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Abstract

The distribution of knowledge elements such
as entity types and event types is long-tailed
in natural language. Hence information extrac-
tion datasets naturally conform a long-tailed
distribution. Although imbalanced datasets can
teach the model about the useful real-world
bias, deep learning models may learn features
not generalizable to rare or unseen mentions
of entities or events during evaluation, espe-
cially for rare types without sufficient training
instances. Existing approaches for the long-
tailed learning problem seek to manipulate the
training data by re-balancing, augmentation or
introducing extra prior knowledge. In compar-
ison, we propose to handle the generalization
challenge by making the evaluation instances
closer to the frequent training cases. We de-
sign a new transformation module that trans-
forms infrequent candidate mention representa-
tion during evaluation with the average mention
representation in the training dataset. Experi-
mental results on classic benchmarks on three
entity or event extraction datasets demonstrate
the effectiveness of our framework. 1

1 Introduction

Long-tailed distributions are common in natu-
ral language processing tasks. This natural phe-
nomenon of long-tailed distribution is formulated
as Zipf’s Law (Reed, 2001). For information ex-
traction, knowledge elements such as entities, re-
lations and events typically conform a long-tailed
distribution in natural language. This leads to the
imbalanced distribution of types in the benchmark
datasets unless manual manipulation is performed
to balance the dataset. We show the entity type
distribution of an entity extraction dataset (Few-
NERD (Ding et al., 2021)), and the event type dis-
tribution of two event extraction datasets (ACE
2005 (Walker et al., 2006) and MAVEN (Wang

1Code is available at https://github.com/
Perfec-Yu/LongTailIE

et al., 2020)) in Figure 1. All three datasets have
similar long-tailed distributions. Among them,
MAVEN and Few-NERD are two relatively large-
scale datasets, but the training mentions are still
concentrated on a small number of frequent types
and majority of the entity/event types are rare types
without sufficient training examples.

Long-tailed distribution is a generic problem not
limited to NLP research. In fact, a lot of previ-
ous work on the long-tailed learning is in the com-
puter vision domain (Lin et al., 2017; Kang et al.,
2020). These approaches consider the imbalance
in the type distribution as the major problem and
are mostly based on balancing the datasets by up-
weighting the rare types and downweighting the
frequent types. However, we argue that this line of
research faces significant challenges when applying
to the information extraction task. First, balancing
the dataset breaks the real-world long-tailed prior
in the datasets and may lead the model to mistak-
enly predict the long-tailed types too often. We ob-
serve this phenomenon in our experiments in Sec-
tion 3 especially for the Classifier Re-training base-
line (Kang et al., 2020). Second, due to the lack of
effective data augmentation approaches as in the
computer vision domain, upweighting the training
mentions will only make the model to repetitively
learn the same set of instances and aggravate the
overfitting problem.

Instead of the imbalance in distribution, the real
challenge of long-tailed learning for NLP is knowl-
edge insufficiency, i.e. long-tailed datasets don’t
contain enough examples to acquire generalizable
knowledge for the rare types. Learned models tend
to capture features such as event trigger words for
rare types and fail to generalize well to rare or
even unseen cases (unseen trigger words) of those
types during evaluation. For instance, if an event
extraction model is trained on a dataset where all
Acquit events are triggered by the keyword ac-
quit, it may not identify the Acquit event trig-
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Figure 1: Distribution of types in ACE 2005 event
dataset, MAVEN event dataset and the Few-NERD en-
tity dataset. Y-axis is the number of training mentions
divided by that of the most frequent type. X-axis is the
rank of types by number of mentions.

gered by walk free in The adjudicator allowed
the criminal to walk free. Under this perspective,
existing work tackling the long-tailed problem in
information extraction (Han et al., 2018; Zhang
et al., 2019) incorporates external structural knowl-
edge to help learning rare types. However, the
selection of the structural knowledge requires ex-
pertise in the target ontology and is not easily trans-
ferable to other ontologies. Another more recent
line of work (Tang et al., 2020; Nan et al., 2021)
considers the causal inference (Pearl et al., 2000)
approach to solve the long-tailed problem. They
aim to avoid the learning of spurious correlations
between the input features and the labels in the
limited training data for rare types. This is usu-
ally achieved by removing the effect of a manually
selected confounding factor in prediction through
deconfounded learning methods such as backdoor
adjustment and inference based on total direct ef-
fect (Pearl et al., 2000). Although the model is
guided to avoid spurious correlation through causal-
inference-based approaches, learning the generaliz-
able features with real causalities is still challeng-
ing due to the knowledge insufficiency problem.

