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Abstract

Existing models to extract temporal relations
between events lack a principled method to in-
corporate external knowledge. In this study, we
introduce Bayesian-Trans, a Bayesian learning-
based method that models the temporal rela-
tion representations as latent variables and in-
fers their values via Bayesian inference and
translational functions. Compared to conven-
tional neural approaches, instead of performing
point estimation to find the best set parame-
ters, the proposed model infers the parameters’
posterior distribution directly, enhancing the
model’s capability to encode and express un-
certainty about the predictions. Experimental
results on the three widely used datasets show
that Bayesian-Trans outperforms existing ap-
proaches for event temporal relation extraction.
We additionally present detailed analyses on un-
certainty quantification, comparison of priors,
and ablation studies, illustrating the benefits of
the proposed approach.1

1 Introduction

Understanding events and how they evolve in time
has been shown beneficial for natural language un-
derstanding (NLU) and for a growing number of
related tasks (Cheng et al., 2013; Wang et al., 2018;
Ning et al., 2020; Geva et al., 2021; Sun et al.,
2022). Howeover, events often form complex struc-
tures with each other through various temporal
relations, which is challenging to track even for
humans (Wang et al., 2020a).

One of the main difficulties is the wide vari-
ety of linguistic expressions of temporal relations
across different contexts. Although many of them
share some linguistic similarities, most of the top-
ics in which they occur are characterized by some
shared but unspoken knowledge that determines
how temporal information is expressed. For exam-
ple, when it comes to health, prevention is widely

1Experimental source code is available at https://
github.com/Xingwei-Warwick/Bayesian-Trans

Figure 1: Comparison between with or without external
knowledge incorporation on event relation extraction.

practised, with many treatments (e.g., vaccinations)
being effective only if administered before the on-
set of a disorder. On the contrary, in the automo-
tive industry, it is common that most people repair
their car after a problem occurs. However, despite
its simplicity, such commonsense knowledge is
rarely stated explicitly in text and varies greatly
across different domains. For example, in Figure
1, a detection model lacking the commonsense
knowledge that vaccination can protect people
from infection, tends to get confused by the com-
plex linguistic structures in the excerpt and returns
the wrong prediction entailing that ‘died’ happens
after ‘vaccinated’. Instead, with the considera-
tion of prior temporal knowledge involving the vac-
cination event from an external knowledge source
ATOMIC (Hwang et al., 2021), a model gives the
correct prediction that ‘died’ occurs before ‘vac-
cinated’.

Methods proposed in recent studies for event
relation extraction are mostly end-to-end neural ar-
chitectures making rather limited use of such com-
monsense knowledge (Han et al., 2019a,b). Only a
few works have explored the incorporation of ex-
ternal knowledge to mitigate the scarcity of event
annotations (Ning et al., 2019; Wang et al., 2020b).
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Nevertheless, these approaches typically update the
event representations with knowledge features de-
rived from external sources, lacking a principled
way of updating models’ beliefs in seeing more
data in the domains of interests.

In this work, we posit that the Bayesian learning
framework combined with translational models can
provide a principled methodology to incorporate
knowledge and mitigate the lack of annotated data
for event temporal relations. Translational models,
such as TransE (Bordes et al., 2013), are energy-
based models based on the intuition that the rela-
tions between entities can be naturally represented
by geometric translations in the embedding space.
More concretely, a relation between a head entity
and a tail entity holds if there exists a translational
operation bringing the head close to the tail vector.

Specifically, we introduce a novel Bayesian
Translational model (Bayesian-Trans) for event
temporal relation extraction. Compared to con-
ventional neural translational models, which only
yield a point estimation of the network parame-
ters, the Bayesian architecture can be seen as an
ensemble of an infinite number of neural predictors,
drawing samples from the posterior distribution of
the translational parameters, refining its belief over
the initial prior. As a result, event temporal rela-
tions are determined by the stochastic translational
parameters drawn from posterior distributions. Ad-
ditionally, such posteriors are conditioned upon the
prior learned on external knowledge graphs, pro-
viding the commonsense knowledge required to
interpret more accurately the temporal information
across different contexts. As shown in the results
obtained from the experimental evaluation on three
commonly used datasets for event temporal relation
extraction, the combination of translational mod-
els and Bayesian learning is particularly beneficial
when tailored to the detection of event relations.
Moreover, a favorable by-product of our Bayesian-
Trans model is the inherent capability to express
degrees of uncertainty, avoiding the overconfident
predictions on out-of-distribution context. Our con-
tributions are summarized in the following:

• We formulate a novel Bayesian translational
model for the extraction of event temporal re-
lations, in which event temporal relations are
modeled through the stochastic translational
parameters, considered as latent variables in
Bayesian inference.

