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Abstract

Multilingual language models have shown
impressive cross-lingual transfer ability
across a diverse set of languages and tasks.
To improve the cross-lingual ability of these
models, some strategies include transliter-
ation and finer-grained segmentation into
characters as opposed to subwords. In
this work, we investigate lexical sharing
in multilingual machine translation (MT)
from Hindi, Gujarati, Nepali into English.
We explore the trade-offs that exist in
translation performance between data sam-
pling and vocabulary size, and we explore
whether transliteration is useful in encour-
aging cross-script generalisation. We also
verify how the different settings generalise
to unseen languages (Marathi and Bengali).
We find that transliteration does not give
pronounced improvements and our analysis
suggests that our multilingual MT models
trained on original scripts seem to already
be robust to cross-script differences even
for relatively low-resource languages. Our
code will be made publicly available.1

1 Introduction

As research in natural language processing (NLP)
moves towards handling an increasing number of
languages (Aharoni et al., 2019; Fan et al., 2021),
one of the key challenges is targeting low-resource
and morphologically rich languages (Johnson et
al., 2017; Magueresse et al., 2020). Multilingual
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language models such as mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) have
shown surprising cross-lingual ability in zero and
few-shot scenarios for a diverse set of languages
(Wu and Dredze, 2020).

In order for low-resource languages to optimally
benefit from data available for related and higher-
resource languages, one research direction has been
to explore what encourages better cross-lingual
sharing in multilingual models, particularly in mod-
els that have joint vocabularies (Ha et al., 2016;
Johnson et al., 2017; Aharoni et al., 2019).

One strategy for doing this is to preprocess the
texts to reduce variation linked to differences in
script and orthographic conventions, for example
phonetisation, transliteration and transcription, in
order to increase lexical overlap across languages.
These pre-processing steps have been used in the
literature across several multilingual NLP tasks
(Nakov and Tiedemann, 2012; Nguyen and Chi-
ang, 2017; Chakravarthi et al., 2019; Goyal et al.,
2020; Sun et al., 2022; Muller et al., 2021; Alabi
et al., 2022). However, there is still some debate
over how much transliteration helps in multilingual
setups, despite it theoretically encouraging better
lexical overlap, particularly for low-resource lan-
guages. For example, Pires et al. (2019) found that
transfer may be helped by increased lexical over-
lap (although it also works without it) and K et al.
(2020) argue that lexical overlap has a negligible
impact on transfer. Chakravarthi et al. (2019) and
Muller et al. (2021) found gains when transliterat-
ing, whereas for Alabi et al. (2022), results were
less clear.

In this study, we build on this previous work
to further investigate how lexical overlap can help
multilingual machine translation (MT) by taking as
a case study several Indian languages. Figure 1 il-



Figure 1: Illustration of partial lexical overlap in differ-
ent scripts and languages (Hindi, Gujarati, Nepali, Bengali,
Marathi). Highlighted text is an exact phonetic match at word
or partial word coverage level.

lustrates the degree of lexical overlap in the chosen
languages of study: Hindi, Gujarati, Nepali, Ben-
gali, and Marathi. Despite script differences, this
example shows a sizeable amount of shared token
overlap in terms of both characters and words.

Focusing on the translation of these languages
(Hindi, Gujarati, Nepali) into English, we explore
the ideal parameter settings for multilingual MT
(sampling vs. segmentation size) and look at how
transliterating into a single script (i.e. Gujarati into
Devanagari) may help performance. In addition,
we look at how the trained models can transfer to
other related languages (Bengali and Marathi) in
zero- and few-shot settings. We find that translit-
eration does not significantly help performance in
our multilingual MT setup, even for the lowest-
resourced language directions. Our analysis sug-
gests that even with relatively little data, the multi-
lingual model trained on the original scripts seems
to learn a sufficient mapping between original and
transliterated tokens, possibly making translitera-
tion redundant. Even in zero- and few-shot transfer
settings, we find only marginal improvements in
the languages considered by using the multilingual
model that uses transliteration as opposed to the
multilingual model with the original scripts.

2 Related Work

Multilingual models have been proposed for MT
as well as other NLP tasks (Doddapaneni et al.,
2021). Within multilingual models, the promotion
of lexical sharing has been the primary motivation
to train multilingual models, which can especially
aid low-resource languages (Conneau et al., 2020).

