✓ ✓

Table 1: The different settings between our method and
previous work.

However, despite these advancements, the multicul-
tural element is often neglected. The development
of cultural adaptation methods is critical as they
enhance model performance for low-resource lan-
guages and democratize the benefits of advanced
technology. Hershcovich et al. (2022) underscores
two major hurdles in cross-cultural NLP: cultural
concepts and common sense. Our focus is primar-
ily on the former: models trained on high-resource
languages and images struggle to comprehend low-
resource cultural concepts.

A number of previous works (Vilares and
Gómez-Rodríguez, 2018; Acharya et al., 2020; Yin
et al., 2021; Liu et al., 2021a; Cao et al., 2023) have
delved into cultural topics, largely focusing on cul-
tural differences or evaluating the cross-cultural
competency of computational models instead of
enhancing them. The primary reason is the com-
plexity of improving cross-cultural abilities, as low-
resource languages and their cultural concepts are
inherently scarce, exacerbating the data scarcity
issue. Moreover, annotating cross-cultural data and
establishing links between concepts across cultures
is an expensive process given the limited number
of annotators well-versed in various countries’ cul-
tures.

To overcome this challenge, we initially propose
an annotation-free method for cultural-concept
adaptation, which constructs a concept mapping
set. An instance of cultural-concept adaptation
involves the Chinese concept Erhu 1, which has
no corresponding English translation. Explaining
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it to English-speaking individuals unfamiliar with
Chinese culture would likely involve likening the
Erhu to a Chinese violin. This is an example of
cultural adaptation. Leveraging the relationships of
hypernyms, hyponyms, and synonyms from pub-
licly accessible semantic dictionaries, our method
maps source cultural concepts to their correspond-
ing target concepts, thereby eliminating the need
for costly manual annotation.

To support the model’s understanding of cultural-
concept mappings, we subsequently introduce a
novel cultural concept-based multimodal data aug-
mentation technique. This technique features a
three-tier code-switching strategy on textual sen-
tences and a cultural concept-based mixup method
for images 2. By training the model on both orig-
inal and augmented data, we manage to signifi-
cantly boost the model’s performance on visually
grounded reasoning tasks across languages and cul-
tures. This improvement is reflected by a mini-
mum increase of 2 points over existing multilingual
multimodal models. Furthermore, our method can
be adapted to improve specific languages or cul-
tural topics by modifying the sampling distribution,
thereby mitigating model bias.

Our contributions are encapsulated as follows:

• Leveraging web resources, we propose an
annotation-free cultural adaptation method.
By utilizing relationships of hypernyms, hy-
ponyms, and synonyms from openly accessi-
ble semantic dictionaries, we construct a cul-
tural adaptation graph that facilitates mapping
between source and target cultural concepts.

• To combat data scarcity and foster the model’s
understanding of cultural adaptation map-
pings, we introduce a novel cultural concept-
based multimodal data augmentation tech-
nique, generating new data instances at the
concept, phrase, word, and image levels.

• Key results for the task of visually grounded
reasoning across languages and cultures reveal
that our methods consistently and significantly
outperform baseline measures. Additionally,
our technique can be tailored to enhance spe-
cific languages or cultural topics by adjust-
ing the sampling distribution, thus reducing
model bias.

1二胡 (Erhu) is a two-stringed bowed musical instrument,
which may also be called a Southern Fiddle and is sometimes
known in the Western world as the Chinese violin.

2 Related Work

2.1 Cultural Research

Human language and visual content are intimately
entwined with their respective cultures, evolving
together, mirroring, and reciprocally influencing
them. Culture is typically tied to a specific geo-
graphic region or locality, with distinct cultures
characterizing different countries. The extant lit-
erature on culture tends to concentrate on three
key aspects: examining cultural differences or
similarities (Vilares and Gómez-Rodríguez, 2018;
Acharya et al., 2020; Kozlowski et al., 2018; Sun
et al., 2020), developing cross-cultural benchmarks
(Peskov et al., 2021; Yin et al., 2021; Liu et al.,
2021a), and evaluating the cross-cultural compe-
tence of computational models (Nguyen et al.,
2022; Arora et al., 2022; Cao et al., 2023). For
instance, Liu et al. (2021a) outline the multifaceted
challenges involved in reasoning visually across
languages and cultures, encompassing cross-modal,
cross-lingual, and cross-cultural aspects. In con-
trast to the majority of prior research focusing
predominantly on analysis and evaluation, our
work confronts the issue directly by enhancing the
model’s adaptability to low-resource cultural con-
cepts from both a visual and textual standpoint.

2.2 Code-switching and Mixup Methods

Code-switching is a common occurrence in mul-
tilingual communities, wherein the lexicon and
morphemes of two or more languages are inter-
changeably utilized in oral or written communica-
tion. Training models using code-switched data
encourages the alignment of source and target lan-
guage representations by blending their contextual
information. This approach has been used to chal-
lenge multilingual models (Tan and Joty, 2021),
enhance Neural Machine Translation (NMT) tasks
(Yang et al., 2020a; Liu et al., 2021b; Yang et al.,
2020b), and further cross-lingual tasks (Qin et al.,
2020; Zhang et al., 2021; Lee et al., 2021). In
this study, we broaden the conventional perception
of code-switching, transitioning it from a solely
linguistic phenomenon to a cultural one.

While code-switching operates on sentences,
mixup methods are utilized in a variety of con-

2Code-switching is a widespread phenomenon in multi-
lingual communities, characterized by switching words and
morphemes from two or more languages in speech or writing.
The switched elements usually bear semantic similarity to the
originals.