• We devise and explore 3 different priors under

Bayesian framework to study how to effec-
tively incorporate knowledge about events.

• We conduct thorough experimental evalua-
tions on three benchmarking event tempo-
ral datasets and show that Bayesian-Trans
achieves state-of-the-art performance on all of
them. We also provide comprehensive analy-
ses of multiple aspects of the proposed model.

2 Related Work

This work is related to at least three lines of re-
search: event temporal relation detection, prior
knowledge incorporation, and graph embedding.

2.1 Event Temporal Relation
Similar to entity-level relation extraction (Zeng
et al., 2014; Peng et al., 2017), the latest event
temporal relation extraction models are based on
neural networks, but in order to learn from limited
labeled data and capture complex event hierarchies,
a wide range of optimization or regularization ap-
proaches have been explored. Ning et al. (2019)
proposed an LSTM-based network and ensured
global consistency of all the event relations in the
documents by integer linear programming. Wang
et al. (2020b) employed RoBERTa (Liu et al., 2019)
and converted a set of predefined logic rules into
differentiable objective functions to regularize the
consistency of the relations inferred and explore
multi-task joint training. Tan et al. (2021) pro-
posed using hyperbolic-based methods to encode
temporal information in a hyperbolic space, which
has been shown to capture and model asymmet-
ric temporal relations better than their Euclidean
counterparts. Hwang et al. (2022) adopted instead
a probabilistic box embeddings to extract asym-
metric relations. Wen and Ji (2021) proposed to
add an auxiliary task for relative time prediction
of events described over an event timeline. Cao
et al. (2021) developed a semi-supervised approach
via an uncertainty-aware self-training framework,
composing a training set of samples with actual
and pseudo labels depending on the estimated un-
certainty scores. None of the aforementioned ap-
proaches explored Bayesian learning for incorpo-
rating prior event temporal knowledge.

2.2 Incorporation of Prior Knowledge
Knowledge plays a key role in understanding event
relations because people often skip inessential de-
tails and express event relations implicitly which
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is difficult to understand without relevant knowl-
edge. For example, TEMPROB (Ning et al., 2018b)
contains temporal relation probabilistic knowledge
which is encoded by Siamese network and in-
corporated into neural models as additional fea-
tures (Ning et al., 2019; Wang et al., 2020b; Tan
et al., 2021). Unlike previous works, we com-
bine the Bayesian Neural Network with distance-
based models, treating the translational parame-
ters as latent variables to be inferred. To this end,
we adopt the variational inference (Kingma and
Welling, 2014a; Blei et al., 2016; Gui et al., 2019;
Pergola et al., 2021a; Zhu et al., 2022), and derive
the prior distribution of the temporal relation infor-
mation from commonsense knowledge bases (Per-
gola et al., 2021b; Lu et al., 2022). Christopoulou
et al. (2021) explored a similar intuition of using
knowledge base priors as distant supervision sig-
nals, but the approach and the task are different.

2.3 Graph Embedding Learning

Multi-relational data are commonly interpreted in
terms of directed graphs with nodes and edges rep-
resenting entities and their relations, respectively.
Several works have recently focused on modelling
these multi-relational data with relational embed-
dings by detecting and encoding local and global
connectivity patterns between entities.

TransE (Bordes et al., 2013) has been a seminal
work adopting geometric translations of entities to
represent relations in the embedding space. If a
relation between a head and a tail entity holds, it
is encoded via the translational parameters learned
at training time. However, TransE cannot model
symmetry relation well by simple addition which
led to several subsequent studies exploring diverse
types of transformation resulting in a family of
translational models (Wang et al., 2014; Ji et al.,
2015; Lin et al., 2015). Among them, Balazevic
et al. (2019) proposed to utilize the Poincaré model,
mapping the entity embeddings onto a Poincaré
ball, and using the Poincaré metric to compute the
score function and predict their relations. Chami
et al. (2020b) further expanded the idea of em-
bedding learning over manifolds by additionally
considering reflections and rotations and redefining
the translation over a learned manifold.

Although translational models are shown effi-
cient in modeling graph relation, they provide rela-
tively limited interaction between nodes than neu-
ral network-based methods, such as Graph Neu-

ral Networks (Estrach et al., 2014; Chami et al.,
2020a). Under this framework, nodes in a graph
are neural units, which can iteratively propagate
information through edges, and whose represen-
tations are learnt during the training process. In
particular, Relational Graph Convolutional Net-
works (RGCN) (Schlichtkrull et al., 2018) encode
relational data through link prediction and entity
classification tasks, while enforcing sparsity via a
parameter-sharing technique. Although modeling
knowledge graphs has been one of the main focuses
of the above-mentioned graph learning approaches,
they lack any systematic mechanism to inject prior
knowledge and update it during training.

