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Abstract

Taxonomies, which organize domain concepts
into hierarchical structures, are crucial for
building knowledge systems and downstream
applications. As domain knowledge evolves,
taxonomies need to be continuously updated
to include new concepts. Previous approaches
have mainly focused on adding concepts to
the leaf nodes of the existing hierarchical tree,
which does not fully utilize the taxonomy’s
knowledge and is unable to update the original
taxonomy structure (usually involving non-
leaf nodes). In this paper, we propose a two-
stage method called ATTEMPT for taxonomy
completion. Our method inserts new con-
cepts into the correct position by finding a par-
ent node and labeling child nodes. Specifi-
cally, by combining local nodes with prompts
to generate natural sentences, we take advan-
tage of pre-trained language models for hy-
pernym/hyponymy recognition. Experimental
results on two public datasets (including six
domains) show that ATTEMPT performs best
on both taxonomy completion and extension
tasks, surpassing existing methods.

1 Introduction

Taxonomies1 are an important form of domain
knowledge that organize concepts into hierarchi-
cal structures, representing “hypernym-hyponym”
relationships among concepts in the form of trees
or directed acyclic graphs (Shen et al., 2020).
Taxonomies are essential components of knowl-
edge systems such as ontologies and knowledge
graph (Yu et al., 2020), and are widely used in
various downstream applications, including search
engineering (Yin and Shah, 2010), recommenda-
tion systems (Huang et al., 2019; Zhang et al.,

∗∗ These authors contribute this work equally.
1In this paper, we mainly focus on the taxonomy repre-

sented as tree rather than directed acyclic graph, because trees
are the mainstream form at present, such as the online catalog
taxonomies of Amazon and Yelp.

Existing 
Taxonomy

Expanded 
Taxonomy

Science

Natural Science
Social 

Science

Chemistry Physics
Anthropology

Civics
Mechanics Archeology

Science

Natural Science

Chemistry

Mechanics

Archeology

Physics

Anthropology

Civics

New concept
Social 

Science

Figure 1: An example of taxonomy completion for
a non-leaf node. The new concept “Social Science"
needs to be inserted into the correct position in the ex-
isting taxonomy.

2014), and information filtering (Demeester et al.,
2016).

As domain knowledge continues to evolve, es-
pecially with the rapid growth of web content,
new concepts are constantly emerging. In order
to stay current, original taxonomies must incorpo-
rate these new concepts and adapt their hierarchi-
cal relationships. For example, as shown in Figure
1, with the advancement of sociology and science,
the concept of "Social Science" should be added
to the science knowledge system, and the original
structure should be adjusted accordingly.

However, existing taxonomies are primarily
constructed by human experts (Shen et al., 2018).
Manual extraction of domain concepts and detec-
tion of hierarchical relationships by domain ex-
perts is both time-consuming and labor-intensive,
and may result in missing important concepts and
relationships.

To extend existing taxonomies automatically,
researchers have proposed the tasks of taxonomy
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expansion (TE) and taxonomy completion (TC).
Both tasks aim to append new nodes (concepts) to
a given taxonomy . The main difference is that TE
focuses on identifying the parent of a given node
(usually a leaf node), while TC aims to identify
both the parent and child nodes. As illustrated in
Figure 1, TE would aim to identify the parent node
of “Social Science”, while TC would also aim to
identify the child nodes of “Social Science”.

Recently, researchers have been focusing on us-
ing pre-trained language models, such as BERT
(Devlin et al., 2018), to improve the performance
of taxonomy expansion (Liu et al., 2021; Takeoka
et al., 2021). For example, TEMP (Liu et al.,
2021) appends new concepts to leaf nodes and
generates candidate taxonomy paths, then uses a
pre-trained model for ranking and selecting the
best path. Musubu (Takeoka et al., 2021) gen-
erates candidate “hypernym”-“new concept” pairs
using Hearst patterns (Hearst, 1992), and relies on
pre-trained knowledge to identify the optimal hy-
pernym node for the new concept. These proposed
models have greatly improved the effectiveness of
taxonomy updates, thanks to the improved gen-
eralization performance of pre-trained language
models (Liu et al., 2021).