263



Bowed string 
instrument

弓弦乐器
二胡

hypernym
hyponyms
synonym

乐器
Musical

Instrument

Violin

Wind	
instrument

Percussion	
instrument

Chinese
English

Saxophone

Oboe

Cello

Drum

Piano

二胡

Cultural Adaptation

Violin,  Cello
Saxophone, Oboe,

Drum, Piano

Figure 1: Consider the cultural adaptation of the term二胡(Erhu). 二胡 translates to "Erhu" in its phonetic English
form, but lacks a direct English equivalent. How might this be explained to someone living in an English-speaking
country, unfamiliar with Chinese culture? You might refer to the Erhu as the "Chinese violin," as a form of cultural
adaptation. We advocate a comprehensive method for cultural adaptation, utilizing relationships of hypernyms,
hyponyms, and synonyms from open and freely-available semantic dictionaries to construct a cultural adaptation
graph. Each leaf node within this graph could represent a potential cultural adaptation of二胡(Erhu). The shorter the
path distance in the graph, the more precise the adaptation. For instance, "violin" and "cello" are better adaptations
than "saxophone" and "drum".

texts, such as mixup (Zhang et al., 2017), cutmix
(Yun et al., 2019), attentive cutmix (Walawalkar
et al., 2020), and alignmixup (Venkataramanan
et al., 2022). Hao et al. (2023) introduced a joint
data augmentation method, which generates new
image-text pairs while maintaining semantic co-
herence through image interpolation and text con-
catenation. In contrast to these approaches, we
substitute the target portion of the image with one
that corresponds to a low-resource cultural concept.

2.3 Multilingual Multimodal Models

Most multimodal models based on transformer ar-
chitecture (Ni et al., 2021b; Zhou et al., 2021;
Jain et al., 2021; Liu et al., 2021a; Khan et al.,
2021; Song et al., 2021; Zeng et al., 2022) are
pre-trained using self-supervised objectives. While
these methodologies advance the multilingual and
multimodal capabilities of models, they often over-
look cross-cultural aptitude. We propose a cultural
concept adaptation approach to improve model per-
formance across different cultures. By extending
the code-switching mechanism to cultural concepts
during fine-tuning, our method can help mitigate
biases towards language and culture that may arise
from imbalanced pre-training resource distribution,
an issue that is challenging to address using self-
supervised pre-training objectives alone.

3 Method

To overcome data scarcity and costly labeling, we
initially propose an annotation-free method for

cultural-concept adaptation, which constructs a
concept mapping set. To support the model’s un-
derstanding of cultural-concept mappings, we sub-
sequently introduce a novel cultural concept-based
multimodal data augmentation technique. By train-
ing the model on both original and augmented data,
we significantly boost the model’s performance.

3.1 Cultural Adaptation
To illuminate the research methodology, we now
formally define the central components:

Definition 1 (Cultural Adaptation Set)
Consider a low-resource cultural concept x
and a high-resource cultural concepts set
Y = {y1, . . . , yn}. The cultural adaptation set of
x : Yx = {yk, . . . , ym} is a subset of Y such that
each y ∈ Yx shares similar category attributes3 to
x.

Problem Statement Given x ∈ X , where X is
a set of cultural concepts, how can we identify the
cultural adaptation set Yx?

Proposed Solution We denote Ho, S, and He

as functions to query hyponyms, synonyms, and
hypernyms respectively from publicly accessible
semantic networks such as Conceptnet (Speer et al.,
2017) and Wordnet (Miller, 1995). We construct
a cultural adaptation graph Gx by applying a com-
posite function F(x), which is defined as follows:

F (x) = Ho(. . . (Ho(S(He(. . . (He(x))))))) (1)
3For example, the ’violin’ and ’erhu’ are both classified

under the category of orchestral instruments.
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Figure 2: A schematic of three-tier code-switching strategy to the textual sentences. We commence by collecting
data from web resources and forming a set of cultural concepts, each represented by an oval of a distinct color.
Following this, a cultural concept is sampled for adaptation, based on a probability distribution. This selected
adaptation is used to retrieve a corresponding data instance from the training dataset. Subsequently, we apply three
levels of code-switching to the retrieved sentences. In these code-switched sentences, words highlighted in yellow,
green, blue, and purple denote languages — Chinese, Swahili, Turkish, and Indonesian, respectively.

Definition 2 (Cultural Adaptation Graph)
A cultural adaptation graph Gx = (V,E),

where V denotes the set of vertices and E the set of
edges, is a directed graph created by the iterative
application of the Hypon, Syn, and Hyper functions
starting from the cultural concept x. Each vertex
vi ∈ V represents a cultural concept linked to x
through a path of hyponym, synonym, or hypernym
relationships, while each directed edge eij ∈ E
depicts one of these relationships {Ho, S,He} be-
tween the cultural concepts vi and vj .

Given a cultural adaptation graph Gx = (V,E),
each leaf node vi in Gx potentially represents a
cultural adaptation of the cultural concept x. An
example of this process is illustrated in Figure 1,
showing the cultural adaptation of "二胡(Erhu)".
The ’Erhu’ has a hypernym "弓弦乐器 4", synony-
mous in English with "Bowed string instrument".
This term has various hyponyms, including the ’vi-
olin’ and ’cello’, making them potential cultural
adaptations of the ’Erhu’. Similarly, "乐器", the hy-
pernym of "弓弦乐器", and by extension a second-
order hypernym of ’Erhu’, translates to "Musical
Instrument" in English. Thus, other instruments
like the ’saxophone’ and ’oboe’ may also serve as
potential cultural adaptations of the ’Erhu’. In fact,
every leaf node in the cultural adaptation graph
could potentially represent a cultural adaptation
of ’Erhu’, where shorter path distances indicate
higher accuracy. For instance, ’violin’ and ’cello’
would provide more accurate cultural adaptations
than ’saxophone’ and ’drum’. A simple iterative
traversal algorithm can yield all leaf nodes and
their respective path distances from ’Erhu’. These

cultural adaptation sets can serve as a kind of multi-
cultural resource.