The choice of input unit has received a lot of at-
tention, from the use of joint multilingual vocabular-
ies (Sennrich et al., 2016a; Ha et al., 2016; Johnson
et al., 2017; Aharoni et al., 2019) and subword
segmentation strategies (Sennrich et al., 2016b;
Kudo and Richardson, 2018) to character-based

(Kreutzer and Sokolov, 2018) and byte-based (Xue
et al., 2022) models. Other works have explored
phonetisation (Liu et al., 2019; Rosales Núñez et
al., 2019) and transliteration/transcription in order
to create a higher degree of lexical overlap in re-
lated languages that do not shared scripts (Nakov
and Tiedemann, 2012; Nguyen and Chiang, 2017;
Chakravarthi et al., 2019; Goyal et al., 2020; Muller
et al., 2021; Alabi et al., 2022).

Cross-lingual word embedding spaces have been
of interest as well. Chronopoulou et al. (2021) map
separately learnt embeddings to the same space, and
other related works attempt to jointly learn a shared
embedding space for multiple languages. Cross-
lingual transfer studies on multilingual models such
as mBERT (Devlin et al., 2019) have also shown
the utility of multilingual pre-training especially for
zero-shot transfer (Pires et al., 2019). They show
that overlap can lead to better zero-shot transfer,
although there can still be transfer with no overlap,
as also seen by K et al. (2021). Wu and Dredze
(2020) also see a positive correlation between lexi-
cal overlap and the zero-shot transfer performance.
Additionally, (Oladipo et al., 2022) experiment with
effect of shared vocabulary spaces in multilingual
setups for several low-resource African languages
(Amharic, Hausa, and Swahili) and find that the
number of languages used during pre-training has a
positive effect on cross-lingual transfer only up to
a certain point- which is improved by simply using
a monolingual model with a multilingual tokeniser.

Variation in data availability, scripts, and morpho-
syntactic properties make adapting multilingual
models to unseen languages challenging. Translit-
eration, which directly encourages lexical overlap,
has shown positive results for texts in different
scripts (Muller et al., 2021; Chakravarthi et al.,
2019). Muller et al. (2021) show that script plays a
crucial role in improving transferability of multilin-
gual models for languages that otherwise lag behind
in performance. However, Alabi et al. (2022) find
that transcription (for Slavic languages) degraded
rather than aided performance, with the hypothe-
sis that the high-resource setup made transcription
unnecessary, especially given the noise introduced
by transcription. In our work, we study the role of
transliteration in the case of multilingual MT for
a set of lower-resource language directions, using
related Indian languages with script differences.



3 Background on the Languages of Study

Hindi, Nepali, Gujarati, Bengali, and Marathi are
all Indo-Aryan languages, a sub-branch of the Indo-
European language family, with speakers primarily
concentrated in the Indian subcontinent. Hindi (ex-
cluding Urdu)2 is spoken by approximately 340M
L1 speakers (and 600M L1 or L2 speakers) and is
considered to be the largest in terms of L1 speak-
ers, whereas Nepali, Gujarati, Bengali, and Marathi
have 16M, 57M, 272M, and 99M L1 speakers re-
spectively.3 Hindi, Nepali, and Marathi share the
same script (Devanagari) and also certain morpho-
syntactic properties such as split ergativity and
Subject-Object-Verb word order with constraint-
based reordering allowed. Gujarati and Bengali
each use their own scripts, although they are still
considered closely related to the other Indo-Aryan
languages, with both lexical and grammatical sim-
ilarities. In particular, in both languages there ex-
ist many words that are an exact phonetic match
with Hindi due to direct borrowing from Sanskrit.
Due to these properties and the fact that the writing
systems correspond well to the phonetic systems,
transliteration from either the Gujarati and Bengali
script into Devanagari is mostly straightforward
(see Figure 3 for an example).

