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Abstract

Conversational Question Answering (ConvQA)
models aim at answering a question with its rel-
evant paragraph and previous question-answer
pairs that occurred during conversation multi-
ple times. To apply such models to a real-world
scenario, some existing work uses predicted an-
swers, instead of unavailable ground-truth an-
swers, as the conversation history for inference.
However, since these models usually predict
wrong answers, using all the predictions with-
out filtering significantly hampers the model
performance. To address this problem, we
propose to filter out inaccurate answers in the
conversation history based on their estimated
confidences and uncertainties from the Con-
vQA model, without making any architectural
changes. Moreover, to make the confidence
and uncertainty values more reliable, we pro-
pose to further calibrate them, thereby smooth-
ing the model predictions. We validate our
models, Answer Selection-based realistic Con-
versation Question Answering, on two stan-
dard ConvQA datasets, and the results show
that our models significantly outperform rele-
vant baselines. Code is available at: https:
//github.com/starsuzi/AS-ConvQA.

1 Introduction

Conversational Question Answering (ConvQA) is
the task of answering a series of questions during
conversation, taking into account a given relevant
paragraph (Choi et al., 2018; Reddy et al., 2019).
Contrary to traditional extractive question answer-
ing tasks (Rajpurkar et al., 2016; Trischler et al.,
2017) that answer each question with the given
paragraph just once, ConvQA aims at answering
the current question using its previous question-
answer pairs taking into account the given para-
graph multiple times. For example, as illustrated in
Figure 1, the goal of ConvQA is to correctly answer
the question Q3 based on the previous conversation
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its bathroom. … He also uses the Van Nostrand alias in the episode "The 
Slicer", posing as a "Juilliard-trained dermatologist" …
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Figure 1: Illustration of realistic ConvQA evaluation with
three models: 1) using all predicted answers (All Pred.); 2)
not using predicted answers (No Pred.); 3) only using probably
correct answers while filtering out others (AS-ConvQA, Ours).
The scores in the bar chart underneath represent the F1 scores
measured by all test samples (see Table 1 for full results).

history such as Q2, A2, Q1, and A1, as well as the
current context C.

ConvQA has recently gained much attention as
it follows the human’s information seeking process
through multi-turn interactions with others. How-
ever, it is also known to be quite challenging since it
requires capturing all the information over the cur-
rent question, previous conversation, and the given
paragraph. To tackle this problem, a considerable
amount of work focuses mainly on developing a
model architecture for ConvQA (Qu et al., 2019a,b;
Huang et al., 2019; Chen et al., 2020; Kim et al.,
2021; Qiu et al., 2021; Raposo et al., 2022).

Despite their successes, however, there remains
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a critical limitation in that they use the ground-truth
answers (i.e., A2 and A1) in the conversation his-
tory during both training and evaluation steps. Such
an evaluation procedure is not applicable to the
real-world scenario, since the ground-truth answers
are not accessible when the user’s query is posed.
Therefore, the supporting dialogue history for the
current question should consist of the model’s pre-
dictions Ā1 and Ā2 in the real-world application,
instead of the nonexistent gold answers A1 and A2.

There is some recent work (Mandya et al., 2020;
Siblini et al., 2021) that considers such a realistic
setting on evaluation. In particular, they propose to
use the model’s predicted answers (i.e., Ā1 and Ā2),
instead of the ground-truth answers (i.e., A1 and
A2), for its evaluation. However, in such a setting,
the model faces inconsistency between training and
evaluation since the model is evaluated with the
predictions while trained with the ground-truth an-
swers. To handle such a discrepancy, Mandya et al.
(2020) and Siblini et al. (2021) suggest strategies
that randomly decide whether to use predicted or
gold answers for the input question during training.

However, as Figure 1 shows, using all predic-
tions as the answer history is not effective: The
performance difference is not so significant when
compared to not using them at all. We see that this
originates from a model’s failure to answering pre-
vious questions. Specifically, if a model incorrectly
predicts an answer Ā1 for the previous question
Q1, using the incorrectly predicted answer Ā1 for
the question Q2 not only affects the model’s cur-
rent prediction Ā2 negatively, but also engenders
further errors in the future prediction for Q3.

Therefore, in this work, we propose a novel se-
lection scheme for predicted answers from the con-
versation history, which filters out predictions that
are likely to be incorrect, unlike the existing work
that uses all the predicted answers including incor-
rect ones. The remaining step is then to identify
possibly incorrect predictions. To this end, we pro-
pose to use the confidence and uncertainty of the
model’s prediction, which are measured by its like-
lihood and entropy, respectively. In particular, if
the model predicts the previous answer with lower
confidence (i.e., lower likelihood) or higher uncer-
tainty (i.e., higher entropy) than a certain threshold,
we regard the model’s previous answer as proba-
bly incorrect, and remove it from the conversation
history in answering the current question during
evaluation. On the other hand, during training, we

soften the sampling process so that, instead of us-
ing the hard threshold above, we sample a predicted
answer based on its confidence or uncertainty (e.g.,
the lower the uncertainty, the higher the chance to
include the predicted answer in the conversation
history), in order to diversify the model’s input.