3.2 Culture Mixup

To mitigate the issue of data scarcity and prompt the
model to comprehend the mapping of cultural adap-
tation, we propose a cultural concept-based mul-
timodal data augmentation named CultureMixup.
It includes a three-tier code-switching strategy on
the textual sentences and a cultural concept-based
mixup method on the image and thereby generates
new data instances from the culture, phrase, word,
and image levels. We initially gather data from
online resources to construct a set X of cultural
concepts, each paired with corresponding images.
Refer to the appendix A for further details. Sub-
sequently, we select a cultural concept x ∈ X for
cultural adaptation according to a predefined prob-
ability distribution. The sampling of an adaptation
yk ∈ Yx from the high-resource cultural adapta-
tion set is inversely proportional to its path distance
in the cultural adaptation graph Gx (as defined in
Equation 1), i.e., P (yk|x) ∝ 1

d(x,yk)
. The adapted

concept yk is then used to retrieve data instances
from the training dataset. Each data instance com-
prises both textual sentences and images.

3.2.1 Three-tier Code-switching on Text

We apply a three-tier code-switching strategy to the
textual sentences, as displayed in Figure 2.

4弓弦乐器 is bowed string instruments in English, which
are a subcategory of string instruments that are played by a
bow rubbing the strings. The bow rubbing the string causes
vibration which the instrument emits as sound.
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Cultural-level We extend the conventional un-
derstanding of code-switching from a purely lin-
guistic phenomenon to a cultural one. The cultur-
ally adapted concept yk in the sentence is replaced
by the original low-resource cultural concept x.
For instance, in Figure 2, the word "violin" is code-
switched with its Chinese cultural adaptation "二
胡".

Phrase-level For the phrase-level code-
switching, we collect and identify high-frequency
phrases pertinent to reasoning and translate them
into different languages. If a sentence contains
these selected phrases, they are code-switched
based on a given probability. For example, in
Figure 2, the phrase "on the left" is code-switched
by "kushoto" in Swahili.

Word-level At the word level, each word in a
sentence undergoes code-switching in a different
language based on a specified probability. For ex-
ample, in Figure 2, the words "image" and "player"
are code-switched by "resim" in Turkish and "pe-
serta" in Indonesian, respectively.

3.2.2 Concept-Based Mixup for Images
For the image-level cultural adaptation, we first ap-
ply an object detection algorithm to the images. We
identify visual elements that correspond to high-
resource cultural concepts yk, and replace them
with visual elements associated with the original
low-resource cultural concept x. The specific pro-
cess is as follows:

1. Visual Element Detection: We use the high-
resource concept as the vocabulary term and
deploy the object detection model to locate the
corresponding visual elements in the image.

2. Bounding Box Extraction: Based on the ob-
ject detection results, we extract the object
that needs to be replaced from the original
high-resource image using bounding boxes.

3. Resizing: We adjust the size of the low-
resource image element, which is collected
together with concepts themselves, to match
the size of the bounding box.

4. Pasting: The resized new low-resource image
is then pasted into the corresponding location
of the original image.

5. Smoothing and Harmonization: Finally,
smoothing and harmonization techniques are

applied to seamlessly integrate the new ob-
ject into the original image and make it more
compatible with the background.

This introduces cultural diversity at the visual
level, thereby enriching the data instances for train-
ing.

3.3 Reduce Model Bias

Pretrained multilingual multimodal models often
demonstrate disparate performance across various
languages and cultural contexts in test datasets, a
discrepancy likely attributable to uneven resource
distribution during pretraining. These imbalances
pose challenges that are not readily addressed by
self-supervised pretraining objectives. Our method
offers a mechanism to ameliorate these language
and cultural biases by manipulating the sampling
distribution. Essentially, we can enhance model
performance on specific language or cultural top-
ics in a controllable manner. For instance, if the
model is anticipated to be applied in a Turkish con-
text, the sampling probability for Turkish can be
increased during data augmentation. Likewise, if
the model will be deployed in scenarios involving
traditional Chinese musical instruments, like the
Erhu, we can elevate the sampling probability of
these specific Chinese musical concepts. In sum-
mary, our approach provides a statistically signifi-
cant, fine-grained performance boost for the model
over predefined language or cultural categories.

4 Experiment

4.1 Dataset

We collect and evaluate cultural concepts from di-
verse cultures (Indonesian, Swahili, Tamil, Turkish,
Chinese) using crowd-sourced workers. The pro-
cess involves gathering a wide range of cultural
concepts manually and validating them through a
majority vote. For a detailed methodology, please
refer to the appendix. This approach, while cost-
effective, emphasizes accuracy by requiring a sig-
nificant consensus among evaluators and prioritiz-
ing manual collection to capture cultural nuances.
This dataset is publicly available 5. In evaluat-
ing the resulting cultural adaptation graphs, about
84% aligned with human judgment, confirming
the method’s effectiveness. For the less accurate
graphs, issues were primarily due to translation lim-
itations for certain cultural concepts’ hypernyms.