Although current TE&TC methods have
achieved good results, there are several main
issues that need to be addressed. Firstly, existing
TE methods struggle to extend non-leaf nodes or
perform poorly in this task (Zhang et al., 2021).
Secondly, while existing TC methods can extend
both leaf and non-leaf nodes, they may be less
effective in leaf node expansion than specialized
TE methods (Liu et al., 2021), potentially due
to a lack of sufficient utilization of knowledge.
Furthermore, these methods often require large
amounts of labeled samples or external resources,
which are not always available (Takeoka et al.,
2021). Lastly, current TC methods do not typi-
cally involve modifying the nodes of the original
taxonomy system (all original parent-child rela-
tionships are preserved after adding nodes to the
taxonomy). However, the insertion of new nodes
can modify the relationship of the original nodes.
For example, the insertion of “Social Science" in
Figure 1 would change the relationship between
“Science-Anthropology" from father-son to
grandfather-grandson.

To address these issues, we propose A Two-
stage Taxonomy complEtion Method with Pre-

Trained Language model (ATTEMPT), which in-
serts new concepts into the correct position by
identifying a parent node and labeling child nodes.

In the first stage of our proposed method,
we use the “Taxonomy-path Prompt with Pre-
trained model" (PPT) approach to take advantage
of the local information of the taxonomy path and
convert it into natural language using a prompt
method, which helps to better utilize the implicit
knowledge of the pre-trained model. Addition-
ally, the pre-trained model’s extensive knowledge
reserve allows us to avoid the need for external
resources and large amounts of labeled data. In
the second stage, we propose the “Multiple Nodes
Labeling" (MNL) method, which jointly identi-
fies each child node and better utilizes the in-
terdependence between nodes, resulting in more
accurate node type prediction (including father-
son, sibling and other relationships). Additionally,
MNL allows for modification of the original tax-
onomy nodes and simultaneous annotation of mul-
tiple child nodes.

We conduct detailed experiments on two pub-
lic datasets (including six domains) to evaluate the
effectiveness of our proposed method, ATTEMPT,
in leaf and non-leaf node expansion. Specifically,
for leaf nodes, our parent-finding method (PPT)
outperforms the best baseline by 8.2% in accuracy.
For non-leaf nodes, our children-finding method
(MNL) improves by 21% and 20.3% respectively
in accuracy and average F1 score, compared to
a pair-wise classification method. On the overall
task, our proposed method (ATTEMPT) outper-
forms other methods by 2.4% in average F1 score.

In summary, the main contributions of this pa-
per include:

• The proposal of a two-stage taxonomy expan-
sion method, ATTEMPT, that inserts new concepts
into the correct position by identifying a parent
node and labeling child nodes.

• The introduction of a multiple-nodes label-
ing method, MNL, for the children-finding stage,
which allows for the label of zero to multiple chil-
dren nodes of a given node simultaneously and
modification of the original taxonomy nodes.

• The demonstration of the effectiveness of
our approach through experiments on two public
datasets (including six domains), with the best per-
formance obtained in both non-leaf and leaf node
expansion.
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2 Related Work

Taxonomy construction aims to build a tree-
structured taxonomy with a set of terms from
scratch. Existing methods can be roughly divided
into two categories. The first is an unsupervised
method to construct the taxonomy based on clus-
tering (Alfarone and Davis, 2015; Zhang et al.,
2018a; Shang et al., 2020). The terms are grouped
into a hierarchy based on hierarchical clustering
or topic models (Downey et al., 2015). Each
node of this taxonomy is a collection of topic-
indicative terms, different from the taxonomy in
this paper (each node represented by one individ-
ual term). The other approach constructs a tax-
onomy based on terms, where each node repre-
sents a term concept (Cocos et al., 2018; Dash
et al., 2020). Hypernymy detection models are of-
ten used for this task. For example, pattern-based
(Agichtein and Gravano, 2000; Jiang et al., 2017;
Roller et al., 2018) or distributional models (Yin
and Roth, 2018; Wang et al., 2019; Dash et al.,
2020) extract the hypernymy for a given query
node and then organize them into a tree structure.

Creating a taxonomy from scratch is labor-
intensive. In many scenarios, such as e-commerce,
some taxonomies may already be deployed in on-
line systems, which involves the demand of taxon-
omy extension. QASSIT (Cleuziou and Moreno,
2016) is a semi-supervised vocabulary classifica-
tion method, mainly based on genetic algorithms.
The TAXI (Panchenko et al., 2016) system uses
a taxonomy induction method based on lexico-
syntactic patterns, substrings, and focused crawl-
ing. Later, TaxoGen (Zhang et al., 2018b) uses
term embeddings and hierarchical clustering to
construct topic taxonomies recursively. TEMP
(Liu et al., 2021) is a self-supervised classification
extension method that trains models with a new
dynamic margin loss margin function.