However, when dealing with confidence and un-
certainty, we should be careful about a miscali-
brated situation (Guo et al., 2017), which happens
when uncertainty and confidence do not correspond
to the error and accuracy of ground-truth correct-
ness, respectively. In other words, if the model is
not calibrated enough and the distribution for confi-
dence and uncertainty is highly skewed over partic-
ular ranges, the highly uncertain or low confident
yet valid predictions could be removed. Therefore,
to prevent such a performance degrading situation,
we further calibrate models using a temperature
scaling scheme (Guo et al., 2017) before estimat-
ing the uncertainty or confidence. We refer to our
method as Answer Selection-based realistic Con-
versational Question Answering (AS-ConvQA).

We validate our method on two standard Con-
vQA datasets, QuAC (Choi et al., 2018) and
CoQA (Reddy et al., 2019), against diverse base-
lines on a realistic evaluation protocol. The experi-
mental results show that our method significantly
outperforms these baselines, and a detailed anal-
ysis supports the importance of uncertainty- and
confidence-based answer selection schemes.

Our contributions in this work are threefold:

• We propose to remove incorrect predictions in
a conversation history, which degenerate Con-
vQA models’ performances during inference.

• We present confidence- and uncertainty-based
answer filtering schemes, which are further
calibrated to obtain reliable predictions.

• We show that our method achieves outstand-
ing performances on realistic ConvQA tasks.

2 Related Work

Conversational Question Answering ConvQA
requires a model to understand the context of ques-
tions and paragraphs along with previous conver-
sational questions and answers (Choi et al., 2018;
Reddy et al., 2019). While the simplest approach
to consider such conversation histories is to embed
them along with the given question and paragraph
in the representation space, recent work (Huang
et al., 2019; Qu et al., 2019b; Chen et al., 2020)
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proposed to leverage the relevant histories by se-
lectively using them. However, Vakulenko et al.
(2021) and Kim et al. (2021) have shown that even
a simple concatenation of previous questions and
answers outperforms these selection-based meth-
ods, thanks to the advances in pre-trained language
models (Devlin et al., 2019; Liu et al., 2019) that
are designed to attend to the relevant parts. Fur-
thermore, recent methods (Elgohary et al., 2019;
Kim et al., 2021; Vakulenko et al., 2021; Raposo
et al., 2022) rather focus on the problem of ambi-
guity in the input question by proposing a question
rewriting scheme for its disambiguation, showing
remarkable performance improvements.

However, the aforementioned work has a funda-
mental limitation on the evaluation protocol: They
evaluate models based on ground-truth answers
working as a conversation history, which are not
available in a real-world setting. Li et al. (2022)
point out this problem of ground-truth history eval-
uation but use the ground-truth answers during eval-
uation as well, since they target at disambiguating
pronouns in the question by comparing the pre-
dicted and ground-truth answers. Alternatively,
Mandya et al. (2020) and Siblini et al. (2021) use
the model’s predictions instead of the ground-truth
answers during evaluation, and further train the
model with predicted answers. However, they do
not take into account the quality of predicted an-
swers, where low-quality ones are not useful (see
Figure 1). Thus, we propose to selectively use the
predicted answers that are probably correct, based
on their calibrated confidences and uncertainties.

Confidence and Uncertainty As it is nearly im-
possible for models to always make accurate predic-
tions, unreliable predictions become serious issues
when deploying machine learning models to real-
world settings. Motivated to prevent such a risk,
mechanisms of estimating the reliability of model’s
predictive probabilities based on confidence and un-
certainty are recently proposed (Abdar et al., 2021;
Houben et al., 2022). We note that confidence is
usually measured by the softmax outputs of mod-
els (Guo et al., 2017), and that uncertainty can be
quantified by Bayesian models, which can be ap-
proximated via Monte Carlo (MC) dropout (Gal
and Ghahramani, 2016; Kendall and Gal, 2017).
With much work on confidence and uncertainty es-
timations in computer vision tasks (Guillory et al.,
2021), related topics have been recently adopted
for NLP tasks as well (Shelmanov et al., 2021; Wu

et al., 2021; Malinin and Gales, 2021; Vazhentsev
et al., 2022). While confidence and uncertainty es-
timation should also be considered in ConvQA, we
believe that this venue is under-explored so far. In
particular, since questions are asked sequentially,
it is likely that untrustworthy predictions in the
conversation history would negatively affect the
performance. To tackle this, we propose to exclude
low-confident or uncertain predictions when train-
ing and evaluating the ConvQA model.