5https://github.com/zhilizju/Culture-mixup
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Proportion

Model x : y
NLVR2 MaRVL

EN ZH TA SW ID TR avg.

mUNITER

1:1 69.23 54.85 55.44 53.01 53.43 57.2 54.79
2:1 69.74 56.99 55.81 53.26 54.45 56.67 55.44
3:1 70.45 57.33 56.02 53.97 55.14 58.67 56.23
4:1 70.82 58.04 55.57 53.61 54.92 57.99 56.03
5:1 71.24 56.88 55.41 52.99 53.24 56.98 55.10

mUNITER
3:1 70.45 57.33 56.02 53.97 55.14 58.67 56.23
9:3 71.22 58.47 56.11 54.19 55.24 58.91 56.58
15:5 71.56 59.71 58.45 54.35 55.24 58.81 57.31

Table 2: Different proportion on model performance. x : y means that the total dataset is x+ y times larger than the
origin English training data. And x

x+y of the total dataset is the origin English training data (just copy origin dataset
x times) and y

x+y of the total dataset is augmented data. The results cover five languages: Indonesian (ID), Swahili
(SW), Tamil (TA), Turkish (TR) and Mandarin Chinese (ZH).

Zero-Shot
Translate-Test

Model Method
NLVR2 MaRVL

EN ZH TA SW ID TR avg.

mUNITER
MaRVL(Liu et al., 2021a) 73.2 56.8 52.2 51.5 55.0 54.7 54.0 63.5

IGLUE (Bugliarello et al., 2022) 71.91 55.34 52.66 51.17 54.79 54.66 53.72 63.82
Our Reproduce 70.93 54.05 53.14 51.72 55.41 53.22 53.51 -
+ Our Method 71.56 60.44 (59.71) 58.92(58.45) 54.87(54.35) 55.72(55.24) 59.53(58.81) 57.90(57.31) -

xUNITER
MaRVL(Liu et al., 2021a) 72.8 55.0 55.1 55.5 57.1 58.0 56.1 64.4

IGLUE (Bugliarello et al., 2022) 71.55 53.06 53.06 55.51 55.14 56.19 54.59 64.04
Our Reproduce 70.81 54.35 53.95 55.33 54.79 58.31 55.34 -
+ Our Method 70.34 57.91 (56.78) 58.03(57.88) 60.01(59.06) 58.78(58.21) 59.67(59.44) 58.88(58.27) -

UC 2 IGLUE (Bugliarello et al., 2022) 70.56 59.88 60.47 52.62 56.74 56.70 57.28 63.09
Our Reproduce 69.05 58.3 60.06 52.97 57.18 56.102 57.07 -
+ Our Method 68.88 60.13 (59.73) 61.61(60.88) 58.55(57.97) 58.91(58.75) 60.72(60.34) 59.98(59.33) -

M 3P
IGLUE (Bugliarello et al., 2022) 68.22 55.04 56.04 55.69 56.47 56.78 56.00 62.52

Our Reproduce 68.71 52.96 57.73 53.70 58.16 58.22 56.15 -
+ Our Method 68.10 59.21(58.73) 60.89(59.96) 61.23(60.6) 59.18(58.99) 61.31(60.65) 60.36(59.79) -

Table 3: Zero-shot statistics. The best scores are in bold. For our method, we not only report the best performance
but also report the statistical mean. The digits in "( )" represent the average value of different random seeds. The
results cover five languages: Indonesian (ID), Swahili (SW), Tamil (TA), Turkish (TR) and Mandarin Chinese (ZH).

Strategies like restricting the use of higher-order
hypernyms and implementing an exponential decay
of sampling probability for concept inclusion were
employed to enhance accuracy and authenticity, en-
suring the graphs’ overall quality and reliability.
See the appendix B for details.

We use the Detic model (Zhou et al., 2022) avail-
able at Facebook Research’s GitHub repository for
object detection. It employs the CLIP (Radford
et al., 2021) classifier and offers open-vocabulary
capabilities. With this model, we can freely config-
ure the vocabulary, allowing us to detect specific
cultural concepts within images. If you want a
more precise result, it is recommended to use the
segment anything model(Kirillov et al., 2023), but
it may require some manual clicking.

Following Liu et al. (2021a), we employ NLVR2
in English for training and MaRVL for testing.
MaRVL (Liu et al., 2021a) is a visually grounded
reasoning dataset similar to NLVR2 (Suhr et al.,

2019). It not only spans five typologically diverse
languages (Chinese, Tamil, Swahili, Indonesian,
and Turkish) but also adopts different basic-level
concepts across different cultures. Thus, the chal-
lenges are multi-faceted, including cross-modal,
cross-lingual, and cross-cultural aspects. In this
task, given two images (Ileft and Iright) and a de-
scription D, the model needs to assess the validity
of the description given the images, which can be
cast as a classification problem. See the appendix
C for sampled examples and detailed descriptions.

4.2 Baseline

We assess the efficacy of our approach using four
existing multilingual multimodal pretrained models
that have been released so far:

• mUNITER (Liu et al., 2021a), which extends
the UNITER architecture (Chen et al., 2020)
to support multilingual functionality.