Taxonomy completion (Zhang et al., 2021) is a
recently proposed task that aims to find appropri-
ate hypernyms-hyponyms for new nodes, not just
hypernyms. GenTaxo (Zeng et al., 2021) gathers
information from complex local structural infor-
mation and learns to generate full names of con-
cepts from corpora. TMN (Zhang et al., 2021) fo-
cuses on channel gating mechanisms and triplet
matching networks. CoRel relies on concept
learning and relation transferring to build a seed-
oriented topic taxonomy.

But the above mentioned methods also have

some issues. The addition of new nodes may
also lead to changes in the original taxonomy.
The taxonomy completion task only finds the hy-
ponyms of a given node, which cannot modify
of the original taxonomy. GenTaxo (Zeng et al.,
2021) requires a large amount of training data
to learn enough information, and CoRel (Huang
et al., 2020) focuses more on topic taxonomy than
the taxonomy of individual terms. Other works
such as CGExpan (Zhang et al., 2020) use the au-
tomatically generated class names and the class-
guided entity selection module for entity expan-
sion. However, CGExpan (Zhang et al., 2020) is
more on the entity set than the tree taxonomy.

In addition, although the above methods can
find both hypernyms and hyponyms of a given
query node, they do not make sufficient use of
the pre-trained model or do not use the pre-trained
model at all (Zhang et al., 2021; Zeng et al., 2021).
This may lead them to perform poorly on the
hypernym recognition task, inferior to the spe-
cialized taxonomy extension methods of the pre-
trained model (Liu et al., 2021). And most meth-
ods of taxonomy extension cannot perform well
on the task of taxonomy completion (Zhang et al.,
2021). We are dedicated to finding an approach
that works in both tasks.

3 Method

Given an existing taxonomy T = (V,E) and a set
of new terms V ′, where V is a set of terms, and
E is a set of " hyponym- hypernym" relationships
between terms, the task of Taxonomy completion
is to insert the new terms v′ ∈ V ′ into the appro-
priate position of the existing taxonomy T one by
one and extend them into a more complete taxon-
omy T̃ = (Ṽ , Ẽ).

Figure 2 provided illustrates the overall struc-
ture of the ATTEMPT method, which is broken
down into two main stages: the parent finding
stage and the children finding stage. These two
stages work together to identify the relationships
between terms in the taxonomy, specifically deter-
mining the parent and children of a given term.

3.1 Stage one: Parent Finding

The first stage of the process is to identify the par-
ent node of a given node in the taxonomy. For
example, finding the parent node “science" for the
node “social science" in Figure 2.

1034



Existing 
Taxonomy

Social 
Science

Science

Natural 
Science

Chemistry
Mechanics

ArcheologyPhysics

Anthropology

Civics

Social Science

Path1

Path2

Path3

Stage 1: Parent Finding
Science

Natural 
Science

Mechanics

ArcheologyPhysics

Anthropology

Civics

Chemistry … …

Stage 2: Children Finding

Science

Natural 
Science

Chemistry

Mechanics

ArcheologyPhysics

Anthropology Civics Social 
Science

Expanded 
Taxonomy

Science

Natural 
Science

Social 
Science

Chemistry
Physics

Anthropology

Civics

Mechanics Archeology

itself

father

child

sister

given 
node

father
candidate

child
candidate

grand-
child

others

Figure 2: An overview of the proposed method ATTEMPT. ATTEMPT consists of two stages. Given an existing
taxonomy and the new concept term (“Social Science"), the first stage is to find the correct parent ("Science") and
the second stage is to find all possible children ("Anthropology" and "Civics").

3.1.1 TEMP

The TEMP method (Liu et al., 2021) is the first
approach to use pre-trained contextual encoders
as the core component for taxonomy extension.
The pre-trained contextual embeddings are useful
for capturing relationships between terms because
they have been trained on a large corpus. TEMP
predicts the location of new concepts by ranking
the generated taxonomy paths. A taxonomy path
of a new term (ND) in the tree-structured taxon-
omy is the unique path from that term to the root of
the taxonomy. The taxonomy path is represented
as P = [ROOT,N1, N2, ..., ND], where D is the
depth of the ND and ROOT is the root of the tax-
onomy. In the taxonomy, Ni−1 is the parent of Ni.
TEMP generates taxonomy paths for each term,
then adds the new term to be expanded to the end
of each path to form new paths. Finally, the new
paths are ranked and the highest-scoring path is
chosen as the correct parent term.