3 Bayesian-Trans Model

In identifying temporal relations between events,
we aim at predicting the relation type of two events
given in text, commonly denoted as head event xh
and tail event xt:

ŷ = argmax
y∈R

p(y|xh, xt) (1)

where R denotes a set of possible relation types,
while xh and xt the head and tail event triggers,
respectively. Assuming that a set of latent variables
Λ denotes the collection of all relation-specific
transformation parameters Λr. For example, in
the knowledge embedding learning model such as
MuRE (Balazevic et al., 2019), the head entity is
first transformed through a relation-specific matrix
Wr, followed by a relation-specific translation vec-
tor tr, then Λr = {Wr, tr}. By Bayesian learning,
the probability of inferring a relation type r can be
written as:

p(y = r|xh, xt) =

∫

Λ
p(yr|xh, xt,Λ)p(Λ|G)dΛ (2)

Here, p(Λ|G) denotes the prior distribution of Λ
derived from an existing knowledge graph encoded
as G. Directly inferring Eq. (2) is intractable. But
we can resort to amortised variational inference
to learn model parameters. In what follows, we
present our proposed Bayesian learning framework
built on translational models for event temporal
relation extraction, called Bayesian-Trans, with
its architecture shown in Figure 2.

In particular, the context S in which the two
events occur is the input to our Bayesian-Trans.
First, we encode S via a pre-trained language
model generating the contextual embeddings eh
and et for the triggers of the head and tail events,
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Figure 2: The network structure of Bayesian-Trans. Context sentences are first fed into a COMET encoder to
generate event representations. With MLP layers, the event representations are mapped to generate a variational
distribution of relation representations which is guided by KG priors. The relation representations are then used in
the translational model to generate prediction scores.

respectively. The contextualised event trigger rep-
resentations, eh and et, are fed as input into a
Bayesian translational module. This module, by
means of variational inference, determines the pa-
rameters of the translational model, encoding the
posterior distribution of the temporal relations con-
ditioned upon the input events. Finally, we use a
score function on the translated head and tail trig-
gers to predict their temporal relation. We provide
a more detailed description in the following.

3.1 Contextual Encoder

The proposed model uses COMET-BART (Hwang
et al., 2021) as the context encoder. COMET-BART
is a BART pre-trained language model (Lewis
et al., 2020) fine-tunned on ATOMIC (Bosselut
et al., 2019; Hwang et al., 2021), which is an
event-centric knowledge graph encoding inferen-
tial knowledge about entities and events, including
event temporal relations. The COMET-BART is
able to generate consequence events given the an-
tecedent event and a relation with good accuracy
thus is regarded encodes knowledge well. Fol-
lowing the approach adopted in previous works
(Ning et al., 2019; Wang et al., 2020b; Tan et al.,
2021), we use the representation of the first token
of an event trigger as the contextual embedding
of that event2, eh, et = COMET-BART(xh, xt),
where eh, et ∈ Rd. The event representations are
then concatenated together and fed through MLPs
to generate the parameters of the variational dis-
tribution, from which the latent event-pair repre-
sentation z is sampled. z is then mapped to the

2We conducted some exploratory experiments adopting the
last token or the average representation, but results showed
that the first token was still the best option in this context.

parameter space of the translational model as Λ.

3.2 Incorporating Knowledge via Bayesian
Learning

The proposed model utilizes relation embeddings
for classifying event relation in a similar manner
as the translational models in knowledge graph em-
bedding, such as TransE (Bordes et al., 2013). If
the embedding of the tail event is close enough
to the embedding of head event after applying a
series of relation-specific transformation, the re-
lation stands, and vice versa. A wide range of
translational models typically proposed for learn-
ing knowledge graph embeddings can be adopted in
the proposed Bayesian-Trans. Additionally, to in-
corporate prior knowledge, we extend translational
models to operate within the Bayesian inference
framework. We proceed with introducing a stan-
dard translational model in the context of temporal
relations, and describe how we extend it to work in
the Bayesian framework.