Calibration Confidence and uncertainty help in-
terpret the validity of the model’s prediction. How-
ever, it is not safe to rely on them when the model
is not calibrated, where the correct likelihood does
not match the predicted probability (Guo et al.,
2017), or the model error does not match the pre-
dicted uncertainty (Laves et al., 2019). Since deep
neural networks are prone to miscalibration as the
number of parameters has much increased, large
pre-trained language models are also not free from
this problem (Wang et al., 2021; Zhao et al., 2021;
Dan and Roth, 2021). One of the most prevalent
approaches to calibrating the model is to rescale
a logit vector before the softmax function for reg-
ularizing the probability, which is known as tem-
perature scaling (Guo et al., 2017). While there
exist lots of calibration schemes, including label
smoothing (Szegedy et al., 2016) and confidence
penalty (Pereyra et al., 2017), in this work, we use
temperature scaling as a calibrator, since it is sim-
ple yet effective while not changing the output class
of the model prediction (i.e., only scaling logits).

3 Method

We first introduce ConvQA. Then, we describe our
answer validating methods based on confidence and
uncertainty values with their calibration schemes.

3.1 Conversational Question Answering
We provide general descriptions of a ConvQA
task. For the i-th turn of the conversation, we
are given a question Qi and its corresponding con-
text C, as well as its conversation history con-
sisting of previous questions and answers: Hi =
{Qi−1, Ai−1, ..., Q1, A1}. Then, the goal of Con-
vQA is to correctly extract the ground-truth answer
Ai from C along with Qi and Hi, as follows:

P (Ai) = Mθ(C,Qi, Qi−1, Ai−1, ..., Q1, A1), (1)

where Mθ is a ConvQA model, parameterized by θ,
and, for the sake of simplicity, we omit conditional
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variables C, Qi, and Hi on the left side of Equa-
tion 1, i.e., P (Ai) = P (Ai|C,Qi,Hi). Note that
existing work (Elgohary et al., 2019; Kim et al.,
2021; Vakulenko et al., 2021; Raposo et al., 2022)
has an unrealistic assumption that a set of ground-
truth answers {Ai−1, ..., A1} is available during
evaluation as in Equation 1. However, this evalu-
ation setup is far from reality, since they are not
always available when the user’s novel questions
come in, unlike the training phase which optimizes
a model with ground-truth answers. Therefore,
we should particularly modify the formulation in
Equation 1 to accommodate a realistic evaluation
scenario, which we describe in the next subsection.

3.2 Realistic ConvQA
To tackle the problem of accessing ground-truth
answers during evaluation in Equation 1, we aim
at redefining its formulation to evaluate ConvQA
models under real-world situations as shown below.

Evaluation When a user asks a unique question
whose ground-truth answers are not accessible, the
most naïve approach is to work with the relevant
context and previous questions, as follows:

P (Āi) = Mθ(C,Qi, Qi−1, ..., Q1), (2)

where Āi denotes the ith predicted answer (i > 1)
during inference time. However, the formulation
in Equation 2 may be suboptimal, since it ignores
predicted answers { ¯Ai−1, ..., Ā1} that occurred in
the former conversation, which may be beneficial
for the current prediction. Thus, we can instead
make inference with predicted answers, as follows:

P (Āi) = Mθ(C,Qi, Qi−1, Āi−1, ..., Q1, Ā1). (3)

However, when evaluating with Equation 3 while
training with Equation 1, a problematic discrep-
ancy arises, as model Mθ uses gold answers Ai for
training but predicted answers Āi for inference.

Training To tackle this inconsistency, recent
work (Mandya et al., 2020; Siblini et al., 2021)
randomly decides whether to use Āi or Ai during
the training phase, as follows:

P (Ai) =

{
Mθ(C,Qi, Qi−1, Āi−1, ...) w.p. λrand,
Mθ(C,Qi, Qi−1, Ai−1, ...) w.p. 1− λrand,

(4)

where λrand is the probability of using Āi, which
is set based on heuristic sampling schemes, either
using the random coin flipping or increasing the
sampling rate based on the number of steps.

While such an attempt bridges the gap between
training and inference in the real-world setting, crit-
ical limitations remain. First, as Figure 1 shows,
we observe that using all the predicted answers
rarely contributes to the model performance, as
they include incorrect answers that hinder accurate
predictions for the current question. Also, we fur-
ther point out that there still exists a discrepancy
between training and evaluation: The model ob-
serves ground-truth answers in Equation 4 which
are yet unobservable for evaluation in Equation 3.
Therefore, to tackle these challenges, we propose
to selectively use the predicted answers based on
the predictions’ confidences and uncertainties.

3.3 Predicted Answer Selection Scheme
Our key intuition is that confidence and uncertainty
are simple yet effective measures to filter out inac-
curate predictions. Before going into details, we
first define the notations. Let xi ∈ X be an ith in-
put (i.e., turn) for ConvQA model Mθ, which con-
sists of current question Qi, its relevant context C,
and conversation history Hi. Then, labels of given
input xi are defined as y(start)i ∈ C and y(end)i ∈ C
with C ∈ {1, ...,K}, where K is the number of
sequence lengths for context C. In other words,
y
(start)
i and y

(end)
i denote the start and end spans,

respectively. Further, to predict labels y(start)i and
y
(end)
i , we first obtain a logit vector zi for each

label1, and use it for calculating a probability vec-
tor pi over K spans: pi = softmax(zi), where
softmax is a softmax function.