In this work instead of confronting the knowl-
edge insufficiency problem directly, we propose
to bypass the problem by transforming the evalu-
ation instances that require additional knowledge
into more familiar instances that are closer to the
frequent training instances. We decompose the in-
put sentence {t0, t1, . . . , tn} for the event/entity
prediction task into two parts: a candidate token
e = ti for the i-th token and surrounding con-

textual tokens c = {tj}i−1
j=0

⋃{tj}nj=i+1. Instead
of making predictions for an event/entity type yk
solely based on P (yk|e, c), we propose to also
consider predictions on averaged training inputs
P (yk|c, rk), where rk is the average training hid-
den representation of the type yk. Our framework
combines these two predictions using a transforma-
tion module. The transformation module computes
weights ge for the original candidate token e and
gk for each event type representation rk. More-
over, instead of simply combining probabilities as
geP (yk|e, c) + gkP (yk|c, rk), we use two weights
ge and gk to combine in the representation layer
for e and rk to produce P (yk|gee+ gkrk, c). The
transformation module decides the weights ge and
gk based on the frequency of the candidate men-
tion in the training dataset and the cosine similar-
ity between the candidate mention representation
and all event types’ average training mention rep-
resentations in the ontology. Experimental results
on three benchmark datasets demonstrate the ef-
fectiveness of our framework. Additionally, we
found our approach, though derived from a differ-
ent motivation, can be interpreted as a backdoor
adjustment approach (Pearl et al., 2000) as shown
in Section 2.5, which gives another interpretation
that our approach improves long-tail learning by
facilitating the model to learn the true correlation
between the candidate text span and the event/entity
type. We also empirically found that our approach
facilitates the model to capture more generalizable
features, which aligns with the goal of causal infer-
ence approaches.

To summarize, we propose a new approach for
learning from the long-tailed datasets for entity
extraction and event extraction. Our contributions
are two-fold:

• We provide a new framework by bypassing
the knowledge insufficiency problem in long-
tailed learning and propose a novel learning
framework in this perspective.

• We found that our framework aligns theoreti-
cally with the causal inference approach and
can facilitate the model to capture more gen-
eralizable features.

2 Approach

2.1 Task Definition
In this work we take the task of both entity ex-
traction and event extraction as sequence labeling
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Figure 2: Overall long-tail learning information extraction framework. We ignore the original token ti and only
show the token embeddings ei in this figure for conciseness. Here we use M\E to indicate the language model
layers after the embedding layer and D as the classifier heads for the sequence labeling task. The transformation
module S combines rare candidate mentions with average training mentions. The inputs to the transformation
module includes the frequency feature f i, the similarity features b̂i between the token embedding ei and the average
training embeddings {rj}Kj=1, and the context features ci.

problems. The input to the model H is a sequence
of tokens x = {t0, t1, . . . , tn}, and the model pre-
dicts a label for each token H(x) = {l0, l1, . . . , ln}.
Each li is either one of the entity/event types or the
None type for none-entity or none-event tokens.2

2.2 Overview of the Learning Framework
The learning of our proposed long-tailed extrac-
tion framework includes two steps. First, we fine-
tune a language model with an additional classifier
head for the sequence labeling problem without
special treatments for the long-tail problem. In the
second step, we train the transformation module
while fixing the parameters of the language model.
We adopt this two-stage training approach because
the transformation module requires the language
model’s representations as inputs as we will show
in Section 2.4. The finetuning step should render
these representations as more task-specific features,
which we redeem to be helpful for the learning of
the transformation module. We will introduce these
two steps in the following sections. The overall ar-
chitecture is shown in Figure 2 and the two-staged
training strategy is illustrated in Figure 3.