Translational Model Generally speaking, a
translational model uses relation representations
Λr to perform “translation” for relation r on the
head and tail events. Then, the transformed head
and tail event embeddings are compared using a
distance-based score function, whose score is in-
dicative of the temporal relation between the events.
The score function ϕ(·) takes the general form:

ϕ(eh, r, et) = −d(T h
Λr

(eh), T t
Λr

(et)) (3)

where r is a relation type, TΛr(·) is a function
depending on the parameters Λr of relation r to
transform the event embeddings eh and et, and d(·)
is any distance metrics (e.g., Euclidean distance).
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We explored several models with different transla-
tion functions and distance metrics in the context of
temporal relations, including TransE (Bordes et al.,
2013), AttH (Chami et al., 2020b), MuRE (Balaze-
vic et al., 2019) and MuRP (Balazevic et al., 2019),
and based on our preliminary results3, we eventu-
ally adopted MuRE as it strikes a good balance of
training efficiency and accuracy of temporal rela-
tion classification. We define the scoring function
in the proposed model as follows:

ϕ(eh, r, et) = −∥Wreh + tr − et∥22 (4)

where Wr ∈ Rd×d is a diagonal relation matrix
and tr ∈ Rd a translation vector of relation r, Λr =
{Wr, tr}, r ∈ R.

Although the number of parameters to train is
rather low, the number of annotated samples is
usually small compared to the wide range of lin-
guistic expressions capturing temporal relations.
We thus extend the MuRE model into a Bayesian
framework to enhance its scalability by treating
the translational parameters Λ as latent variables.
The proposed framework enhances generalization
by defining a variational inference process that op-
timizes the regularization and leverages the addi-
tional information injected via the prior distribu-
tions.

Bayesian Inference As shown in the inference
equation 2, the prior is derived from an external
knowledge graph, such as ATOMIC, as a means to
inject prior information about events and temporal
relations. In particular, Λ is assumed to follow a
Gaussian distribution with unit variance and with
mean determined by the relation representations
trained on the knowledge graph. The probability
function is formulated as a softmax function over a
pre-defined scoring function:

p(yr|eh, et,Λ) =
exp

(
ϕ(eh, r, et)

)

∑
r′∈R exp

(
ϕ(eh, r′, et)

) (5)

with eh and et denoting the embedding for the
head and the tail events, respectively.

Yet, Eq. (2) is intractable and cannot be inferred
directly. Thus, we resort to amortized variational
inference by introducing a variational posterior
qθ(Λ|xh, xt), which follows the isotropic Gaussian
distribution and can be modeled as:

3Experimental results using different translational models
are shown in Table A1.

µ = fµ(eh; et) Σ = diag
(
fΣ(eh; et)

)

qθ(Λ|eh, et) = N (Λ|µ,Σ),
(6)

where fµ and fΣ are both fully connected layers
that map the event pair representation into the pa-
rameters of the variational distribution.

Following the amortized variational inference,
we maximize the evidence lower bound (ELBO)
Le, defined in Eq. (7), and approximated by a
Monte Carlo estimation with sample size N , as
described in Eq. (8):

Le = Eqθ(Λ|xh,xt),{xh,xt}∈D
[
log pθ(y|xh, xt,Λ)

]
−

Reg
(
qθ(Λ|xh, xt,G)||p(Λ|G)

)
(7)

≈ 1

N

N∑

n=1

∑

{xh,xt}∈D

[
log pθ(y|xh, xt,Λ

(n))−

Reg
(
qθ(Λ

(n)|xh, xt,G)||p(Λ(n)|G)
)]

(8)

where Reg(·) is a regularization term which will
be discussed in 3.3. To train end-to-end a fully dif-
ferentiable model, we adopt the reparameterization
trick (Kingma and Welling, 2014b).

3.3 Prior Distribution and Regularization
We proceed to discuss how the Bayesian framework
enabled the incorporation of prior acquired from
an external knowledge source. Then, we provide
the details of how we compute the regularization
term to induce a more stable training.

Prior Distribution One of the main advantages
of the Bayesian inference framework is the possi-
bility to inject commonsense knowledge into the
model through the prior distribution of the latent
variables, i.e., p(Λ|G) in Eq. (2), where Λ are the
translational parameters and G denotes an external
knowledge graph, in our case, the ATOMIC knowl-
edge graph (Hwang et al., 2021). ATOMIC is a
commonsense knowledge graph containing infer-
ential knowledge tuples about entities and events
encoding social and physical aspects of human ev-
eryday experiences. For our task of event tempo-
ral relation extraction, we are only interested in
the events linked via temporal relations, such as
‘ISBEFORE’ (23,208 triples) or ‘ISAFTER’ (22,453
triples). By conducting link prediction on these
links, we use relation embeddings learnt using an
RGCN (Schlichtkrull et al., 2018) as the mean
of the prior distribution for the translational la-
tent variables. For the relations in the experiment
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dataset that do not have applicable counterparts
in ATOMIC (e.g., VAGUE), we set their priors to
standard Gaussian. The variance of the priors is
defined as the identity matrix.