Confidence We now define the confidence. From
the probability p = softmax(z), a model likeli-
hood can be interpreted as confidence, as follows2:

sconf = max
y∈C

p(y|z), (5)

where sconf denotes the confidence value.

Uncertainty While confidence can estimate how
confident the model is on its prediction, it might
be also beneficial to measure the model’s certainty
with Bayesian deep learning techniques (Kendall
and Gal, 2017) to prevent erroneous predictions,
which we describe here. At first, to calculate the
uncertainty value, we need to obtain N different
predictions for approximating the model’s distribu-
tion. To do so, we first enable dropout (Srivastava

1We omit superscripts start and end for simplicity.
2For simplicity, we omit a turn index i, which is repre-

sented in a subscript, for example, Qi for the ith conversation.

480



et al., 2014) in the language model during infer-
ence, and then forward input x for N times with
N different dropout masks, which is referred to as
Monte Carlo (MC) dropout (Gal and Ghahramani,
2016). Then, we can obtain probability vector p
via MC integration: p = 1

N

∑N
n=1 softmax(z

(n)),
where z(n) is the logit vector from each forward
pass. Then, based on probability p, the uncertainty
is quantified via its entropy over K classes (Kendall
and Gal, 2017; Laves et al., 2019), as follows:

suncer = − 1

logK

K∑

k=1

p(k) log p(k), (6)

where suncer denotes the uncertainty value, which
we normalize to be on a scale between 0 and 1 with

1
logK in Equation 6, following (Laves et al., 2019).

3.4 Calibrating Confidence and Uncertainty

We then describe the calibration schemes to match
the model’s predicted confidence and uncertainty
to its correct likelihood and error, respectively.

Perfect Calibration In order to calibrate trust-
worthiness of the confidence and uncertainty, we
first describe perfectly calibrated situations. Given
the input x, the model predicts the most likely class,
ȳ = argmaxp, from the entire classes with the
highest probability, p̄ = maxp. Each perfect cal-
ibration for confidence and uncertainty is then as
follows (Guo et al., 2017; Laves et al., 2019):

P(ȳ = y|sconf = p) = p,

P(ȳ ̸= y|suncer = p) = p,
(7)

where y denotes the true label with ∀p ∈ [0, 1].

Calibration and Uncertainty Error However,
perfect calibration defined in Equation 7 is hardly
achievable in practical settings due to noise and pre-
diction errors. Thus, we rather define a calibration
error to estimate how much the model’s prediction
is calibrated. One of the most prevalent methods
to quantify calibration error for confidence is to
measure the difference in expectation between con-
fidence and accuracy as follows (Guo et al., 2017):

Esconf
[ |P(ȳ = y|sconf = p)− p| ], (8)

where ∀p ∈ [0, 1]. Also, miscalibration of uncer-
tainty is quantified as follows (Laves et al., 2019):

Esuncer [ |P(ȳ ̸= y|suncer = p)− p| ]. (9)

However, since sconf and suncer lie in a continu-
ous domain, it is impossible to sample them infinite
times for every p when measuring calibration er-
rors. Therefore, we further approximate them in a
discrete space, which was in the continuous domain
(Equations 8, 9), by dividing the predictions into
M bins and then measuring accuracy for each cor-
responding bin. Formally, accuracy and confidence
per bin are as follows (Guo et al., 2017):

acc(Bm) =
1

|Bm|
∑

i∈Bm

1(sconf = y(i)),

conf(Bm) =
1

|Bm|
∑

i∈Bm

sconf ,

(10)

where Bm is a set of label indices whose values
are within the mth bin among M non-overlapping
bins. Similarly, error and uncertainty per bin are
formally defined as follows:

err(Bm) =
1

|Bm|
∑

i∈Bm

1(suncer ̸= y(i)),

uncer(Bm) =
1

|Bm|
∑

i∈Bm

suncer.

(11)

Using definitions in Equations 10, 11 above, we
now measure the approximated calibration errors.
Regarding confidence, the Expected Calibration Er-
ror (ECE) (Guo et al., 2017) is defined as follows:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)|, (12)

where n is the number of samples in total. For un-
certainty, Expected Uncertainty Calibration Error
(UCE) (Laves et al., 2019) is defined as follows:

UCE =
M∑

m=1

|Bm|
n

|err(Bm)− uncer(Bm)|. (13)

Calibration with Temperature Scaling With
the calibration criteria (i.e., ECE and UCE), we
now aim at obtaining well-calibrated confidence
and uncertainty values having low ECE and UCE.
To do so, we apply a temperature scaling scheme,
which regulates the scale of the obtained logit vec-
tor z with a single scalar, namely temperature
τ > 0. Note that temperature scaling does not
affect the maximum value of the softmax output;
therefore, accuracy is preserved. Formally, the cali-
brated probability vector p̂ is defined as follows:

p̂ = softmax(z/τ). (14)

We find the τ value based on the low calibration
errors, i.e., ECE and UCE, in experiments.
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3.5 Overall Pipeline
We now summarize the overall pipeline of our
AS-ConvQA framework, which leverages the cali-
brated confidence and uncertainty values to sample
valid predictions for inference, while using them
during training as well. Our training pipeline con-
sists of two steps, which we explain below.