267



Shot
1 2 4 10 10x2

mUNITER
ZH 59.41/56.52 59.23/54.84 60.18/54.55 60.60/55.34 61.63/54.05
TR 59.66/52.54 59.24/55.93 59.73/55.59 60.48/54.66 60.97/54.75
ID 55.50/51.42 55.88/52.13 56.34/54/34 56.71/56.83 56.97/51.42

xUNITER
ZH 57.02/54.45 56.72/53.66 57.63/54.94 57.66/53.46 57.82/55.73
TR 59.19/55.93 59.58/57.46 59.48/57.54 59.86/57.80 60.60/58.05
ID 58.60/56.12 59.48/57.18 59.55/58.87 60.51/58.87 60.75/58.60

UC 2
ZH 59.34/58.99 59.40/57.02 59.29/58.99 59.99/57.21 60.91/60.18
TR 59.64/55.76 59.92/54.39 60.71/52.63 61.15/55.93 61.53/56.27
ID 59.33/56.12 59.49/56.29 59.52/57.53 60.11/57.62 60.89/58.51

M 3P
ZH 58.92/52.47 59.32/53.85 59.71/52.47 60.03/54.45 60.12/54.64
TR 59.90/57.88 59.58/58.98 59.81/57.97 60.59/58.39 61.19/57.54
ID 58.69/57.36 59.40/56.92 59.61/57.27 59.57/58.51 59.91/58.51

Table 4: Different shots statistics. Results of Our methods/baseline. The baseline results come from IGLUE
(Bugliarello et al., 2022). The results cover three languages: Indonesian (ID), Turkish (TR), and Mandarin Chinese
(ZH).

• xUNITER (Liu et al., 2021a), which is identi-
cal to mUNITER, except for its initialization:
while mUNITER is initialized from mBERT,
xUNITER originates from XLM-R.

• M 3P (Ni et al., 2021b), which introduces
pretraining tasks using multimodal code-
switching.

• UC 2 (Zhou et al., 2021), which uses masked
region-to-token modeling and visual transla-
tion language modeling as pretraining tasks.

To provide a fair comparison with baselines (Liu
et al., 2021a; Bugliarello et al., 2022), we adopt
nearly identical experimental setups and hyperpa-
rameters except that we finetune models on the
origin and augmented NLVR2 (Suhr et al., 2019)
dataset. Despite augmenting the dataset, we main-
tain the same total number of training steps by
reducing the training epochs. For more detailed
information about settings and the implementation
of the model, please refer to the appendix D. Our
code is based on VOLTA (Bugliarello et al., 2020).

4.3 Results

In this part, we mainly discuss four parts with ex-
perimental results. (1) What proportion is appropri-
ate for the augmented data? (2) The zero-shot and
few-shot performance of models with our proposed
methods.(3) Ablation studies. (4) Controllability
and reduce model bias.

4.3.1 Proportion

We conduct two groups of experiments on
mUNITER in a zero-shot setting: one examines
the impact of the proportion of augmented data,
while the other investigates the effect of the total
volume of augmented data on model performance
while keeping the proportion constant. In Table
2, x : y implies that the total dataset is x + y
times larger than the original English training data.
Furthermore, x

x+y of the total dataset is the orig-
inal English training data (essentially replicating
the original dataset x times), and y

x+y is the code-
switched generated data. To maintain the total num-
ber of training steps, we reduce the training epochs
and train the models for 20

x+y epochs.
For the first group of experiments, we establish

five different ratios x : y=1 : 1, 2 : 1, 3 : 1, 4 : 1,
5 : 1. Results in Table 2 suggest that as the volume
of original data increases, the model’s performance
on the English test set consistently improves. How-
ever, performance in other languages and cultures
initially increases then decreases. This reveals a
trade-off: while a substantial proportion of English
data aids the model’s task comprehension, an ap-
propriate amount of augmented data from other
cultures facilitates the model’s transfer ability. A
ratio of roughly 3:1 yields optimal results. We
further investigate this by holding the scale con-
stant and incrementally increasing the English and
augmented datasets.

In order to examine the influence of the total
volume of augmented data on model performance
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Ablation

Model Method
NLVR2 MaRVL

EN ZH TA SW ID TR avg.

mUNITER

Baseline 70.93 54.05 53.14 51.72 55.41 53.22 53.51
Our Method 71.56 59.71 58.45 54.35 55.24 58.81 57.31

All w/o Concept 71.18 58.87 57.3 53.82 54.61 57.52 56.42
All w/o Phrase 70.71 57.95 56.94 53.18 54.02 57.19 55.86
All w/o Word 70.65 58.69 57.22 53.55 54.38 57.55 56.28
All w/o Image 70.85 58.14 56.81 52.95 54.69 56.33 55.78

Table 5: Ablation studies across five languages.

while keeping the proportion constant, we establish
three different ratios x : y=3 : 1, 9 : 3, and 15 : 5.
As indicated in Table 2, the performance of the
model improves with an increase in the volume of
augmented data. Taking into account the results
from these two sets of experiments, we decide to
amplify the dataset to twenty times the original
size and choose a ratio of x : y = 15 : 5 for
our subsequent zero-shot and few-shot experiments.
Although we do not contend that the ratio of x :
y = 15 : 5 is optimal, we assert that this choice
is adequate to demonstrate the effectiveness of our
approach.

4.3.2 Zero-shot and Few-shot
As previously mentioned, we employ a configura-
tion of x : y = 15 : 5 to augment the dataset to
twenty times its original size. This involves repli-
cating the original English NLVR2 dataset (Suhr
et al., 2019) 15 times and generating a augmented
dataset five times larger. Consequently, the final
dataset is 20 times the size of the original English
NLVR2 dataset. To maintain a consistent number
of training steps with Liu et al. (2021a); Bugliarello
et al. (2022), who trained models for 20 epochs,
we train our models on this expanded dataset for
a single epoch. We present both the best results
and statistical mean for our method. ’Translate-
test’ refers to the setup in which the multilingual
MaRVL datasets are translated into English. The re-
sults of Liu et al. (2021a); Bugliarello et al. (2022)
are used directly as zero-shot benchmarks.