Specifically, we use COMET-BART to encode
the event nodes from ATOMIC, then use their
context embeddings as the node features in the
RGCN. In our preliminary experiment, we also
found that RGCN cannot train well on the com-
monsense graph with only the event-event relation
links. The graph is too sparse which makes the in-
formation difficult to propagate through the nodes.
Thus, we added semantic similarity links based on
the cosine similarity of the event context embed-
dings. During the training of the RGCN, the node
embeddings are kept frozen. After the training
of the link prediction task, we extract the relation
embeddings of the RGCN.

Regularization Term To mitigate the posterior
collapse problem (Lucas et al., 2019) and have a
stable inference process, we adopt the Maximum
Mean Discrepancy (MMD)4 which is an estimation
of Wasserstein distance (Tolstikhin et al., 2018) as
the regularization term (Eq. 8).

4 Experimental Setup

Datasets We evaluated the proposed Bayesian-
Trans model on three event temporal relation
datasets: MATRES (Ning et al., 2018c), Temporal
and Causal Reasoning (TCR) (Ning et al., 2018a),
and TimeBank-Dense (TBD) (Cassidy et al., 2014).
TimeBank-Dense is a densely annotated dataset fo-
cusing on the most salient events and providing 6
event temporal relations. MATRES follows a new
annotation scheme which focuses on main time
axes, with the temporal relations between events
determined by their endpoints, resulting in a consis-
tent inter-annotator agreement (IAA) on the event
annotations (Ning et al., 2018c). TCR follows the
same annotation scheme, yet with a much smaller
number of event relation pairs than in MATRES.
Table 1 shows the statistics of the datasets.

Baselines We compare the proposed Bayesian-
Trans5 with the following baselines:

CogCompTime (Ning et al., 2018d) is a multi-step
system which detect temporal relation using seman-
tic features and structured inference.

4MMD calculation can be found in Appendix A.
5Hyperparameter setting can be found in Appendix B.

Class MATRES TCR TBD

BEFORE 6, 852 1, 780 2, 590
AFTER 4, 752 862 2, 104
EQUAL/SIMULTANEOUS 448 4 215
VAGUE/NONE 1, 425 N/A 5, 910
INCLUDE N/A N/A 836
ISINCLUDED N/A N/A 1, 060

Total 12, 740 2, 646 12, 715

Table 1: The statistics of MATRES, TCR, and TBD.

BiLSTM is a basic relation prediction model built
by Han et al. (2019b).
LSTM + knowledge (Ning et al., 2019) incorpo-
rates knowledge features learnt from an external
source and optimize global consistency by ILP.
Deep Structured (Han et al., 2019a) adds a struc-
tured support vector machine on top of a BiLSTM.
Joint Constrained Learning (Wang et al., 2020b)
constrains the training of a RoBERTa-based event
pair classifier using predefined logic rules, while
knowledge incorporation and global optimization
are also included.
Poincaré Event Embedding (Tan et al., 2021)
learns event embeddings based on a Poincaré ball
and determines the temporal relation base on the
relative position of events.
HGRU + knowledge (Tan et al., 2021) is a neural
architecture processing temporal relations via hy-
perbolic recurrent units which also incorporates
knowledge features like LSTM + knowledge.
Relative Event Time (Wen and Ji, 2021) is a neural
network classifier combining an auxiliary task for
relative time extraction over an event timeline.
UAST (Cao et al., 2021) is an uncertainty-aware
self-training model. We show the result of the
model which is trained on all the labeled data.

5 Experimental Results

Temporal Relation Classification We first com-
pare Bayesian-Trans with the most recent ap-
proaches for temporal event classification in Ta-
ble 2, including methods with or without common-
sense knowledge injection. The results are obtained
by training models on the MATRES training set
and evaluated on both the MATRES test set and
TCR. Table 3 shows results from the TBD dataset
which are generated using the provided train, devel-
opment, and test sets. We report F1 score on MA-
TRES and TCR following the definition in (Ning
et al., 2019), and micro-F1 on TimeBank-Dense.
Compared with existing methods, the proposed
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MATRES TCR

Model P R F1 P R F1

CogCompTime (Ning et al., 2018d) 61.6 72.5 66.6 - - 70.7
Poincaré Event Embeddings (Tan et al., 2021) 74.1 84.3 78.9 85.0 86.0 85.5
Relative Event Time (Wen and Ji, 2021) 78.4 85.2 81.7 84.3 86.8 85.5