Step 1 We start training a model with gold an-
swers Ai following the training protocol in Equa-
tion 1, since, if the model cannot observe gold
answers, it might fail to capture and generate accu-
rate answers, easily leading to degenerated perfor-
mances (Mandya et al., 2020). Then, to prepare for
Step 2, we make inference with it to obtain predic-
tion Āi together with its confidence and uncertainty,
for each input xi in the training set.

Step 2 With the predicted answers and their con-
fidences and uncertainties from Step 1, we further
train the model to reflect the predicted answers in-
stead of the ground-truth answers. Note that our
objective is to filter out less confident or uncertain
predictions in inference. Thus, since filtered ones
are not observable during our realistic evaluation
phase, we also aim at reflecting such an occurrence
during training to narrow the gap between training
and evaluation. To do so, instead of training with all
predicted answers, we rather sample a predicted an-
swer based on its confidence or uncertainty value:

P (Ai) =

{
Mθ(C,Qi, Qi−1, Āi−1, ...) w.p. λvalid,
Mθ(C,Qi, Qi−1, ...) w.p. 1− λvalid,

(15)

where λvalid is obtained by the previous predic-
tion’s (Āi−1) confidence or uncertainty: λvalid ∈
[sconf , 1 − suncer]. Note that, in contrast to exist-
ing work (Mandya et al., 2020; Siblini et al., 2021)
represented in Equation 4, our work does not use
previous gold-answers (Ai−1) for training as well.

For evaluation, we follow the realistic evaluation
protocol described in Equation 3. However, instead
of using all predictions (Mandya et al., 2020; Sib-
lini et al., 2021), we rather remove low-confident
or uncertain predictions against the threshold.

4 Experimental Setups

We explain datasets, metric, and models. Please
see Appendix A for further implementation details.

4.1 Dataset and Metric
QuAC QuAC (Choi et al., 2018) is the bench-
mark ConvQA dataset, which is known to resem-

QuAC CoQA
BERT RoBERTa BERT RoBERTa

Gold 59.86 65.08 72.79 77.62
No Pred. 55.44 61.24 70.83 75.56
All Pred. 55.76 61.53 71.28 75.42
CoQAM 55.83 61.55 71.27 74.29
Robust-P 54.21 60.32 70.17 73.96
Attentive Selection 55.74 61.42 71.05 74.60
AS-ConvQAconf (Ours) 57.03 62.47 72.00 76.52
AS-ConvQAuncer (Ours) 57.35 62.33 72.08 76.33
AS-ConvQAcombine (Ours) 57.06 62.18 71.99 76.76

Table 1: F1-scores on QuAC and CoQA. Note that Gold model
is not a fair baseline as it uses the ground-truth answers during
inference, and thus is evaluated in an unrealistic setting.

ble a realistic information seeking dialogue, where
questioners were prevented from reading para-
graphs for its collection. QuAC consists of 14K
dialogues and 100K pairs of questions and para-
graphs. As the test set is not publicly open, we use
a development set.

CoQA CoQA (Reddy et al., 2019) is another
ConvQA dataset with 127K pairs of questions and
paragraphs; however, unlike QuAC, questioners
were allowed to share paragraphs during collection.
We also use a development set instead of the test
set, which is not publicly available.

F1-score We evaluate models with F1-score, fol-
lowing the standard protocol (Kim et al., 2021).

4.2 Question Answering Models

For question answering models, we use two base-
size pre-trained language models widely used in
ConvQA tasks: BERT-base (Devlin et al., 2019)
and RoBERTa-base (Liu et al., 2019).

4.3 Baselines and Our Models

We compare AS-ConvQA to other relevant base-
lines using predicted answers. Gold model, which
is an indicator, uses gold answers as the answer
history during evaluation, which is not realistic,
whereas all the others are evaluated with predicted
answers. All models are trained with the same
protocol, using gold answers as the conversation
history for the first half of training epochs (Step 1).

Gold This model uses the ground-truth answers
during training and evaluation, thus unrealistic.

No Prediction (No Pred.) This model does not
use the predicted answers as the conversation his-
tory in either training or evaluation steps.

All Prediction (All Pred.) In contrast to No
Pred., this model uses all the predicted answers
during both training and evaluation steps.
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Figure 2: Comparison results of certain (confident) and uncer-
tain (unconfident) predictions on QuAC. Note that a threshold
is set as the median of the uncertainty (confidence) values.