Table 3 displays the zero-shot performance of
the four models and demonstrates that our method
consistently and statistically surpasses the base-
lines. Our approach considerably diminishes the
disparity between the performance in the transla-
tion test and the transfer performance, validating
the effectiveness of our code-switching method.
We observe that, compared with the baselines, our

method enhances the M3P and mUNITER scores
by about 3 ∼ 4 points, while UC 2 and xUNITER
gain only about 2 ∼ 3 points. This disparity might
stem from the fact that UC 2 and xUNITER have
acquired better-aligned representations during the
pre-training phase.

Table 4 displays the results of few-shot perfor-
mance on three languages, demonstrating that our
method also achieves the state-of-the-art perfor-
mance in the few-shot setting. Nevertheless, simi-
lar to Liu et al. (2021a); Bugliarello et al. (2022),
our results corroborate the finding that unlike text-
only multilingual tasks, where even a handful of
examples in the target language can substantially
enhance model performance, this phenomenon is
largely absent in multimodal multilingual settings
(Bugliarello et al., 2022). As the number of shots
increases, the model’s performance remains largely
unchanged or shows slight growth. We attribute
this to two main factors. Firstly, the inherent com-
plexity of the task, and secondly, within the same
language, data samples embodying diverse cultural
concepts may vary significantly. The model may
overfit to data samples associated with specific cul-
tural concepts, a phenomenon that warrants further
investigation in future studies.

4.3.3 Ablation Study
To examine the impact of our cultural concept-
based multimodal data augmentation approach, we
conducted an ablation study on mUNITER, main-
taining the 15:5 setting for consistency. The results,
as presented in Table 5, represent the statistical
mean of various random seeds and underscore that
each component of our method significantly con-
tributes to enhancing the model’s performance.

4.3.4 Reduce Model Bias
Our method can be utilized to mitigate model bias
on specific target languages or cultural topics by
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Figure 3: UC 2 on Swahili language. "Baseline" rep-
resents the score reported by Bugliarello et al. (2022)
and "Ours" represents our replication of basline. "+1k"
/"+10k" represent adding 1k/10k Swahili-English code-
switched data to training dataset. "Best" represent the
best performance when we add more code-switched
data examples.

adjusting the sampling distribution. For instance,
most models exhibit relatively lower scores in
Swahili compared to other languages, with UC 2

being particularly affected. To address this, we
specifically focus on improving UC 2 ’s perfor-
mance in Swahili. By sampling, we obtain 1k and
10k examples of Swahili-English code-switched
data, which we then merge with the original En-
glish dataset to create a new training dataset. As
Figure 3 illustrates, our method can significantly
enhance the performance of UC 2 in Swahili. We
also enhance the model’s performance on the topic
"Speech and language" in Chinese. For further
details, please refer to appendix D.

5 Conclusion

To attack the difficulties of data annotation and
scarcity, we propose an annotation-free cultural
adaptation method and design a novel cultural
concept-based multi-modal data augmentation to
generate the new data example. By training the
model on the augmented dataset, key results indi-
cate that our methods consistently and statistically
outperform the baselines. In the future, we plan to
apply our method to more downstream tasks related
to culture. Employing curriculum learning and de-
signing more refined training strategies according
to the difficulty of different languages and cultural
concepts is also worth exploring. At the same time,
how to further extend our method to make it more
applicable to multi-modal models based on autore-

gressive generation, such as GPT-4-V 6, is also
highly worthwhile to explore.

Limitations

Our approach principally amplifies the conceptual
adaptability of models to low-resource cultures.
Nevertheless, cultural differences are complex and
multidimensional, encompassing not only concep-
tual elements but also elements of common sense.
The comprehensive acquisition of such common
sense across diverse cultures is a vital yet challeng-
ing endeavor. Therefore, our community still has
a considerable path to tread in order to fully en-
hance the multicultural competencies of AI models.
Simultaneously, we only conducted experiments
on multi-modal models based on masked language
modeling. Further investigation is needed to de-
termine the effectiveness on multi-modal models
based on autoregressive generation.
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A Collecting the Cultural Concepts

First, we need to collect the cultural concepts of
different countries. In detail, we choose a diverse
set of cultures and languages following: Indone-
sian, Swahili, Tamil, Turkish, Chinese. Each cul-
ture contains about ten chapters: festival, music,
religion and belief, animal and plant, food, cloth-
ing, building, agriculture, tool, and sport. Each
chapter contains several to dozens of cultural con-
cepts. The collection of cultural concepts is primar-
ily carried out manually. Importantly, this approach
doesn’t necessitate cross-cultural specialists; rather,
it employs crowd-sourced workers familiar with
the respective culture, making it a relatively cost-
effective and simple process. The procedure is
twofold:

1. Diverse Candidate Collection: For each
culture under consideration, we involve five
crowd-sourced workers and require them to
explore a minimum of three types of online
resources. (1) Wikipedia. For example, the
article "Culture of Turkey" on Wikipedia lists
many cultural concepts including foods, fes-
tivals, architecture, and so on. (2) Official
websites. Most countries provide official web-
sites to introduce their culture. (3) Search
engines. Some websites retrieved by search
engines such as travel guides will introduce
the local culture. They collect as many cul-
tural concepts as possible for each category.
The collected data from each worker is then
aggregated.

2. Voting for Filtering: Next, an additional 10
crowd-sourced workers from the respective
country or region assess whether each gath-
ered concept genuinely belongs to the local
culture. If seven or more evaluators agree, the
concept is added to the final ’culture concept
set.’

This method ensures quality in several ways:

• Inclusion of Multiple Evaluators: By in-
volving multiple people from the respective
culture in both the collection and the valida-
tion process, we minimize individual bias and
enhance the dataset’s reliability.