4 Experiments

We study the effect of transliteration for multilin-
gual MT to test the hypothesis that increased lex-
ical overlap between the training languages could
boost performance, particularly for lower-resourced
language pairs. We study two different scenarios:
(i) an in-language scenario, whereby we train and
evaluate on the same set of language pairs, namely
Hindi (hi), Nepali (ne), and Gujarati (gu) into En-
glish, and (ii) zero- and few-shot transfer (via fine-
tuning) of these models to two unseen related lan-
guage pairs, namely Marathi (mr) and Bengali (bn)
into English. We compare models trained on the
original scripts and after transliteration (i.e. Gujarati
is transliterated into Devanagari).

Since the aim of transliteration is to increase
2We exclude Urdu in the speaker counts, since Hindi and Urdu,
although nearly identical phonetically, are written in different
scripts (Devanagari and Arabic script respectively). This is an
important distinction given that we focus on transliteration.
3Figures from Ethnologue, https://www.ethnologue.
com/insights/ethnologue200/.
4(Kunchukuttan et al., 2018)
5(Christodouloupoulos and Steedman, 2015)
5(Reimers and Gurevych, 2020)

lexical overlap between the languages, we make
sure to monitor for the degree of tokenisation, as
well as data sampling, both crucial parameters in
multilingual MT performance that directly affect
token overlap, to ensure a fair comparison.

4.1 Data
The chosen languages cover a variety of scripts
(Devanagari, Gujarati, and Bengali) as illustrated
in Figure 1. Table 1 lists the data sources and sizes
used (ranging from 65k sentences for gu–en to 1M
sentences for hi–en after post-processing).

We clean the data by normalising punctuation,
and removing duplicate sentence pairs from the
training data. For experiments involving translitera-
tion, we use the IndicNLP toolkit6 (Kunchukuttan,
2020) to transliterate Gujarati and Bengali scripts
into the Devanagari script. For subword segmenta-
tion, we use the Sentencepiece toolkit (Kudo and
Richardson, 2018) and the BPE strategy (Sennrich
et al., 2016b) to train joint models covering the
specific training languages for each model, i.e. the
source and target language for bilingual models and
Hindi, Gujarati, Nepali and English for the multilin-
gual ones. We test a range of vocabulary sizes: 4k,
8k, 16k and 32k for the multilingual models and 4k,
8k, 10k for the bilingual models.7

Due to differences in the amount of data avail-
able, we use temperature sampling to address im-
balances (Fan et al., 2021). We sample data with
probability pl from each language pair, l with Dl

size parallel corpora, included in the data during
training of the SentencePiece models and the train-
ing of the multilingual MT model as follows:

pl ∝ (
Dl∑
k Dk

)
1
T ,

where T corresponds to the temperature, which ad-
justs how much the original distribution is favoured
(T=1) versus a more uniform distribution of the
data (higher T value) as illustrated in Figure 2.

We test the temperature values 1.2, 1.5 and 1.8.8

4.2 Models
We train multilingual models for Hindi, Gujarati,
and Nepali into English for the vocabulary sizes and
6https://github.com/anoopkunchukuttan/
indic_nlp_library
7Preliminary experiments showed that larger vocabulary sizes
degraded the performance.
8Preliminary experiments showed that more extreme (higher)
values worked less well, despite these being used previously
in the literature (Aharoni et al., 2019).



Data sources #sentences
Train Dev Test Train Dev Test

hi–en Wikititles, HindEnCorp, IITB4 WMT-dev14 WMT-test14 1.3M 520 2,507
ne–en Bible,5 Ted2020,6 QED, GlobalVoices, GNOME, KDE Flores-dev Flores-devtest 115k 997 1,012
gu–en Bible, Wiki, Wikititles, Govin-clean, localisation WMT-dev19 WMT-test19 70k 997 1,012
mr–en Bible-UEDIN, cvit-pib, jw, PMI, Ted2020, Wikimatrix Flores-dev Flores-devtest 330k 997 1,012
be–en alt, cvit-pib, jw, OpenSubtitles, PMI, Tanzil, Ted2020,

Wikimatrix
Flores-dev Flores-devtest 86k 997 1,012

Table 1: Data sources and dataset sizes for each language pair.

Figure 2: Illustration of data distribution with temperature
sampling, taken from (Arivazhagan et al., 2019).

temperatures specified in Section 4.1, comparing
models using (i) the original scripts and (ii) when
Gujarati is transliterated into Devanagari (i.e. all
sources languages use Devanagari). We compare
these models to bilingual baselines for each of the
three main language pairs, trained in the same way
but only with the source and target languages con-
cerned.