CoQAM For training, this model uses the ran-
dom sampling scheme represented in Equation 4,
which samples either predicted or ground-truth an-
swers with coin-flipping (Mandya et al., 2020). For
evaluation, it uses all the predictions as the history.

Robust-P Similar to CoQAM, this model uses
a heuristic answer sampling scheme in a random
manner, but increases the predicted answer sam-
pling rate for training (Siblini et al., 2021). Also, it
is evaluated with all predicted answers.

Attentive Selection This model uses the atten-
tion mechanism to softly select the relevant answers
in the history, following previous work (Qu et al.,
2019b; Huang et al., 2019; Chen et al., 2020).

AS-ConvQAconf (Ours) This is our model that
filters out unconfident answers via confidence val-
ues during training and evaluation, after calibration.

AS-ConvQAuncer (Ours) This is also our model
that filters out uncertain answers during training
and evaluation, after calibrating uncertainty values.

AS-ConvQAcombine (Ours) This model com-
bines our confidence and uncertainty modules,
where we use the mean of calibrated confidence
and (1-uncertainty) values for filtering out samples.

5 Results and Discussion

In this section, we show overall performances of
our proposed method along with detailed analyses.

Main Results As Table 1 shows, the proposed
AS-ConvQA models including confidence and un-
certainty schemes show significant performance
gains over all baselines on two different QA mod-
els. Interestingly, No Pred. model, which does
not utilize previous answers as the conversation
history, shows comparable to or even better per-
formance than the other baseline models based on
either exploiting all the predicted answers or ran-
domly sampling them with heuristic ratios. This
implies that it is more helpful not to use low-quality

47

49

51

53

55

57

59

61

F1

Gold
Gold w/ No Pred.
Gold w/ All Pred.

No Pred.
No Pred. w/ All Pred.
All Pred.

All Pred. w/ No Pred.
AS-ConvQAconf (Ours)
AS-ConvQAuncer (Ours)

Figure 3: F1-scores on the mismatching evaluation settings
for each baseline model on QuAC, either using all of the
predictions or none of them as the previous answer history.

predicted answers – unconfident or uncertain – at
all than to use them. On the other hand, our mod-
els take advantage of filtering out probably invalid
predictions, thus achieving improved performance.

Moreover, our AS-ConvQA models outperform
the attention-based history selection model (i.e.,
Attentive Selection). This is because, even though
previous answers are all incorrect, the attention
scheme should leverage some of them (i.e., the sum
of attention scores for previous answers should be
1), which leads the model to answer with an inaccu-
rate history. Meanwhile, AS-ConvQA models can
ignore possibly wrong predictions, thus decreasing
the risk of being affected by the inaccurate history.

Last, when combining confidence and uncer-
tainty modules, the performance is not much fur-
ther enhanced. To analyze this, we first measure the
number of overlapping questions, where each of the
AS-ConvQAconf and AS-ConvQAuncer models pre-
dicts with higher confidence or lower uncertainty
than its median value. Then, we observe that about
74.82% and 77.12% of the questions overlap on
QuAC and CoQA, respectively. This indicates that
unconfident and uncertain samples are highly cor-
related, which are likely to be filtered out by both
confidence- and uncertainty-based models. In other
words, due to similar effects of AS-ConvQAconf

and AS-ConvQAuncer models, the performance of
combined models is not much improved.

Unconfident and Uncertain Predictions In or-
der to see whether predictions with low confidence
or high uncertainty actually correspond to incorrect
answers, we compare the performances between
the certain (unconfident) and uncertain (confident)
predictions. As Figure 2 shows, low-confident
and uncertain samples lead to drastic performance
degradation. This result corroborates our hypoth-
esis that a prediction with low confidence or high
uncertainty acts as an obstacle in ConvQA tasks.

Impact of Realistic Evaluation Setups To see
results in realistic settings – not using ground-truth
answers during inference – for the Gold model, we
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Figure 4: Reliability diagrams with and without temperature
scaling (TS), regarding confidence or uncertainty on QuAC.

train it with ground-truth answers, and then test
either with predicted answers or without them. Fig-
ure 3 shows that performances of the Gold model
are drastically dropped, and even lower than both
No Pred. and All Pred., even though tested on the
same strategies. This can be explained with the
term of exposure bias (Bengio et al., 2015; Mandya
et al., 2020), where a discrepancy exists between
training and evaluation, which hinders the model
from performing well on test data that differs from
training data. Furthermore, this also explains one
of the reasons why CoQAM and Robust-P models
perform poorly: Since they observe ground-truth
answers for training, which are not observable dur-
ing evaluation, they underperform ours.

Training & Evaluation Discrepancy We have
observed a discrepancy between training and eval-
uation for the Gold model above. Then, the next
possible question is whether this discrepancy also
happens for models that are trained on the predicted
answers, but evaluated in different settings. To see
this, we test No Pred. and All Pred. models in a
mismatching evaluation setting. As Figure 3 shows,
a discrepancy exists for both models, though the
gaps are smaller than the Gold model. This im-
plies that even if a ConvQA model is trained on the
predictions, the problem of discrepancy should not
be ignored. Meanwhile, our proposed models can
alleviate such an issue with a selective sampling
scheme based on confidence and uncertainty.