2.3 Finetuning Step
Given an input sequence x = {t0, t1, . . . , tn}, we
first encode it with a pretrained language model M

2We adopt the IO labeling schema instead of BIO labeling
schema to be consistent with the annotations in the Few-NERD
dataset (Ding et al., 2021)

into M(x) = {t0, t1, . . . , tn}. We then adopt a
linear discriminator D to predict the label for each
token

li = argmaxD(ti). (1)

We finetune M and D with the cross entropy loss.

2.4 Learning the Transformation Module
The transformation module S transforms the rep-
resentation for each token ti into a weighted com-
bination of its original representation and the av-
erage training representation of each event type.
Our goal is to compute weights ge, gk for the fi-
nal prediction P (yk|gee + gkrk, c) for each type
yk. However, this would require feeding the in-
puts multiple times to the language model, which
is inefficient. Hence, we simplify the prediction
to P (yk|gee+

∑k
i=1 gkrk, c). In other words, our

transformation module combines the average repre-
sentations of all types together in the hidden layer.
We can essentially perform the transformation in
any hidden layers of the pretrained language model
M. In this work, we perform transformation in
the embedding layer to take full advantage of M’s
capability of encoding contextual information.

Specifically, let E(ti) = ei be the embedding
representation of the token ti. Let {rj}Kj=1 be the
average training embedding representation for the
entity/event type j, i.e.,

rj =
1

#j

∑

{t|l(t)=j}
E(t). (2)
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Figure 3: Illustration of the training and inference stages. There are two stages of the training on the left. Modules
with dashed lines and blue background are not updated during the corresponding training stage.

Here {t|l(t) = j} refers to the training tokens
with the label j and #j is the total number of
such tokens. The transformation module computes
weights to combine each ei with {rj}Kj=1. We use
the following information as input to compute the
weights for combination

• ti’s frequencies of being labeled as enti-
ty/event types : f i = [exp(γfij)]

K
j=1. Here

we rescale the original frequencies inspired by
(Lin et al., 2020). We use γ = 0.1 following
(Lin et al., 2020). We expect the tranforma-
tion module to provide most help in rare cases
when f i is small.

• The similarity of ti’s embedding ei with
average training embeddings rj : bi =
[cos(ei, rj)]

K
j=1. If bi contains large values, ti

is close to some event type’s average embed-
ding and potentially not a rare mention. On
the other hand, if bi is very small, ti deviates
significantly from some event type’s average
embedding and the transformation may signif-
icantly alter the meaning of the input. Taking
these into consideration, we propose to model
the similarity value bi with a quadratic func-
tion, i.e. we use b̂i = [bi; b

2
i ] as the similarity

features to the transformation module.

• The context representation ci, which is com-
puted by the pretrained language model M
while masking ti in the input sequence x.
Hence ci is independent of the token ti. This
is to make sure that the transformation mod-
ule is not overfitted only on the seen candidate

tokens during training, because our goal is to
apply the transformation module to rare cases
in the evaluation corpus.

We decompose the computation of these weights
into two steps. We first compute aggregation
weights {αj}Kj=1 for {rj}Kj=1 with an attention
module based on the context ci:

αj =
exp(⟨aj , ci)⟩∑K
k=1 exp(⟨ak, ci⟩)

si =
∑

j

αjrj
. (3)

Here {aj}Kj=1 are trainable weights. We then feed
all three features [f i; b̂i; ci] into a linear layer with
the sigmoid activation to compute two gating scores
(ge, gs) ∈ [0, 1]2. The final embedding representa-
tion is computed as

hi = geei + gssi. (4)

We then substitute ei with hi for the following
layers in M\E .3

We train the transformation module S using the
same cross entropy loss as the finetuning step. We
also compute the cross entropy on the attention
weights of the entity/event types in Equation (3)
as an additional loss. We fix the parameters of the
finetuned language model M. This ensures that
the similarity features b̂i and the context represen-
tations ci remain fixed during the learning of S.
We provide training details in the Appendix.