LSTM + knowledge (Ning et al., 2019) 71.3 82.1 76.3 - - 78.6
Joint Constrainted Learning (Wang et al., 2020b) 73.4 85.0 78.8 83.9 83.4 83.7
HGRU + knowledge (Tan et al., 2021) 79.2 81.7 80.5 88.3 79.0 83.5

Bayesian-Trans 79.6 86.0 82.7 89.8 82.6 86.1

Table 2: Experimental results on MATRES and TCR. The first three lines contain methods without commonsense
knowledge incorporation. The rest are methods which inject commonsense knowledge. The results of Wang et al.
(2020b) and (Wen and Ji, 2021) on TCR are generated from our run of the source code provided by the authors
since they are not available in their original papers. The others are taken from the cited papers.

Model Micro-F1

BiLSTM (Han et al., 2019b) 61.9
Deep Structured (Han et al., 2019a) 63.2
Relative Event Time (Wen and Ji, 2021) 63.2
UAST (Cao et al., 2021) 64.3

Bayesian-Trans 65.0

Table 3: Experimental results on TBD. All compared
methods do not incorporate commonsense knowledge
explicitly. The result of Wen and Ji (2021) is generated
from our run of the source code provided by the authors
since they are not available in their original paper. The
others are taken from the cited papers.

Bayesian-Trans has generally better performance
on all three datasets, with more noticeably improve-
ments on MATRES. Bayesian-Trans has signifi-
cant performance gains over previous methods with
knowledge incorporation, which shows that it can
utilize knowledge more extensively. Details of the
per-class performance can be found in Table A2
and A3.

Ablation Study We conducted an ablation study
to highlight the impact of the different modules
composing Bayesian-Trans. The results are shown
in Table 4. In particular, we have the following
variants: (1) RoBERTa+MLP, using RoBERTa to
encode the context and then feeding representa-
tions of head and tail events to a multi-layer percep-
tron (MLP) for temporal relation classification; (2)
RoBERTa+ Vanilla MuRE, using MuRE to extract
temporal relations without modeling its parameters
as latent variables; (3) RoBERTa+Bayesian-Trans,
our proposed model by replacing COMERT-BART
with RoBERTa as the text encoder; (4) COMET-

Model MATRES TBD

(1) RoBERTa + MLP 81.5 62.8
(2) RoBERTa + Vanilla MuRE 80.4 60.5
(3) RoBERTa + Bayesian-Trans 82.2 63.0
(4) COMET-BART + MLP 81.8 63.2
(5) COMET-BART + Vanilla MuRE 81.8 62.6

(6) COMET-BART + Bayesian-Trans 82.7 65.0

Table 4: Ablation test results on MATRES and TBD.

BART+MLP, using COMET-BART as context en-
coder and an MLP for temporal relation classifi-
cation; and (5) COMET-BART+ Vanilla MuRE,
the proposed model without Bayesian learning or
knowledge incorporation. The results demonstrate
that COMET-BART is a better choice as the context
encoder. Using MuRE for event temporal knowl-
edge embedding learning does not bring any im-
provement compared to using a simple MLP layer
for event temporal relation prediction (see (1) cf.
(2), and (4) cf. (5)). Regardless of the contex-
tual encoder used, the results of (3) and (6) show
the benefit of employing Bayesian learning which
naturally incorporates prior knowledge of event
temporal relations learned from an external knowl-
edge source for event temporal relation detection.
With our proposed Bayesian translational model,
we observe an improvement of 0.9−1.8% in micro-
F1 on MATRES and 0.2 − 2.5% in micro-F1 on
TimeBank-Dense compare to their non-Bayesian
counterparts.

Effects of the Priors We further investigate the
impact of different priors on the model perfor-
mance. Inspired by the work on VAEs by Burda
et al. (2016) and Truong et al. (2021), we employed
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Figure 3: The box chart of the activity scores across all
the dimensions of the latent encoding Λ with respect to
the priors used in the model.

Dataset Standard Gaussian MuRE RGCN

MATRES 81.2 81.8 82.7
TCR 84.3 85.4 86.1
TBD 63.6 64.6 65.0

Table 5: F1 values based on different priors used in the
proposed model.

an ‘activity’ score, τ = Coveh,et(Eq(Λ|eh,et)[Λ])
to evaluate the quality and diversity of the latent en-
codings. The intuition behind the “activity” score
is that if a latent dimension encodes relevant infor-
mation and is not redundant, its value is expected
to vary significantly over different inputs. By com-
puting the score across all the test instances, ev-
ery dimension of Λ is given an ‘activity’ value.
Latent units with a higher value are considered
more active and thus more informative. Figure
3 shows activity scores with respect to different
prior distributions, including the standard Gaus-
sian prior and priors learned on ATOMIC using
MuRE or RGCN, in which the latent variables are
the least active when using standard Gaussian as
the prior distribution. The higher activation is ob-
tained using the priors learnt on the external knowl-
edge base. In particular, the prior based on RGCN
and MuRE over ATOMIC displays the most active
units, with RGCN showing the most active units
on average. Table 5 shows the performance of the
proposed model based on different priors. Two-
sided Welch’s t-test (p < 0.05) also supports that
the RGCN-learned prior improves over standard
Gaussian prior.