All models are transformers as implemented in
Fairseq (Ott et al., 2019). We use the following
default parameters unless stated otherwise:9 6 en-
coder and decoder layers with 512 embedding di-
mension, 2048 FFN embedding dimension, and 8
heads for both the encoder and decoder. For the
multilingual models, we use a shared encoder to
promote language sharing. All models are trained
using the Adam optimiser with a learning rate of
3e−5. All the models, multilingual and bilingual,
use the same hyperparameters. Models are trained
until convergence and the best model is selected
according to the BLEU score on the development
set. We evaluate using BLEU (Papineni et al., 2002)
using the SacreBLEU toolkit (Post, 2018).10

5 Results

The main results are shown in Table 2a for bilingual
models and Table 2b for multilingual models.
9https://github.com/facebookresearch/
fairseq
10Signature =nrefs:1|case:mixed|eff:no|tok:13a
smooth:exp|version:2.0.0

5.1 Does multilinguality help?

We start by evaluating whether multilinguality helps
by comparing the models trained on original scripts.
Tables 2a and 2b summarise these results for each of
the language directions considered (hi→en, gu→en,
ne→en). For the lower-resourced pairs, the bilin-
gual MT models perform poorly (less than 5 BLEU
points). However, these scores are greatly im-
proved in the multilingual MT model (ne→en and
gu→en achieve 12.52 and 11.82 BLEU respec-
tively as the highest scores across all configurations
tested). This performance jump demonstrates the
large gains that can be observed via knowledge
transfer in multilingual models, confirming previ-
ous work (Dabre et al., 2020).

In terms of temperature and vocabulary size, our
multilingual results are coherent with the exist-
ing literature (Cherry et al., 2018; Kreutzer and
Sokolov, 2018), which suggests that using smaller
sub-word tokens perform better in low-resource set-
tings due to their improved ability to generalise; for
the lower-resource language pairs ({ne,gu}→en)
a higher temperature and smaller vocabulary size
combination was preferred,11 while for the higher-
resource language pair (hi→en) a lower tempera-
ture and larger vocabulary size combination was
better.12

5.2 Is Transliteration Useful?

Our hypothesis was that by transliterating Gujarati
into the Devanagari script, we might be able to see
gains through increased lexical sharing amongst the
three source languages in a multilingual setup.

As a control experiment to test the impact of
transliteration outside of the multilingual setup, we
compare results for the bilingual model using the
original Gujarati script and when transliterated into
Devanagari script (Table 2a Transliterated). The
transliterated model performs slightly worse than

114k vocabulary size, T=1.8.
1232k vocabulary size, T=1.2.



Vcb. gu→en hi→en ne→en

Original

4k 3.87 10.12 2.06
8k 3.95 10.44 2.33
10k 4.12 12.32 2.37

Transliterated

4k 3.48 – –
8k 3.68 – –
10k 4.11 – –

(a) Bilingual models.

gu→en hi→en ne→en
Temp. 1.2 1.5 1.8 1.2 1.5 1.8 1.2 1.5 1.8

Vcb. ↓ Original

char 11.30 11.45 11.63 14.78 15.12 15.64 11.02 10.46 10.89
4K 11.10 11.40 11.82 15.03 14.14 14.34 11.12 12.10 12.52
8K 11.46 11.69 11.58 15.01 14.60 14.66 11.85 11.80 11.79
16K 11.42 9.99 11.59 15.11 14.70 14.78 11.73 10.44 11.56
32K 11.37 11.11 11.01 15.32 14.76 14.57 11.60 11.20 11.31

Transliterated

char 11.67 11.82 11.96 12.78 13.35 13.41 10.87 11.21 11.30
4K 11.42 11.65 11.78 13.32 13.28 13.61 12.23 12.52 12.56
8K 11.21 11.34 11.68 13.28 13.56 13.55 11.32 11.50 11.87
16K 11.12 11.46 11.54 13.10 14.38 14.33 11.11 11.24 11.73
32K 11.00 11.08 11.56 13.14 13.44 13.75 11.10 11.20 11.65

(b) Multilingual models.