Equation 1 describes how TEMP uses a contex-
tual encoder to return a sequence of vectors, given
a term’s definition S and an arbitrary taxonomy
path P .

Encoder(S, P ) = v[CLS], v1, . . . , v[SEP], vpd , . . . , vroot
(1)

The TEMP method, which uses pre-trained con-
textual encoders to model taxonomy paths, has
been an inspiration for our work. However, TEMP

also has some limitations. One of the main limi-
tations is that it can only expand new leaf nodes.
Additionally, TEMP has some issues such as:

1) Limited use of local information - although
TEMP uses paths to narrow the search range
within the taxonomy tree, the problem of too long
paths can still arise. In such cases, distant relation-
ships may have a limited impact on the determina-
tion of leaf nodes.

2) Inadequate utilization of pre-trained model -
TEMP only connects the nodes of the path using
special tokens such as [SEP ] or [UNK], which
does not fully leverage the knowledge encoded by
the pre-trained language model.

3.1.2 PPT: Taxonomy-path Prompt with
Pre-trained model

To address the limitations of the TEMP method,
we proposed PPT (A Taxonomy Expansion
Method Based on Taxonomy Path Prompt and Pre-
Trained Model). Our approach includes a few im-
provements:

Utilization of local information - Instead of us-
ing the entire taxonomy path, we use the local in-
formation nodes lp closest to the nodes. For exam-
ple, in Figure 2, for the node “Archeology", the lo-
cal information nodes would be “Archeology" and
"Anthropology". When the depth of the taxonomy
path is less than two, we take only one node.

lp = local(P ) = {ND−1, ND} (2)
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Figure 3: An overview of the MNL (multiple nodes labeling). We concatenate the current node (red), parent node,
candidate children nodes (orange) and their children nodes (green) together to form a unified prompt, and then
input into BERT. Finally, we realize the prediction of various types of nodes through joint labeling.

Improved pre-trained model utilization
- We form a set of taxonomy path points
PScocialScience = (Archeology-Anthropology-
Social Science) by combining the local infor-
mation points of each node and the node Social
Science to be extended. We then generate the
appropriate natural language SGen using a prompt
function.

SGen(q, lp) = Prompt(q, lp) (3)

where q is the node to be expanded and Prompt
is a function to generate natural language from
prompts. For example, SGen(q, lp) = "Social Sci-
ence including Anthropology, and Anthropology
including Archeology". We feed this generated
language SGen into the pre-trained model, rank the
results in the same way as TEMP, and use the high-
est score as the parent node of the given node.

Encoder(SGen) = v
′
[CLS], v

′
1, . . . , v

′
w (4)

The encoder results are as above, where w is the
number of output vectors. We trained the model
with Margin Ranking Loss (MRL), which is de-
fined as follows:

L =
∑

P∈P+

∑

P ′∈P−
max

(
0, f

(
P ′)− f(P ) + γ

(
P, P ′))

(5)

where P+ is the set of taxonomy-paths in the tax-
onomy, P− is the set of negative samples, and
γ (P, P ′) is a function designed for the margin
between positive and negative taxonomy-paths.
To capture the semantic similarity of different
taxonomy-paths, we follow TEMP to set a dy-
namic margin function based on the semantic sim-
ilarity as follows:

γ
(
P, P ′) =

( |P ∪ P ′|
|P ∩ P ′| − 1

)
∗ k (6)

where k is a parameter used to adjust margins
(usually between 0.1 and 1).

3.2 Stage two: Children Finding

The second stage of ATTEMPT is to identify all
the children nodes of a given node in the tax-
onomy. For example, finding the children nodes
"Anthropology" and "Civics" for the node "Social
Science", as shown in Figure 2. We propose two
methods for this stage: PWC and MNL.

3.2.1 PWC: Pair-wise Classification
In the second stage, we identify all the child nodes
of a given term. To do this, we form pairs of pos-
sible “hypernym-hyponym" term pairs from the
node to be expanded (red node) and each candidate
child node (orange node, child of the parent iden-
tified in the first stage). These term pairs are con-
nected with the special token [SEP ] and fed into
a pre-trained language model such as BERT. An
example can be seen in Figure 2, where the node
to be classified is “Social Science" and the orange
candidate child nodes are “natural science," “an-
thropology" and “civics."