Effectiveness of Calibration We show the effect
of calibration on confidence and uncertainty values
in Figure 4. Regarding confidence, the QA model
already generates calibrated scores; thus there is
no reason to scale the logit vector with temperature
scaling (i.e., w/ temperature scaling yields more
errors in terms of ECE). However, regarding un-
certainty, the estimated uncertainty scores from the
model have high errors in terms of UCE, i.e., not
calibrated. Thus, after applying the temperate scal-
ing scheme, the uncertainties become calibrated.
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Figure 5: Comparison between the calibrated and not cali-
brated AS-ConvQAuncer with varying thresholds on QuAC.
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Figure 6: F1-scores for the first, second, and third conversa-
tional turns on QuAC with baselines and our AS-ConvQA.

Note that the calibrated uncertainties further con-
tribute to the performance gain, as Figure 5 shows,
since the model can observe a broad range of un-
certainty values during training, making the model
easily capture and reject uncertain predictions.

Effectiveness on Conversational Turns To see
how the proposed AS-ConvQA contributes to the
quality of the conversation as it proceeds, we fur-
ther analyze the performances of former and latter
conversational turns. As shown in Figure 6, both
the former and latter turns benefit from our AS-
ConvQA, and the performance improvements are
more significant on the latter turn. This result im-
plies that our AS-ConvQA effectively prevents the
accumulation of errors, which originate from the
incorrect predictions in the previous turns.

Case Study We conduct a case study. As the first
example in Table 2 shows, even though both All
Pred. and AS-ConvQAuncer models inaccurately
predict Ā6, they handle it differently: All Pred.
accepts it, while ours reject it for the subsequent
question. In particular, All Pred. model misinter-
prets ‘this’ as ‘big break’ when answering Q6 as
well as Q7; however, since ‘this’ actually refers
to ‘Laputa: Castle in the Sky’, All Pred. further
propagates the misleading prediction to the next
question. By contrast, our model decides not to
select Ā6 as a conversational history due to its high
uncertainty, thus not repeating the previous mistake
when answering Q7. The proportion of such exam-
ples is about 0.52, where our model predicts the
previous answer incorrectly but answers the next
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Table 2: Examples in a realistic ConvQA evaluation setting for No Pred., All Pred., and AS-ConvQAuncer (Ours) models.

Case # 1: Our AS-ConvQA removes a previous answer and then predicts a correct answer.
C1: ... Their collaboration has invited comparisons to the collaborations of Steven Spielberg and John Williams. This big
break led to Hisaishi’s overwhelming success as a composer of film scores. In 1986, Laputa: Castle in the Sky, would be the
first feature to appear under the Studio Ghibli banner, and (A6) its gentle, faintly melancholic tone would become a familiar
trademark of much of the studio’s later output. (A7) And later, in the 1990s, Porco Rosso and Princess Mononoke were released.
Q7: What other output did the studio release?

All Pred. AS-ConvQAuncer (Ours)

H7
Q6: What made this so successful? Q6: What made this so successful?
Ā6: This big break led to Hisaishi’s overwhelming success Ā6: CANNOTANSWER (suncer > Threshold)

Ā7
In 1986, Laputa: Castle in the Sky, would be the first feature
to appear under the Studio Ghibli banner

And later, in the 1990s, Porco Rosso and Princess
Mononoke were released.

Case # 2: Our AS-ConvQA keeps a previous answer and then, based on it, predicts a correct answer.
C2: ... The Walk, Hanson’s second studio album with 3CG Records (Fourth overall), was released in the US, Mexico and
Canada on July 24. It was released in Japan on February 21 and in the UK on April 30. On May 6, 2007, the 10th anniversary
of Hanson Day, (A5) the band re-recorded their first major label album, Middle Of Nowhere, at The Blank Slate bar in their
hometown of Tulsa, Oklahoma. (A6) The band invited fan club members, causing hundreds to fly to Oklahoma for the acoustic
event. Hanson played concerts in the summer of 2007, supporting release of The Walk.
Q6: Was it well received?

No Pred. AS-ConvQAuncer (Ours)

H6

Q5: What did they do on their tenth anniversary? Q5: What did they do on their tenth anniversary?
Ā5: the band re-recorded their first major label album, Mid-
dle Of Nowhere, at The Blank Slate bar in their hometown
of Tulsa, Oklahoma.

Ā5: the band re-recorded their first major label album, Mid-
dle Of Nowhere, at The Blank Slate bar in their hometown
of Tulsa, Oklahoma. (suncer < Threshold)

Ā6 CANNOTANSWER
The band invited fan club members, causing hundreds to
fly to Oklahoma for the acoustic event.