3From Equation (4) we essentially have gk = gsαk
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2.5 Connection to Causal Inference
We found our architecture can be mathematically
intepreted as a backdoor adjustment (Pearl et al.,
2000) method in causal inference, which is used to
mitigate the effect of some confounding factor U in
making decisions. In our case, it can be formulated
as the following prediction probability

P (li|do(ti)) =
∑

u

P (li|ti,U = u)P (U = u),

(5)
where u is the value space of U . We refer readers to
(Pearl et al., 2000) for the derivation of the above
equation4. If we select the confounding factor U as
the type prediction based on the context around the
token ti (independent of ti), Equation (5) becomes

P (li|do(ti)) =
K∑

j=1

P (li|ti, j)P (j|ci), . (6)

The attention weights {αj}kj=1 in Equation (3) is
can be considered as probabilities of event types
dependent on ci, thus can be seen as P (j|ci) in the
above equation. If we further model P (li|ti, j) =
P (li|ei + rj) and apply the Normalized Weighted
Geometric Mean (NWGM) approximation follow-
ing (Yue et al., 2020),

P (li|do(ti)) ≈ P (li|ei +
k∑

j=1

αjrj). (7)

In our framework, we are essentially computing

P (li|ti) = P (li|geei + gs

k∑

j=1

αjrj). (8)

This means that αj composes the deconfounding
priors P (U) and (ge, gs) serve as the switch for
the backdoor adjustment decisions. We expect the
model to make decisions on rare or unseen men-
tions with the backdoor adjustment, and rely on the
model’s own prediction with more frequent cases.

3 Experiments

3.1 Datasets and Evaluation
We experiment on an entity extraction dataset, Few-
NERD (Ding et al., 2021) and two event extrac-
tion datasets, ACE 2005 (Walker et al., 2006) and
MAVEN (Wang et al., 2020). We provide data

4Note that the common formulation for P (li|ti) would be
substituting P (U = u) with P (U = u|ti)

statistics in Table 1. Few-NERD, MAVEN and
ACE include 67, 168, and 33 types respectively.
For ACE 2005, we split the dataset such that all
event types are covered in the evaluation data which
is different from the splits used in previous work.
For Few-NERD, we used the “supervised” split for
experiments.

For evaluation, we use the macro F1 score as
the main metric to reflect the influence of long-tail
types. We also report micro F1 for additional ref-
erence. We provide macro recall, macro precision,
micro recall and micro precision in Appendix. Pre-
vious work also reports scores on subsets of rare
types (Nan et al., 2021). Instead of manually deter-
mine a frequency threshold for the “rarest” types,
we plot curves of F1 scores on all types in Figure 4.
All results are averaged over three runs using dif-
ferent random seeds.

3.2 Methods in Comparison

We group previous work on long-tailed learning
into two categories: balancing-based approaches
and causal inference approaches. For balancing-
based approaches, we mainly follow (Kang et al.,
2020) and implemented Classifier Re-training
(CRT), Nearest Class Mean classifier (NCM),
τ -normalized classifier (τ -norm) and Learnable
weight scaling (LWS). We also implemented the
focal loss approach (Lin et al., 2017). For causal in-
ference work, we implemented Momentum (Tang
et al., 2020) and CFIE (Nan et al., 2021). Although
(Nan et al., 2021) also experimented on the ACE
2005 and MAVEN, we re-implemented5 their meth-
ods due to the difference in splits and evaluation
strategies. CFIE also has different designs for the
entity extraction and event extraction models. We
didn’t re-implement the entity model due to insuffi-
cient details. We also compare with a Vanilla base-
line which is the sequence labeling model without
the transformation module.

3.3 Main Results

We show our main results in Table 2 and Figure 4.
From Table 2, our framework achieves the best
macro F1 scores across three datasets. We also no-
ticed that our approach improves macro F1 scores
without suffering from inferior micro F1 scores. Al-

5Due to insufficient details in their paper and released code,
we implemented their framework to the best of our knowledge.
CFIE also requires named entity extraction results as part of
the inputs to event extraction. Therefore it is not clear how the
entity extraction model is designed.
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Dataset
Few-NERD MAVEN ACE 2005