We use the pre-trained model to perform binary
classification to determine whether the term pairs
have a “hypernym-hyponym" relationship or not.
The traditional cross-entropy function is used as
the loss function to train the classification model.
This method is simple, because the pre-trained
model has been trained on a large corpus already
and it can identify whether the term pairs have a
hierarchical relationship or not. This method is
called Pair-wise classification.
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Dataset Environment Food Science
Metric Wu&P MRR Acc Wu&P MRR Acc Wu&P MRR Acc

Leaf
Nodes

BERT+MLP 47.9 21.5 11.1 47.0 14.9 10.5 43.6 15.7 11.5
TaxoExpan 54.8 32.3 11.1 54.2 40.5 27.6 57.6 44.8 27.8

STEAM 69.6 46.9 36.1 67.0 43.4 34.2 68.2 48.3 36.5
TMN 54.0 43.6 35.0 65.9 47.2 34.7 75.9 53.2 41.9

TEMP-BERT 75.9 62.0 49.0 78.3 57.1 45.2 84.6 64.6 54.4
ATTEMPT-PPT(ours) 82.3 75.1 65.4 78.4 58.1 46.5 86.6 70.7 61.2

All
Nodes

TEMP-BERT 64.8 33.5 15.6 84.3 41.1 37.4 88.0 52.9 43.4
ATTEMPT-PPT(ours) 81.1 52.5 37.5 84.3 42.6 39.0 90.9 60.0 52.8

Table 1: Baseline comparison on the three datasets in stage one (in %)

3.2.2 MNL: Multiple Nodes Labeling
MNL is a new approach that addresses the prob-
lem of identifying multiple children of a given
node in the taxonomy. There are two main chal-
lenges: determining whether a node has children
and how many children it has, and identifying as
many children as possible if there are multiple
children.

To address these challenges, we first determine
whether the given node is a leaf node (has no chil-
dren) and if so, the second stage ends. If there
are multiple children, we treat this as a multiple-
choice problem and model it as a sequential label-
ing task. As shown in Figure 3, we extract the pos-
sible siblings, children, and grandchildren (orange
and green nodes) of the given node to make use
of local information. We then use a prompt func-
tion to convert these three types of nodes into nat-
ural language (e.g., “Natural Science - Chemistry,
Physics" is converted to “Natural Science, and it
including Chemistry and Physics").

We concatenate the node to be expanded “So-
cial Science" with all the sentences generated by
the prompt, and then feed this into the pre-trained
model. Since the model was trained on a large
corpus of natural language, the input of natural
language is consistent with the pre-training phase,
which helps to fully utilize the hidden information
of the model and correctly identify the contextual
relationships. The addition of local information
provides additional context to the model, which
allows it to make more accurate predictions about
the children of the given term.

4 Experiments

In this section, we first describe the experimen-
tal setup and implementation details in Section 4.1
and Section 4.2. We then present the results of

our experiments in Section 4.3, including a com-
parison of our approach to the baseline method.
To further understand the contribution of different
components of our approach, we conduct ablation
experiments in Section 4.4 to investigate the effec-
tiveness of using local information and prompts in
ATTEMPT.

4.1 Experimental Setup

Datasets. We conducted experiments on two
datasets that include six domains and two types of
nodes. The first dataset is the Semeval-2016 task
13 dataset, which was used to evaluate the perfor-
mance of expanding leaf nodes in stage one. We
compared our method to previous approaches such
as TEMP (Liu et al., 2021) and STEAM (Yu et al.,
2020), which have also been tested on this dataset
for leaf node expansion.

To evaluate the expansion of non-leaf nodes, we
constructed a new dataset based on Semeval, as
there are limited previous datasets that are rele-
vant to this task. This dataset was specifically de-
signed for the purpose of non-leaf node expansion
and evaluation.