Table 2: BLEU scores for bilingual baseline and multilingual models (original and transliterated) for different vocab sizes (Vcb.)
and temperature values (for multilingual models only) averaged over three runs with different starting seeds. Bold represent the
best score for each temperature, italics represents best score overall.

the original bilingual model (0.24% decrease be-
tween the highest scores) suggesting that translitera-
tion may be introducing ambiguity or noise, as also
suggested by Alabi et al. (2022). For the multilin-
gual models (Table 2b), in the case of hi→en (the
highest-resourced language) transliteration leads
to a 8.6% decrease in the BLEU score. This de-
crease does not appear for gu→en and ne→en,
where instead marginal improvements of 0.08 and
0.04 BLEU between the highest scores respectively
are observed. However this improvement is not as
large as suggested by some previous work (Muller
et al., 2021). The results here could suggest that the
original model might be sufficiently capturing the
same level of information regarding token overlap
as transliteration.

Overall compared to the original model in both
the bilingual and multilingual setup, we find the im-
provements from transliteration (when applicable)
to be not as pronounced.

5.3 Mapping Tokens in the Multilingual
Embedding Space

The lack of significant improvement in in-language
performance for the transliterated model is in line
with results seen by Alabi et al. (2022), but is more
surprising given that we test on two lower-resourced
language pairs. So does this mean that the origi-
nal model is already able to map between tokens
written in different scripts?

To test this, we look at the similarity of tokens
that are phonetically equivalent aside from being
written in different scripts. Figure 3 shows some ex-
amples of Gujarati and Devanagari characters and

Figure 3: Examples of six consonants and their realisation in
Gujarati, Devanagari and Latin scripts.

(for illustration purposes) their romanised phonetic
equivalents. Figure 4 illustrates the embedding pro-
jection of the original multilingual model (16k vo-
cab size, T=1). We use PCA to perform dimension-
reduction, and we use 10000 tokens from the vo-
cabulary to learn the embedding space. We observe
that phonetically equivalent tokens in the Devana-
gari and Gujarati scripts are mapped reasonably
close together in this embedding space suggesting
that despite script differences, the model seems to
have learnt similar representations.

Hindi
Gujarati ↓ Pa Ma Da Ka Fa Avg.

Pa 0.73 0.12 0.02 0.14 0.02 0.01
Ma 0.18 0.75 0.05 0.20 0.13 0.04
Da 0.02 0.25 0.35 0.26 0.03 0.02
Ka 0.15 0.26 0.02 0.66 0.01 0.03
Fa 0.02 0.25 0.12 0.20 0.45 0.01
Avg. 0.01 0.02 0.02 0.01 0.03 -

Table 3: Cosine similarity scores between phonetically iden-
tical units in Devanagari (horizontal) and Gujarati (vertical)
scripts with an average score (Avg.) between all other tokens.

5.4 Cross-script Robustness
We additionally experiment with cross-script
switching to test how robust the original multilin-
gual model is to changes in the script being used,



Figure 4: PCA projection of the multilingual embedding space
(Original, 16k vocabulary size, T=1.5), where labelled points
are a selection of phonetically equivalent tokens in Devanagari
script (red dots) and Gujarati script (black squares).

as it appears to provide reasonably similar map-
pings between the same tokens written in different
scripts. We artificially create texts with increasing
percentages of transliteration into a different script
seen by the model and evaluate the model at in-
ference on these texts in a zero-shot fashion. For
Devanagari text (in Hindi and Nepali), we transliter-
ate parts of the text into Gujarati and vice versa. We
randomly select a certain percentage of words to
transliterate in each sentence. Figure 5 shows an ex-
ample of cross-script switching for Hindi with 30%
of words transliterated into Gujarati. We plot the
BLEU scores of the different model configurations
against the percentage of word-level transliteration
in the test set in Figure 6. For brevity, we only plot
results with T = 1.5 and subword vocabulary size
of 16k tokens in the original multilingual model
that keeps the scripts as they are.13

Figure 5: Example of Hindi text in Devanagari script with
30% of words transliterated into Gujarati script (highlighted).