#Sentences # Mentions #Sentences # Mentions #Sentences # Mentions

train 131,767 340,387 32, 431 77,993 16,807 4,254
dev 18,824 48,770 8,042 18,904 2056 500
test 37,648 96,902 9,400 21,835 1,930 570

Table 1: Dataset statistics.

though the Momentum baseline performs closely
to our approach in ACE Macro F1. However, Mo-
mentum has a much worse micro F1 sacrificing
frequent types and worse performance on the other
two datasets. These results also show the superior-
ity of our approach and indicate that our model’s
performance on frequent types is not harmed. This
is because we do not tackle the long-tailed learn-
ing problem in terms of balancing that may affect
the natural distribution in the dataset. Instead, we
transform the long-tailed evaluation samples into
frequent training samples with the transformation
module.

Although macro F1 metric puts extra stress on
the long-tailed types, the performance on the rare
types is still dilated by frequent types especially
for datasets with a large number of types such as
MAVEN. In order to further investigate the per-
formance on different subsets of event types, we
show in Figure 4 macro F1 improvements (over the
Vanilla baseline) for the top X fraction of the
event types with the fewest training examples. We
notice that our approach, together with other ap-
proaches, indeed improves the learning with long-
tailed types when X is small. We notice that our
approach can significantly outperform the baseline
for the less frequent types with a maximum of over
10% on ACE 2005 event dataset. We found our
approach has the best performance of the moder-
ately long-tailed event types compared with other
long-tailed learning approaches. For extremely
long-tailed types, our performance is also close
to the best method Momentum (Tang et al., 2020).
One possible reason of our model’s ineffectiveness
on extremely long-tailed types is that we cannot
learn reliable representation ei to compute similar-
ity values b̂i for the transformation module. An-
other possible reason is that the extreme long-tailed
types don’t have enough training instances to pro-
vide an informative average training representation
rk. A potential solution would be introducing ex-
ternal knowledge (e.g., a few keywords as candi-

date event triggers or entity mentions) to enrich
the rk. Moreover, our approach is more consistent
than other methods when X grows larger. This fur-
ther validates that our approach improves the long-
tailed types without sacrificing the performance
of frequent event types. For more references, we
also provide top 10 event types in MAVEN dataset
where our method achieves most F1 performance
gain on in Appendix. Majority of those types are
rare types.

3.4 Improving Classifier Features

In our second training stage, we finetune the enti-
ty/event classifier head together with the transfor-
mation module. Finetuned classifiers from our ap-
proach should benefit from the connections of our
approach and the backdoor adjustment approach
for causal inference in Section 2.5, which encour-
ages the model to capture generalizable features
instead of surface correlations. To test the fine-
tuned classifiers alone, we evaluate our framework
with the transformation module disabled, i.e. forc-
ing (ge, gs) = (1, 0) in Equation (4). The for-
ward architecture becomes exactly the same as the
Vanilla model. In Table 3, we observe that fine-
tuned classifier alone outperforms the Vanilla
baseline. Since we fixed the language model in the
second stage, the improvements purely come from
the finetuned classifiers that have learned to avoid
surface features for prediction.

In addition to the interpretation of the improve-
ments from the causal inference theory, we give a
more intuitive explanation based on Equation (4).
During the second training step, Equation (4) can
be seen as changing the original candidate repre-
sentation with an interpolation of itself and other
candidates’ representations of the same event type.
This is similar to augmenting the dataset by inter-
changing mention spans of the same type across
sentences, though we interchange it with the aver-
age representation of that type in the entire training
dataset. The classifier may benefit from this “aug-
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Dataset
Few-NERD MAVEN ACE 2005

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

Vanilla 62.4 67.8 60.1 67.1 60.4 72.7

Focal 62.5 67.8 59.4 65.3 59.9 73.9
CRT 44.9 54.3 51.2 54.3 60.2 71.8
LWS 61.4 66.9 60.5 66.7 60.9 72.5
τ -norm 62.4 67.8 60.2 67.1 60.2 72.7
NCM 51.5 50.4 57.5 61.2 57.8 72.2
CFIE - - 56.3 61.2 50.6 63.2

Momentum 59.7 63.9 60.1 66.4 62.1 68.9

Ours 62.6 67.8 61.2 67.4 62.4 72.9

Table 2: Macro and micro F1 scores (in %) on three datasets. References to the methods above is provided in
Section 3.2.
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Figure 4: Performance difference compared with
Vanilla w.r.t the portion of rarest event types. We
first rank event types by the number of training men-
tions from low to high, and then compute average F1
scores (minus that of the Vanilla baseline) for the
first X fraction of the event types. We omitted those
approaches that are significantly lower than Vanilla.

mentation” to capture more general features.