The following is a description of the two
datasets: 1) We used the dataset from Semeval-
2016 task 13 2, which contains three English
datasets for the environment, science, and food
domains. We followed the setup as in (Yu et al.,
2020) and used the randomly-grown taxonomies
for self-supervised learning, and sampled 20% of
the leaf nodes for testing. We used this dataset to
compare our method with other taxonomy exten-
sion methods for leaf nodes. 2) As there is limited
data available for non-leaf node expansion, we re-
constructed the original data. We defined nodes
with one parent and no children as leaf nodes and

2https://alt.qcri.org/semeval2016/task13/
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Dataset Environment Science Food
Metric acc Avg(F1) acc Avg(F1) acc Avg(F1)

PWC 21.5 50.8 20.0 54.3 12.5 32.1Non-Leaf
Nodes ATTEMPT-MNL(ours) 46.2 68.7 33.3 59.8 37.5 69.6

PWC 47.1 56.3 58.1 74.65 60.3 74.8All
Nodes ATTEMPT-MNL(ours) 64.7 82.8 61.3 74.09 73.3 84.5

Table 2: Baseline comparison on the three datasets in stage two (in %)

Dataset Environment Science Food
Metric acc Avg(F1) acc Avg(F1) acc Avg(F1)

Baseline 11.8 14.7 22.5 23.3 25.9 30.9
ATTEMPT(ours) 12.0 15.0 22.6 28.1 26.7 32.9

Table 3: Comparison of the baseline method and ATTEMPT in the overall process(in %)

nodes with one parent and at least one child as
non-leaf nodes. More details about the dataset are
provided in Appendix A.
Metrics. For the parent finding process in stage
1, we followed the evaluation strategy of (Yu
et al., 2020) using Accuracy, Mean reciprocal rank
(MRR), and Wu & Palmer similarity (Wu&P) to
evaluate our methods. Accuracy (ACC) measures
the count of parent or child nodes that are accu-
rately predicted. MRR calculates the average of
reciprocal ranks of the true taxonomy path. Wu&P
measures the semantic similarity between the pre-
dicted taxonomy path and the truth taxonomy-
path.

For stage two, we proposed two metrics for
evaluating the effectiveness of this phase. One is
ACC, which represents whether all children can
be found or not. The second one is Avg F1, which
can further evaluate how many children are found
for a given node. Avg(F1) = 1

n

∑n
i=1 F1

Compared Methods. We compare with the fol-
lowing methods:
• BERT+MLP The method extracts terms em-

beddings from BERT and then feeds them into a
multilayer perceptron (MLP) to predict their rela-
tionship.
• TEMP (Liu et al., 2021) One state-of-the-

art taxonomy expansion framework which predicts
new concepts’ position by ranking the generated
taxonomy paths. The first method that employs
pre-trained contextual encoders in taxonomy con-
struction and hypernym detection problems.
• STEAM (Yu et al., 2020) A taxonomy expan-

sion framework that leverages natural supervision
in the existing taxonomy for expansion.
•TaxoExpan (Shen et al., 2020) A self-

supervised method for encoding local structures
in seed taxonomy using location-enhanced graph

neural networks.
• TMN (Zhang et al., 2021) A Triplet Match-

ing Network (TMN) that finds suitable hypernym,
hyponym word pairs for a given query concept.

4.2 Implementation Details

We present the PPT method for the first stage of
leaf node expansion, which is based on TEMP
(TEMPs’ code link 3). We use BERT (bert-base-
uncased) as the pre-trained language model and
split the terms into 10% for validation and 10%
for testing. To expand the full type of nodes, both
leaf and non-leaf, we use the new data introduced
previously and select the same number of leaf and
non-leaf nodes as the test set. We use the default
optimal hyperparameters of the original TEMP au-
thors and experiment with different learning rates
to obtain the best performance. We also use mul-
tiple prompts (see Appendix C) according to the
settings of Musubu (Takeoka et al., 2021), and
take the average result as the experimental result.
To reduce the impact of randomness, we repeat the
experiment three times.

For the MNL method in stage two, we connect
the nodes to be expanded (red), the candidate child
nodes (orange), and the child nodes of the candi-
date nodes (green) and generate natural language
by way of prompt. The generated natural language
is fed into the pre-training model and labelled. We
label the real children of a given node as 1, the
sibling nodes as 0, and ignore the computational
loss for all the rest of the nodes. In addition, if
a term has multiple tokens and one of the tokens
is marked as one by the model, we mark all those
tokens as child nodes. See Appendix B for more
details.