• Threshold for Inclusion: The use of a voting
system provides a safety net against inaccura-
cies and biases. If a concept is included, it’s
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because a significant majority (at least 7 out
of 10) of the evaluators from that culture have
vouched for its relevance.

• Manual Over Automatic: While automated
methods may miss nuances or make errors,
manual collection engages those who under-
stand the cultural intricacies best—the people
from that culture.

Hence, our approach offers a robust, yet eco-
nomical way of collecting high-quality cultural
concepts.

B Human Evaluation of Cultural
Adaptation Graphs

The evaluation of the generated cultural adaptation
graphs yielded quite reassuring results:

• High Human Agreement: Approximately
84% of the generated cultural adaptation
graphs were in alignment with human judg-
ment. This high rate of agreement underscores
the validity of our approach in capturing cul-
turally meaningful concepts.

• Addressing Inaccuracies: For the remain-
ing graphs that were less accurate, the pri-
mary issue often lay in the lack of direct En-
glish translations for the low-resource cultural
concepts’ hypernyms. To address this, the
method would need to consider higher-order
hypernyms, making the entire path too distant
and potentially distorting cultural similarity
according to human evaluators.

To counteract these issues, we implemented the
following strategies:

• Hypernym Limitation: As described in the
paper, we restrict the method to considering
at most three-order hypernyms during the con-
struction of the cultural adaptation graph. If
a suitable translation or hypernym cannot be
identified within this constraint, the concept
is discarded.

• Exponential Decay of Sampling Probabil-
ity: The paper also outlines that the sampling
probability for including concepts in the cul-
tural adaptation set decays exponentially with
path distance. This mechanism serves to mit-
igate possible inaccuracies by giving greater
weight to more closely related concepts.

Synset flute

Sentence The image on the left shows a violin player and a flute player 
sitting side by side.

Label True

Identifier train-12592-2-0

Concept 47-二胡

Sentence 右图中有一位女生拉二胡，左图则有不只一个人拉
二胡。( In the picture on the right, there is a girl pulling 
the erhu, and in the picture on the left, there is more than 
one person pulling the erhu.)

Label True

Identifier zh-424

NLVR2 MARVL

Figure 4: Sampled examples from NLVR2 (Suhr et al.,
2019) and MaRVL(Liu et al., 2021a). The NLVR2
is a semantically-diverse dataset for reasoning about
natural language descriptions of photos. The task is
to determine if a caption is true with regard to a pair
of images. MaRVL is similar to NLVR2, except that
the descriptions of NLVR2 are in English and MaRVL
spans 5 typologically diverse languages (Chinese, Tamil,
Swahili, Indonesian, and Turkish).

These measures are designed to ensure that the
cultural adaptation graph generated is of high qual-
ity, both in terms of capturing authentic cultural
elements and in conforming to human judgment.
Therefore, while the graph is not perfect, it is con-
structed with numerous safeguards to ensure its
utility and accuracy.

C NLVR2 and MaRVL Dataset

Liu et al. (2021a) points that most of the synsets
employed by NLVR2 (Suhr et al., 2019) and Im-
ageNet (Deng et al., 2009) are only present in 30
or fewer languages and they contain overly spe-
cific concepts that belong to leaf nodes in WordNet.
Given the biases in ImageNet-derived or inspired
datasets, they define a protocol to collect data that is
driven by native speakers of a language, consisting
of concepts arising from their lived experiences. As
a consequence, the descriptions are written in five
languages: Indonesian, Mandarin Chinese, Swahili,
Tamil, and Turkish, and the concepts are selected to
be culturally relevant. Both multilingual and mono-
lingual models perform comparably well in English
(NLVR2). When these models are evaluated on the
languages in MaRVL, however, the performance of
zero-shot multilingual baselines dramatically drops
a lot, floating just above the chance level. Fur-
ther analysis shows that there are two sources of
difficulty that make MaRVL challenging: 1) cross-
cultural transfer (out-of-distribution concepts with
respect to English datasets) and 2) cross-lingual
transfer.
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D The Implementation in Details

D.1 Experimental Setting

We provide a detailed experimental setting. First,
we collate and merge data from three web resources
and build an initial dataset containing cultural con-
cepts of different countries. Refer to appendix
A for detail. For cultural adaptation, ”/r/IsA”
in Conceptnet can be used to query hypernyms
in target languages, and ”/r/Synonym” is em-
ployed to query synonyms in English. And we
use the hyponyms() function of Wordnet to query
hyponyms of English concepts. We only consider
three-order hypernym at most. And the sampling
probability decays exponentially with path distance.
For phrase level, we count n-gram phrases. n
range from 2 to 5. We select phrases related to
reasoning and translate them to other languages via
Google Translate. For word level, we employ the
”/r/Synonym” in Conceptnet.