Method Ours No Sub Vanilla

Macro F1 62.4 61.9 60.4

Table 3: Performance (in %) with the transformation
module disabled (No Sub) on the ACE 2005 dataset.

3.5 Case Study

We also show some examples that the Vanilla
baseline misses but our approach correctly iden-
tifies and classifies the candidate mentions in Ta-
ble 4. We also visualize the transformation weights
(ge, gs) in Equation (4). As discussed in Sec-
tion 3.3, our model is the best at handling mod-
erately long-tailed types. For these two examples,
the event Start-Position in the first case has
94 mentions and became appears only 2 times as
the trigger. In the second case, the Action ap-
pears 709 times, but only 16 of them are triggered
by undertaken6. It is worth mentioning that
although gs is not as large as ge in both cases, we
found that they are indispensable since the model
fails on both cases if we disable the transformation
module by forcing gs = 0.

4 Related Work

4.1 Balancing-based Long-tailed Learning for
Computer Vision

Long-tailed learning is closely related to imbal-
anced learning. In the computer vision domain,
Lin et al. (2017) proposes the focal loss to handle

6As a comparison, war appears 270 times as the trigger of
Attack in ACE 2005 and storm appears 757 times as the
trigger of Catastrophe in MAVEN.
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Input Sentence Dataset Transformation Weights

This upcoming visit to Russia will be my first trip
aboard since I became president of China. (Event:
Start-Position)

ACE gs ge

The operation was undertaken so that Allies could secure
a beachhead. (Event: Action)

MAVEN gs ge

Table 4: Examples of missing event triggers by the Vanillamodel. Transformation weights (ge, gs) in Equation (4)
are visualized.

the imbalanced learning problem in object detec-
tion. The focal loss downweights the loss terms
for confident training samples so that the model
predicts high probabilities for the gold standard
labels. In addition to this, some work (Zhang et al.,
2019; Rebuffi et al., 2017), though not focusing
on the long-tailed learning problem, adopts spe-
cial training strategies to tackle the imbalance in
the datasets. Kang et al. (2020) summarize these
approaches and evaluate them with the computer
vision tasks. These approaches are mostly based
on balancing the datasets by upweighting the rare
types and downweighting the frequent types, either
by modifying the sampling strategy or associating
weights to the loss terms. These methods first learn
the feature extractor with the original imbalanced
distribution and then perform special treatments
to the classification layer. Classifier Re-training
(CRT) retrains the classification layer by sampling
examples from each type uniformly. Nearest Class
Mean classifier (NCM) uses the average training
features as the type-level features and uses certain
distance metrics to perform the nearest neighbor
classifcation. τ -normalized classifier (τ -norm) nor-
malizes the type weights in the classification layer.
This can make sure the weights for frequent types
are not significantly larger than rare types. Learn-
able weight scaling (LWS) is similar to τ -norm but
learns the normalization weights while sampling
examples from each type uniformly.

4.2 Long-tailed Learning with External
Knowledge for IE

Balancing-based methods are usually ineffective in
information extraction as shown in our experiments.
Existing work usually tackles the long-tailed prob-
lem in information extraction (Han et al., 2018;
Zhang et al., 2019) by incorporating external struc-
tural knowledge. Han et al. (2018) adopt hierar-
chical structures among relation types to transfer

knowledge from the frequent relation types to their
siblings. Zhang et al. (2019) incorporate label se-
mantics and knowledge graph embeddings to trans-
fer knowledge from frequent types to rare types.
Required expertise in selecting external knowledge
limits the generalization of these methods. (Yu
et al., 2021) also leverages correlation between
event types to help the learning of rare event types
in the context of lifelong learning.