3https://github.com/liu-zichen/TEMP
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Dataset Environment Science Food
Metric Wu&P MRR Acc Wu&P MRR Acc Wu&P MRR Acc

no path nodes 81.8 73.2 59.6 81.0 67.2 56.5 78.5 57.5 44.1
no prompt 79.0 64.8 51.9 84.1 67.0 56.5 78.4 56.9 45.1

ATTEMPT-PPT(ours) 82.3 75.1 65.4 86.6 70.7 61.2 78.7 58.1 46.5

Table 4: Results of ablation experiments on the three dataset in stage one (in %)

Dataset Environment Science Food
Metric acc Avg(F1) acc Avg(F1) acc Avg(F1)

no prompt 52.9 53.7 62.0 75.0 52.7 63.4
no grandchild 52.9 52.9 51.6 62.3 51.1 59.8

ATTEMPT-MNL(ours) 64.7 82.8 61.3 74.2 73.3 84.5

Table 5: Results of ablation experiments on the three dataset in stage two (in %)

4.3 Experimental Results

As shown in Table 1, our method PPT outperforms
the existing TEMP model significantly on both
leaf and non-leaf nodes. For leaf nodes, we im-
proved the TEMP model by 8.2%, 6.7%, and 2.8%
on Acc, MRR, and Wu&P, respectively. For all
types of nodes, the improvement is 11.0%, 9.2%,
and 6.4%, respectively.

The comparison results of the two methods
tested in the child discovery phase are presented
in Table 2. For leaf nodes, the MNL method im-
proves Acc and Avg(F1) by 21% and 20.3%, re-
spectively, compared to the pair-wise classifica-
tion method over the three benchmark datasets.
For all type nodes, the improvement is 11.3% and
11.9%, respectively.

Table 3 presents the comparison results between
the baseline method and our ATTEMPT. The base-
line method achieves 14.7%, 23.3%, and 30.9%
in Avg(F1) metrics for the three datasets of envi-
ronment, science, and food, respectively. Our AT-
TEMPT method improved the Avg(F1) by an av-
erage of 2.4% over the baseline. The low results
in Table 3 are due to the challenging nature of the
task. To obtain the correct parent node, all child
nodes must be successfully identified. This high-
lights the potential for further improvement.

4.4 Ablation Studies

To verify local information and prompt effective-
ness, we compare and test the changes in experi-
mental results with/without these two types of in-
formation on both stages.

Local Information As shown in Table 4, af-
ter removing the path nodes, the PPT method in
stage 1 decreases on average by 4.3%, 2%, and

2.1% on acc, mrr,wu&p, respectively, on the three
datasets. Table 5 also shows that the MNL method
decreases by 14.6% and 22.1% on average on ac-
curacy and average F1 score, respectively, after
removing the grandchild node information in the
child finding stage. We found that local informa-
tion is essential in both the first and second phases,
particularly in the second child lookup phase. Re-
moving local information brings about a signifi-
cant performance degradation, which may be at-
tributed to our method’s modelling of relation-
ships. The individual nodes are closely associated
in our MNL method.

Prompt In Table 4, the PPT method with
prompt removal decreased in acc, mrr, wu&p by
6.5%, 5.1%, and 2.0% on average, respectively.
Meanwhile, in the second stage, the MNL method
decreased 8.6% and 15.6% for accuracy and aver-
age F1 metrics, respectively, after prompt removal.
The scientific data in the second stage showed a
slight performance improvement after prompt re-
moval, which we speculate may be due to insuf-
ficient data and pre-trained corpus. Overall, the
prompt is essential for the parent finding process
in the first stage and the child finding process in
the second stage.

5 Conclusion

This paper proposes a two-stage taxonomy com-
pletion method based on pre-trained Language
models (ATTEMPT), which effectively inserts the
new concept in the correct position by finding a
parent node then labeling children nodes. In addi-
tion, we use prompt to generate natural language
information suitable for the pre-trained model fur-
ther to improve the effectiveness of parent node
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recognition and children labeling for the given
node. Our experiments on two types and three
domains with six datasets show that our method
can enhance the effectiveness of locating the posi-
tion of a given node in existing taxonomies. Fur-
thermore, the efficacy of local information and
prompts in ATTEMPT is also demonstrated by ab-
lation experiments. In conclusion, our proposed
ATTEMPT method is an effective approach for
taxonomy completion, and it can be further im-
proved with more comprehensive datasets.