D.2 Model Implementation

Most multilingual multimodal pre-trained models
architecture consists of a stack of Transformer
layers are similar to BERT. Their inputs are the
concatenation of language and vision embeddings.
The language inputs are tokenized and surrounded
by two special tokens {[CLS], t1, ..., tn, [SEP ]}.
The language embeddings are then obtained by
index token ids just like the original BERT. The
vision input consists of a set of visual features pro-
duced by a well-trained object detector. Following
(Liu et al., 2021a) and (Bugliarello et al., 2022),
we also add a special feature [IMG] that encodes
the entire image, {[IMG], v1, ..., vm}. Each fea-
ture is embedded using a BERT-like embedding
layer by using its bounding box coordinates as the
input position. Then these language and vision
embeddings will be fed into a BERT-like encoder
and get hl[IMG], h

l
[CLS], h

r
[IMG], h

r
[CLS] representa-

tions at the last layer. We follow Liu et al. (2021a)
and employ the cross-entropy loss function. We
apply a two-layer MLP with a GeLU activation
function (Hendrycks and Gimpel, 2016) on top of
the image–text representation. The probability that
they are both correct is predicted by a softmax over
two classes (representing true and false labels):

P(C | Il, Ir, D) = softmax

(
MLP

([
hl[IMG] ⊙ hl[CLS]

hr[IMG] ⊙ hr[CLS]

]))

(2)

Figure 5: mUNITER on the topic Speech and language
of Chinese test dataset in MARVL. "MaRVL" represent
the score reported by Liu et al. (2021a) and we also
reproduce this result. "+1k" /"+10k" represent adding
1k/10k code-switched data about traditional Chinese
musical instruments to the training dataset. "Best" rep-
resent the best performance when we add more code-
switched data examples.

E Error Case Analysis

E.1 Performance Across Languages
As demonstrated in Table3 of the paper, per-
formance diverges significantly across languages.
This discrepancy is due largely to the imbalanced
distribution of pre-training data, linguistic idiosyn-
crasies, and cultural distinctions. Furthermore, the
ease of language transfer from English to other
languages varies considerably.

E.2 Within-Language Category Differences
An intra-language examination reveals that perfor-
mance fluctuates across different categories. For
instance, the model demonstrates heightened effi-
cacy in the "animal and plant" and "building" cate-
gories relative to others. Section 4.3.4 elaborates
on this phenomenon, attributing it primarily to the
distribution of pre-training data.

E.3 Instance-Level Analysis
We sampled a subset of the test data, and when
we conducted a detailed error investigation at the
individual instance level, we discovered several
illuminating patterns:

• Poor Spatial Awareness: The model predom-
inantly falters in spatial reasoning tasks. No-
tably, descriptions formatted as "one image...,
another image..." are more challenging for
the model than those specifying "left image...,
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right image...", with performance improving
statistically across languages in the latter case
(58.4% vs 53.8%).

• Limited Textual Reasoning: Performance
enhances when the description is condensed
into a single sentence ("in both images...")
rather than dispersed across two ("one im-
age..., another image..."), with a performance
leap to 60.4%.

• False Bias: The models exhibit a pronounced
propensity to predict ’false’ in the test set, con-
stituting 57% of the model’s predictions, con-
trasted with 43% of ’true’ predictions. This
imbalance, especially conspicuous given the
actual 50-50 distribution of ’true’ and ’false’
labels in the training and test sets, stems pre-
dominantly from the model’s unfamiliarity
with certain cultural concepts and images,
prompting a ’false’ prediction.

These analyses collectively provide a compre-
hensive insight into the model’s limitations, illumi-
nating potential avenues for refinement.

F Reduce Model Bias

According to Liu et al. (2021a), each language test
dataset can be divided into multiple topics based on
the categories of cultural concepts. For example,
the topic “Speech and language” of the Chinese
test dataset in MARVL contains many traditional
Chinese musical instruments, such as Erhu. Similar
to adjusting the sampling probability of language,
we can generate Chinese-English code-switched by
adding the sampling probability of assigned cul-
tural concepts and phrases of Chinese. Assuming
models need to improve their reasoning ability on
datasets about traditional Chinese musical instru-
ments, all we need is to improve the sampling prob-
ability of concepts about this topic in our collected
cultural concepts set. Figure 5 shows that as we
add more related data, the model performance is
becoming better on corresponding topics.

G LLM for Cultural Concept Adaptation

This section discusses the potential of using large
language models (LLMs) like ChatGPT for cul-
tural concept adaptation. Despite their proficiency
in explaining various cultural concepts, several fac-
tors discourage their exclusive use as a baseline or
expert system.

• Language Resource Limitations: Prior stud-
ies (Jiao et al., 2023; Vilar et al., 2022; Cao
et al., 2023; Havaldar et al., 2023) and our case
studies on GPT-3.5’s initial version indicate
subpar performance in certain low-resource
languages, such as Swahili (sw), despite profi-
ciency in languages like Chinese (zh).

• Cost-Effectiveness: Dictionary lookups are
generally more efficient and economical than
operating large language models.

• Reproducibility & Hallucinations: Inher-
ent weaknesses in LLMs include instability
based on prompts and difficulty ensuring re-
producibility. Verifying outputs is particularly
challenging when hallucinations occur.

• Dataset Compatibility: Our downstream
dataset, NLVR2, revolves around a WordNet
subset, facilitating queries. Relying on Chat-
GPT would necessitate additional output pro-
cessing.

• Leveraging Existing Dictionary Resources:
Our method can fully exploit existing dictio-
nary resources for extremely low-resource lan-
guages, like Navajo, through platforms such
as ConceptNet.

G.1 Evaluating Recent Models
Recently, we evaluated the latest GPT-3.5 and GPT-
4 models for cultural adaptation capabilities. Using
a chain of prompt approach to construct a cultural
adaptation graph yielded promising results, partic-
ularly with GPT-4. Nonetheless, these models also
encounter challenges, such as potential hallucina-
tions, and necessitate meticulous prompt design
for diverse cultural adaptations. We believe that
the integration of dictionary-based cultural adap-
tation methods with large language models repre-
sents a promising hybrid approach. For instance,
a dictionary-based method could produce a broad
set of cultural adaptations, subsequently filtered for
relevance by a large language model. Incorporating
LLMs to devise our cultural adaptation graph is in-
deed promising and under consideration for future
exploration.
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