Uncertainty Quantification We present an anal-
ysis of uncertainty quantification of the Bayesian-
Trans predictions. We adopted the uncertainty
quantification methods as in Malinin and Gales

Figure 4: Examples of temporal relations in text and
uncertainty quantification (entropy and mutual informa-
tion) for the Bayesian-Trans model. Examples (a),(b)
show how simplifying the linguistic structure without
altering the temporal relation increases the model con-
fidence. While examples (c),(d) illustrate the model’s
detection of temporal linguistic hints and its confidence.

(2018), computing the entropy (total uncertainty)
and mutual information (model uncertainty) to vi-
sualize the predictive probabilities on a 2-simplex.
Each forward pass on the same test instance is rep-
resented as a point on the simplex. For the sake of
clarity of the visualization, we removed the EQUAL

class, which is hardly ever predicted by the models.
In one of the test cases (Figure 4(a)), the true

label is “die” BEFORE “vaccinate”. This example
exhibits a rather complex linguistic structure, as
such, the model exhibits some uncertainty. Most of
the predictions located at the corner are associated
with BEFORE, but there also are several predictions
scattered around it. We then simplified the sentence
structure by removing “but four”, and fed the mod-
ified sentence to the same model. This time, the
model predicted the right temporal relation with
much lower uncertainty (Figure 4(b)).

In another case study (Figure 4(c)), the true la-
bel is “depart” AFTER “reveal”. This test case is
rather straightforward, because of the explicit tem-
poral word “before”. The model predicted AFTER

with high confidence, as shown by the predictive
probabilities cluster at the top of the simplex. To
show the impact of the temporal description, we
swapped it from “before” to “after” and fed it to the
same model. The model recognized the reversed
meaning and correctly predicted BEFORE with low
uncertainty (Figure 4(d)). The above cases demon-
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strate that the proposed model reacts to different
inputs with reasonable uncertainty, on both the total
and model uncertainty scores.

6 Conclusion

We propose a principled approach to incorporate
knowledge for event temporal relation extraction
named Bayesian-Trans, which models the relation
representations in the MuRE translational model,
as latent variables. The latent variables are inferred
through variational inference, during which com-
monsense knowledge is incorporated in the form
of the prior distribution. The experiments on MA-
TRES, TCR, and TBD show that Bayesian-Trans
achieves state-of-the-art performance. Compre-
hensive analyses of the experimental results also
demonstrate the characteristics and benefits of the
proposed model.

Limitations

Our approach takes an event pair as input for the
prediction of their temporal relation. We observe
that if two events reside in different sentences, the
error rate increases by 19%. A promising future
direction is to construct a global event graph where
temporal relations of any two events are refined
with the consideration of global consistency con-
straints, for example, no temporal relation loop
is allowed in a set of events. Our current work
only deals with even temporal relations, it could
be extended to consider other event semantic re-
lations such as causal, hierarchical or entailment
relations. The event temporal knowledge in this
paper is derived from ATOMIC which can possibly
be extended to more sources. Bayesian learning
could also be extended to life-long learning. But we
need to explore approaches to address the problem
of catastrophic forgetting. We didn’t exhaustively
investigate all the translational models due to the
large volume of work in that area. There might
be a translational model which can achieve bet-
ter performance, but the core idea of the proposed
framework stays the same.

Ethical Considerations

The goal of the proposed method is to understand
the temporal relation between events based on the
descriptions in the given text. What the method
can achieve in the most optimistic scenario is no
more than giving the same text to a human reader
and letting him or her explain the event relations.

Therefore, the ethical concerns only come from
the data collection. In this paper, we only use pub-
licly available datasets which have already been
widely used in the research field. As for potential
application, as long as the user collects the training
data legally, the proposed method does not have
the potential to have a direct harmful impact.
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A Maximum Mean Discrepancy (MMD)

The Maximum Mean Discrepancy (MMD) can be
unbiasedly estimated using the following equation
(Nan et al., 2019):

M̂MD =
1

N(N − 1)

∑

n ̸=m

fk (zn , zm )

+
1

N(N − 1)

∑

n ̸=m

fk (z̃n, z̃m)− 2

N2

∑

n,m

fk (zn, z̃m)

where z1, ..., zn are sampled from variational dis-
tribution qϕ and z̃1, ..., z̃m are sampled from prior
distribution p, fk(·) is inverse multiquadratic kn-
ernel fk(x, y) = C

C+||x−y||22
which is often chosen

for high-dimensional Gaussians.