Although there is a downward trend in the BLEU
scores, there is no significant degradation in perfor-
mance with increasingly transliterated texts (only
-0.2 BLEU with 50% transliteration for gu→en).
The degradation of performance in the case of Hindi
is more pronounced (-0.7 BLEU with 50% translit-
eration for hi→en). It is to be noted that in the
earlier experiments (Table 2b) we found similar
performance drops in Hindi between the original
multilingual model and the transliterated multilin-

13We observe similar results across the other temperature-
vocabulary size configurations.

Figure 6: BLEU scores of the multilingual model (8k vocab,
T=1.5) with an increasing percentage of cross-script switching.

gual model. This suggests that transliteration may
not be a particularly useful strategy to promote lex-
ical sharing as the models appear to already be
reasonably robust to script differences.

5.5 How Well do Models Generalise to
Unseen Languages?

Lastly, we study the models’ ability to generalise to
previously unseen but related languages. Adelani
et al. (2022) find that the most effective strategy
for transferring to additional languages is to use a
small quantities of high-quality data. In our case,
we do not fine-tune a large pre-trained language
model but rather a multilingual translation model
trained on Hindi, Nepali, Gujarati, and English. We
therefore expect gains to be more limited than those
demonstrated in (Adelani et al., 2022).

We evaluate zero-shot and few-shot transfer from
the multilingual models with and without transliter-
ation into two languages that share morphological
similarities with the previous languages: Marathi
(written with the Devanagari Script) and Bengali
(written with the Bengali Script).14 In this setup
we incrementally increase the amount of data used
to fine-tune different models (zero-shot and 500,
1k, and 10k samples for the few-shot settings). We
also include a topline in which we finetune the
same models on all the available data (140k sen-
tence pairs for mr→en and 75k sentence pairs for
bn→en). Figure 7 summarises our results. The raw
results are in Appendix A.

The results of the zero-shot performance of the
configurations illustrated15 show that there is mini-
14Across all models (original and transliterated) we first
transliterate Bengali into Devanagari script in order to use
the learned representations of the model. We leave Marathi in
its original script (Devanagari)
15We plot the best result for each vocabulary size in char, 4k,
8k, 16k, 32k



(a) mr→en with the original model (b) mr→en with the transliterated model

(c) bn→en with the original model (d) bn→en with the transliterated model

Figure 7: BLEU scores after fine-tuning on different amounts of supervised training data (starting with zero-shot perfor-
mance, i.e. no language-pair-specific data) for both the original multilingual model and after transliteration with varous across
mvocabulary sizes: char, 4k, 8k, 16k and 32k. Only the best performing temperature value is plotted for clarity and space reasons.

mal generalisation of our multilingual model (orig-
inal and transliterated) to new languages, despite
their linguistic relatedness, with BLEU scores un-
der 6 for both language directions. Using transliter-
ation, the zero-shot transfer results are marginally
improved (an increase from 5.56 to 5.81 BLEU for
mr→en and from 3.93 to 4.23 BLEU for bn→en
when using the transliterated rather than original
model).

In the few-shot setup, similar to the results
in Section 5.1 for the lower-resourced language
pairs, smaller vocabulary sizes and higher temper-
ature values are preferred (T=1.8 and either 5k or
character-based segmentation). As with the zero-
shot setup, marginal improvements with translitera-
tion are observed in the few-shot setup. This result
agrees with our earlier results (Section 5.2), which
show that transliteration does not provide signif-
icant gains, possibly as the original multilingual
model is already robust to cross-script differences.

6 Conclusions

In this work, we studied language sharing in multi-
lingual MT of several languages in the Indo-Aryan
language family (Gujarati, Nepali, and Hindi into

English). Experimenting with sampling tempera-
ture and vocabulary size, we compare multilingual
models using the original scripts and when translit-
erating Gujarati into the same script as Nepali and
Hindi (Devanagari). Surprisingly, even for the low-
resource language directions (gu→en and ne→en),
we find that transliteration is not particularly help-
ful. It seems that our multilingual models using
the original scripts are able to correctly map pho-
netically equivalent tokens together, as suggested
by (i) our analysis of the embeddings of identical
characters across scripts and (ii) testing the robust-
ness of the model to cross-script switching. Finally,
we test how well the models transfer to unseen re-
lated languages (Marathi and Bengali into English).
We find that the model with transliteration does not
perform significantly better with respect to general-
isation to unseen languages, further supporting our
previous findings.
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A Generalisation of Models

Table 4 reports results for the zero-shot and
few-shot set-up for Marathi-English and Bengali-
English. We use samples of sizes 500, 1k, 10k, and
further report a fine-tuning topline, which uses all
available data for each of the language pairs. Sim-
ilar to the earlier setups, we evaluate vocabulary
sizes in { character, 4k,8k,16k,32k } and tempera-
ture values in { 1.2,1.5, 1.8 }.