4.3 Causal Inference and Its Application to
Long-tailed Learning

Due to the potential of causal inference (Pearl et al.,
2000) theory to reduce the spurious correlation,
there have been explorations on its application in
machine learning (Lopez-Paz et al., 2017; Magli-
acane et al., 2018; de Haan et al., 2019; Bengio
et al., 2020; Yang et al., 2020; Li et al., 2021; Park
et al., 2021). Since the the spurious correlation is
more common in limited data, some work attempts
to interpret the long-tailed learning problem under
a causal inference framework. The core component
of this interpretation is to find a confounding factor
that affects the distribution of the input features and
output labels at the same time. Tang et al. (2020)
consider the training momentum of the gradients to
be the confounding factor and proposed the corre-
sponding deconfounded training with the backdoor
adjustment approach. They use the total direct ef-
fect (TDE) for inference, which essentially lowers
the probabilities of frequent types systematically.
Nan et al. (2021) work on the information extrac-
tion tasks and take a set of linguistic features as the
confounding factor. They also adopt an inference
approach similar to TDE to lower the probabilities
of frequent types.

4.4 Related Few-shot Learning Methods

Few-shot learning aims at training models with a
small number of instances, which is similar to the
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goal of improving rare types in long-tailed learn-
ing. Some few-shot learning methods also over-
lap with long-tailed learning methods. Snell et al.
(2017) proposed a prototypical network that has a
similar framework as NCM for long-tailed learn-
ing. Yue et al. (2020) proposed a backdoor adjust-
ment approach based on the causal inference tho-
ery to reduce the spurious correlation in the model,
since the few-shot learning also has the limited data
size problem. However, few-shot learning usually
works on the N -way K-shot setting. This makes
these approaches usually not directly applicable to
the long-tailed learning scenario.

5 Conclusions and Future Work

In this work we propose a new long-tailed learn-
ing framework for entity and event extraction by
candidate transformation. We design a novel trans-
formation module to convert representations of rare
or unseen mentions during evaluation into repre-
sentations of average training mentions. Experi-
mental results have validated the effectiveness of
our framework. Our framework can significantly
improve the performance on long-tailed types, and
outperform other long-tailed learning methods es-
pecially for moderately long-tailed types. More-
over, our framework does not sacrifice the perfor-
mance on frequent types. We also discover the
connections between our learning framework and
the backdoor adjustment in the causal inference
theory We empirically observe that our training
strategy can improve the model’s capability in cap-
turing more generalizable features, which aligns
with the causal inference theory. In the future, we
will explore: (1) adapt the concept of transforma-
tion module to other NLP tasks; (2) based on our
connection with the causal inference theory, it is
possible to design a better transformation module
by choosing a better confounding factor other than
the context information.

6 Limitations

In terms of the framework design, our current de-
sign of the framework is only applicable to the
sequence labeling task, although we believe it can
be adapted to other NLP tasks without significant
modifications. Besides, our framework should be
most helpful if the semantics of the elements in the
sequence of the same type are close to each other
and thus may require additional modifications in
more heterogeneous cases, such as vision-language

models where visual features may have the same
type as the textual token embeddings.

In terms of time efficiency, our framework will
require an additional training stage to learn the
transformation module, which will cost extra time.
Since we fixed the language model, which com-
poses majority of parameters in our framework,
this additional cost is acceptable. We also recom-
mend to pre-process input features (since they are
fixed with respect to training samples during the
second stage) to the transformation module to fur-
ther reduce the time cost in the second stage.
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A Appendix

A.1 Details on Two-stage Training
In the first training stage, all parameters in the lan-
guage model Mand entity/event classifier head D
are updated. In the second stage, we fix the entire
language model and train both D and the transfor-
mation module S. Apart from the cross entropy
loss for entity/event extraction, we also apply loss
to the weights {αj}Kj=1 in Equation (3). This loss
is only applicable to entity/event mention tokens,
since {αj}Kj=1 corresponds to entity/event types.
For these mention tokens, we compute cross en-
tropy between attention weights and the labeled
types.