Limitations

Since ATTEMPT uses the pre-trained language
model to complete the taxonomy, the expan-
sion effect is limited by the model. Generally,
pre-trained models with more knowledge scales
are better (e.g., BERT-Large V.S. BERT-Base-
uncased). However, our paper focuses on how to
fully use the knowledge of the pre-trained model
rather than verifying whether more knowledge
scales better or not. Based on the above, this paper
does not conduct more related research (in fact,
TEMP (Liu et al., 2021) has been compared and
reached similar conclusions). In addition, the se-
lection of prompts will also affect the expansion
effect. For the convenience of comparison, we
have selected several basic prompts (the same as
Musubu (Takeoka et al., 2021)) for experimenta-
tion. In future work, we plan to study how to
construct or select better prompts for classifica-
tion expansion. We do not consider the situation
of multi-parent nodes according to the TEMP (Liu
et al., 2021) settings. And according to our statis-
tics, there are only a few multi-parent nodes in the
Semeval-2016(task-13) datasets (1/3843). We will
continue investigating how to make better use of
the pre-trained model knowledge to solve the tax-
onomy completion problem.
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A Dataset
The original dataset and our reconstructed dataset
statistics are in Table 6 and 7.

Dataset Environment Science food
|N | 261 429 1486
|L| 200 306 1161
|D| 6 8 8

|∆leaf | 3.79 5.17 5.37
|∆non| 2.97 4.41 4.78

train(leaf/non) 148/59 226/112 893/284
test(leaf/non) 52/0 85/0 297/0

Table 6: Statistics of the original taxonomy datasets
for evaluation. |N | and |L| are the number of nodes
and leaf nodes in the taxonomy. |D|, |∆leaf | and
|∆non| indicate the depth of the taxonomy and the av-
erage depth of leaf nodes and non-leaf nodes respec-
tively.Train(leaf/non) and test(leaf/non) represents the
proportion of leaf and non-leaf nodes in train data and
test data.

Dataset Environment Science food
|N | 261 429 1486
|L| 200 306 1161
|D| 6 8 8

|∆leaf | 3.79 5.17 5.37
|∆non| 2.96 4.41 4.05

train(leaf/non) 187/46 292/94 1124/214
test(leaf/non) 13/13 21/21 74/74

Table 7: Statistics of the new taxonomy datasets for
evaluation.

To prevent the test data from being leaked dur-
ing training and to thoroughly test the generaliza-
tion ability of the model when encountering un-
seen data, we split each original taxonomy tree
into two subtrees, one for training and one for test-
ing. For example, the left subtree of the scien-
tific taxonomy in Figure 2, natural science and its
children, is used as the test subtree, and the rest is
used for training. Specifically, we select the sub-
tree with 20% of the number of nodes of the cur-
rent taxonomy tree as the subtree for testing and

ignore too many leaf nodes to ensure the ratio of
leaf nodes to non-leaf nodes is 1:1. Too many leaf
nodes will make the child finding stage degener-
ate into an expansion of leaf nodes, and the model
will be easily overfitting. And too few leaf nodes
will make the test inadequate, so we use equal leaf
and non-leaf node data as the test.

In the training and testing phases, we dig out the
node to be expanded in the current taxonomy tree,
and if the node has N children, these N children
are reassigned to the original parent of the node to
be expanded as child nodes. We ignore the case
of double parent nodes because their existence is
too rare. Only one node in the three datasets con-
taining more than 2000 nodes in our experiments
has a dual-parent node. We will consider this case
further in our future work.

B Implementation Details

For the fairness of the experiment, we follow the
setting of TEMP (Liu et al., 2021). We use 10%
terms for validating and 10% for testing. For
each benchmark, we try various learning rates and
report the best performance. We use multiple
prompts to experiment and select the average re-
sult as the experimental result. We repeated the
experiment three times to reduce the impact of ran-
domness. We train the model using the Pytorch
4 (Paszke et al., 2019) on the NVIDIA RTX3090
GPU. For all methods, the bert-base-uncased 5

model are chosen for feature extraction. The pre-
trained contextual encoders are of base size with
12 layers. We use the AdamW (Loshchilov and
Hutter, 2018) as the optimizer with the warm-up
(He et al., 2016), and fine tune the whole model
with a learning rate of 2e-5. The dropout (Srivas-
tava et al., 2014) of 0.1 is applied to prevent over-
fitting.

C Prompt Details

Name Prompt
Such-as Y such as X and Z
One-of X is one of Y, and Z is one of Y

Especiaally Y, especially X and Z
Is-a X is a Y, and Z is a Y

Including Y including X and Z

Table 8: List of prompts used in the experiments. Y
denotes a parent term of a term X and Z

4https://pytorch.org
5https://huggingface.co/bert-base-uncased
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