#fine-tuning examples
0 0.5k 1k 10k full set

1.2 1.5 1.8 1.2 1.5 1.8 1.2 1.5 1.8 1.2 1.5 1.8 1.2 1.5 1.8

Original

mr→en

char 4.23 4.54 4.86 4.50 4.61 4.68 5.58 5.63 5.72 7.37 7.58 7.61 8.07 8.14 8.02
4K 4.89 5.12 5.56 4.12 4.72 4.86 5.23 5.65 5.83 6.98 7.12 7.43 8.02 8.34 8.45
8K 4.45 4.83 5.32 4.03 4.53 4.62 5.11 5.44 5.73 6.87 6.99 7.01 7.63 7.72 7.88
16K 4.36 4.49 5.43 4.41 4.46 4.72 5.08 5.39 5.61 6.76 6.87 6.94 7.58 7.63 7.74
32K 4.11 4.35 5.40 4.52 4.68 4.71 5.33 5.46 5.79 6.54 6.57 6.77 7.41 7.64 7.92

bn→en

char 2.53 2.61 2.64 4.03 4.08 4.10 4.98 5.01 5.03 5.72 5.78 5.85 7.45 7.36 7.40
4K 3.31 3.41 3.93 3.02 3.43 3.81 4.40 4.51 4.88 6.12 6.49 6.53 6.98 7.08 7.31
8K 3.50 3.55 3.67 3.01 3.48 3.65 4.35 4.48 4.67 5.56 5.93 6.01 6.48 6.75 7.13
16K 3.65 3.70 3.74 3.00 3.49 3.52 4.28 4.37 4.59 5.71 5.83 6.00 6.16 6.37 6.82
32K 3.21 3.25 3.26 3.07 3.35 3.52 4.36 4.48 4.67 5.74 5.86 5.91 6.80 7.14 7.04

Transliterated

mr→en

char 5.02 5.12 5.33 4.66 4.76 4.78 5.73 5.81 5.80 7.32 7.46 7.48 8.20 8.34 8.38
4K 5.02 5.33 5.81 4.51 4.73 4.91 5.61 5.72 5.92 7.11 7.34 7.58 8.10 8.12 7.99
8K 5.24 5.41 5.71 4.34 4.65 4.85 5.50 5.61 5.80 6.95 7.02 7.12 7.71 7.86 7.95
16K 5.15 5.41 5.71 4.22 4.60 4.83 5.48 5.65 5.78 6.92 6.98 7.22 7.95 7.98 8.04
32K 5.17 5.76 5.78 4.40 4.70 4.70 5.45 5.58 5.81 6.87 7.01 6.97 7.58 7.67 8.01

bn→en

char 3.39 3.42 3.58 4.03 4.12 4.37 4.98 5.04 5.15 5.76 5.85 5.91 7.27 7.38 7.39
4K 3.68 3.79 4.23 3.15 3.66 3.98 4.36 4.68 4.92 6.33 6.56 6.67 7.02 7.13 7.45
8K 3.75 3.86 3.95 3.10 3.54 3.76 4.48 4.55 4.72 5.95 6.02 6.12 6.64 6.83 7.02
16K 3.77 3.83 3.99 3.02 3.51 3.65 4.31 4.48 4.65 5.86 5.98 6.03 6.54 6.77 6.99
32K 3.76 3.91 3.93 3.14 3.42 3.68 4.43 4.56 4.82 5.81 5.90 5.93 6.83 7.02 6.95

Table 4: BLEU scores for few-shot performance on transliterated English-Bengali and English-Marathi pairs using character
tokenisation and shared BPE with vocabulary size v in {4000, 8000, 16000, 32000}. Bold shows best score for each vocabulary
size and bold italic represents best score overall.