For the input features to the transformation mod-
ule, we want to make the values of all three kinds
of features to be in the similar range. Therefore,
we adopt a batch normalization module to these
features. We also add dropout with probability 0.2
to similarity features and frequency features, and
dropout with probability 0.5 to the context features.

A.2 Implementation Details
For all experiments, we use learning rate to be
1e − 5 and batch size to be 8 to fit in a single
Nvidia Tesla V100 GPU with 16GB memory. We
evaluate performance after each epoch and select
the best model based on the development perfor-
mance. We use early-stop strategy with a patience
of 5 epochs. We report average performance over
3 runs initialized with 3 different random seeds.

The approximate number of parameters is 3.5
million (RoBERTa). Added parameters from the
transformation module is significantly less and
dependant on the number of target entity/event
types. Approximately the transformation module
has 2,500 parameters. For the first stage training,
it takes about 10-20 minutes to train an epoch on
ACE 2005 data, 20-30 minutes on MAVEN data
and about 40 minutes on Few-NERD. The time
difference mainly comes from the total number of
sentences in these datasets. However these are just
rough estimations since the performance largely
depends on the environmental factors such as tem-
peratures and also the workload of other gpus/cpus

in the same machine during training. In the second
stage, we didn’t preprocess any features in advance
but block the backpropagation to language model
parameters. In general it is 4-5 times faster than the
first stage. We incorporate the transformation mod-
ule by modifying the RoBERTa implementation
from Transformers7 Library.

A.3 Dataset Licenses
This dataset is licensed by LDC.8 Membership is
required for access. The dataset can be used for
research purpose. Few-NERD dataset is distributed
under the CC BY-SA 4.0 license. MAVEN dataset
is ditributed under MIT License.

A.4 Additional Results
We include precision and recall scores in Table 5.
Moreover, we include top 10 event types in the
MAVEN dataset that our approach achieves most
improvements over the Vanilla baseline, as well as
their number of training mentions in Table.

7https://huggingface.co/docs/
transformers/index

8https://www.ldc.upenn.edu
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Dataset
Few-NERD MAVEN ACE 2005

Macro P,R Micro P,R Macro P,R Micro P,R Macro P,R Micro P,R

Vanilla 60.1, 65.3 65.8, 70.0 61.9, 61.1 65.7, 68.6 63.6, 62.0 73.4, 72.1

Focal 60.6, 64.9 66.0, 69.8 57.8, 63.1 62.0, 69.1 61.9, 63.0 73.8, 74.1
CRT 40.7, 51.1 50.6, 58.8 41.1, 75.1 41.2, 79.8 58.6, 67.2 66.7, 77.9
LWS 58.1, 65.7 64.3, 69.7 60.1, 63.9 62.4, 71.8 62.5, 64.7 72.0. 73.0
τ -norm 60.8, 63.8 65.9, 69.9 62.2, 61.1 64.9, 69.4 63.5, 61.8 73.4, 72.0
NCM 56.0, 65.6 61.0, 43.3 58.9, 63.6 57.3, 65.7 64.2,56.5 76.1, 68.7
CFIE - - 50.9, 66.5 52.5, 73.5 59.7, 56.9 58.0, 69.7

Momentum 60.3, 65.4 59.7, 62.5 61.8, 61.9 66.3, 66.5 60.9, 68.3 66.9, 69.5

Ours 60.3, 65.4 65.8, 70.0 61.3,63.2 65.5, 69.4 63.5, 65.5 71.4, 74.6

Table 5: Macro and micro precision and recall scores (in %) on three datasets.

Event Type # of Mentions F1 (%) Imp.

Kidnapping 87 19.0
Body_movement 115 15.8

Emptying 124 15.1
Manufacturing 326 13.8

Scouring 32 13.2
Carry_goods 48 12.0

Military_operation 1,022 10.5
Practice 37 10.4

Labeling 35 10.0
Cure 71 8.4

Table 6: Top 10 event types in the MAVEN dataset that our approach achieves most improvements over the Vanilla
baseline. We also include the number of training mentions and F1 score improvements (in %) in the second the third
columns. MAVEN has a total of 168 event types. and our training split includes 77,987 training event mentions in
total for all event types.
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