Model Precision Recall F1

TransE 80.0 84.1 82.0
MuRP 75.4 85.8 80.2
AttH 76.2 87.4 81.4
MuRE 79.6 86.0 82.7

Table A1: The performance of the proposed Bayesian
framework combined with different translational models
on MATRES.

B Hyperparameter Settings and Resource
Consumption

We conducted a grid-search to determine the op-
timal hyperparameters and dimensionality of the
relation embeddings. The searching range for the
dimension of the latent vector the transformation
parameters is [50, 200], with a step size of 50. As
a result, on the MATRES, the dimension of the
latent vector z is 200, the dimension of relation
transformation vectors tr or matrices Wr is 50, the
dropout rate is 0.1. On the TBD, the dimension
of the latent vector z is 100, and the dimension of
relation transformation vectors tr or matrices Wr is
100, dropout rate is 0. Based on the above settings,
the number of parameters of the Bayesian-Trans is
443 thousand (excluding the COMET-BART). The
COMET-BART encoder has 204 million parame-
ters. The learning rate αc for the context encoder
is set to 1e− 5, while for other components of the
architecture α = 1e − 3. To calibrate the influ-
ence of the regularization term, we set a scaling
weight smoothly increasing from 1e− 2 to 2.0 dur-
ing training. We ran the training for 60 epochs
which is enough for the model to converge, and

evaluated on the validation set after each training
epoch.

All the experiments were conducted on an
Nvidia GeForce RTX 3090 GPU. On the TBD
dataset, the average training time is 93 seconds
per epoch, while the inference time is 4 seconds.
On the MATRES dataset, the average training time
is 74 seconds per epoch, and the inference time is
7 seconds.

C Comparison of Translational Models

Table A1 shows the performance on MATRES us-
ing different translational models in the Bayesian
framework. TransE (Bordes et al., 2013) is one
of the most commonly used translational models,
which only performs the addition transformation
on the head event. AttH (Chami et al., 2020b) ex-
pands the idea of hyperbolic translational models
by making the curvature learnable. It also intro-
duces more types of transformation, reflection and
rotation. MuRE (Balazevic et al., 2019) strikes a
balance by conducting diagonal matrix transforma-
tion and addition transformation. MuRP (Balaze-
vic et al., 2019) is the Poincarè version of MuRE,
which projects the head and tail onto a Poincarè
ball before performing scaling and addition. The
score function of MuRP computes the Poincarè
distance instead of the Euclidean distance.

We can observe that TransE performs well, beat-
ing the previous state-of-the-art (F1 = 81.7) but
gives slightly worse results compared to MuRE.
Both translational models in the hyperbolic space,
MuRP and AttH, are inferior to the Euclidean-
based translational models. As MuRE gives more
balanced precision and recall values, it is therefore
adopted in our Bayesian learning framework.

Relation Precision Recall F1

BEFORE 82.66 90.40 86.35
AFTER 75.24 88.56 81.36
EQUAL 0.00 0.00 0.00
VAGUE 33.33 15.60 21.25

Table A2: Performance on each relation type class on
MATRES.

D Class-Specific Results

In Table A2 and A3, We show the results obtained
using Bayesian-Trans under each temporal relation
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Relation Precision Recall F1

BEFORE 77.04 62.98 69.31
AFTER 76.37 62.20 68.56
SIMULTANEOUS 33.33 10.42 15.87
INCLUDES 36.84 10.29 16.09
ISINCLUDED 53.33 10.39 17.39
NONE 59.06 83.80 69.29

Table A3: Performance on each relation type class on
TimeBank-Dense.

class on MATRES and TimeBank-Dense, respec-
tively. On MATRES, the performance on BEFORE

and AFTER are significantly better than for the
other two classes. The model predicts no EQUAL

labels, most likely caused by the scarce training
data for this class. Previous works in the litera-
ture (Han et al., 2019b) have also shown similar
class-specific results, with models struggling the
most on the prediction of EQUAL and VAGUE re-
lations. Similar conclusions can be drawn from
the TimeBank-Dense dataset, that Bayesian-Trans
performs relatively well on the BEFORE, AFTER

and NONE classes, but performs worse on the other
three minority classes.
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