Case # 3: Our AS-ConvQA predicts an incorrect answer since it filters out a correct previous answer.
C3: ... Official calendars have also been issued annually from 2004 to 2009, the only exception being 2005. (A3) Girls Aloud
co-wrote an autobiography titled Dreams That Glitter - Our Story. The book, named after a lyric in C̈all the Shots,̈ was published
in October 2008 through the Transworld imprint Bantam Press. Before the release, OK! magazine bought the rights to preview
and serialise the book. (A4) In 2007, Girls Aloud signed a PS1.25m one-year deal to endorse hair care brand Sunsilk.
Q4: What else did they do?

All Pred. AS-ConvQAuncer (Ours)

H4

Q3: What else did they do/create? Q3: What else did they do/create?
Ā3: Girls Aloud co-wrote an autobiography titled Dreams
That Glitter - Our Story.

Ā3: Girls Aloud co-wrote an autobiography titled Dreams
That Glitter - Our Story. (suncer > Threshold)

Ā4
In 2007, Girls Aloud signed a PS1.25m one-year deal to
endorse hair care brand Sunsilk.

Girls Aloud co-wrote an autobiography titled Dreams That
Glitter - Our Story.

question with a high F1-score over 50. This em-
phasizes the importance of our selection scheme,
especially when there exist ambiguous words prone
to mispredictions.

In addition to this case of removing the uncertain
previous prediction, we further compare our model
against the No Pred. model in the case where the
model predicts with the previous answer history
having a low uncertainty value. As the second ex-
ample in Table 2 shows, while both No Pred. and
AS-ConvQAuncer correctly predict Ā5, No Pred.
does not use Ā5 as the answer history when answer-
ing the next question, Q6. However, as Ā5 contains
important information of ‘it’ in Q6, No Pred. model
gives an inaccurate answer to Q6, since the model
is confused about what ‘it’ refers to. On the other
hand, our model selects Ā5 as the answer history
due to its low uncertainty value, thereby correctly

predicting Ā6 with the previous prediction Ā5. In
a third example of Table 2, we show the poten-
tial failure of our model, which is discussed in the
Limitations section after Section 6.

6 Conclusion
In this work, in order to tackle the challenge of inac-
curately predicted answers in the conversation his-
tory, we proposed a novel answer selection scheme
based on their confidence and uncertainty values.
We further calibrated the output values of the model
to match the model’s predicted confidence and un-
certainty to its correct likelihood and error, which
makes our answer selection scheme more reliable.
The experimental results and analyses demonstrate
that AS-ConvQA significantly improves the Con-
vQA model performance in a realistic evaluation
setting without making any architectural changes.
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Limitations
While we show the clear advantages of using
our AS-ConvQA in realistic ConvQA tasks with
both quantitative and qualitative perspectives, there
could be possible failures: estimated confidence
and uncertainty of a model’s prediction do not
match its actual correctness. For instance, the third
example in Table 2 shows that AS-ConvQAuncer

gives an incorrect answer to Q4, since it removes
the correctly predicted previous answer (i.e., Ā3)
due to its incorrectly estimated uncertainty. Specif-
ically, both Q3 and Q4 ask the additional informa-
tion: ‘What else did they do?’. However, the erro-
neous deletion of Ā3 makes our model bound to
the previous question, repeatedly giving the same
answer as Ā3. This implies that AS-ConvQAuncer

sometimes assigns high uncertainty to the correct
prediction and filters it, which may mislead the
model, especially for the one that requires careful
attention to the context with the previous answer.
Therefore, as future work, one may improve mech-
anisms to measure incorrectness of predictions.

Ethics Statement
As the need for fully autonomous conversational
agents has been rapidly emerging, it is crucial to
consider whether ConvQA models can correctly
answer a sequence of questions in a realistic set-
ting, in which gold answers for previous questions
are unavailable. We note that, in such a challenging
setting, our work contributes to the improved per-
formance by selectively using predicted answers
with model confidence and uncertainty instead of
using predefined gold answers. However, as Con-
vQA models predict answers based on the given
paragraph, we should further consider a scenario
where the paragraph itself is not trustworthy, some-
times having offensive contents. Subsequently, this
may lead the entire conversation vulnerable to gen-
erating unexpected and undesired texts. While this
is not the concern raised from our proposed AS-
ConvQA models themselves, we still have to make
an effort to prevent such an undesirable behavior.
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Figure 7: F1-scores on the mismatching evaluation settings
for the recent ExCorD model (Kim et al., 2021) on QuAC.

A Experimental Implementation Details

We implement all models using PyTorch (Paszke
et al., 2019) and Transformers library (Wolf et al.,
2020). For language models, we use BERT-base
and RoBERTa-base models with 110M and 125M
parameters, respectively. For training, we set the
training epoch as 2 with the batch size of 12, where
the first epoch is used for Step 1 while the second
epoch is used for Step 2. Furthermore, we optimize
all models with the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 3e-5. For com-
putiting resources, we use a single GeForce RTX
3090 GPU with 24GB memory, on which each
training epoch requires approximately 4 hours.

For hyperparameters, we search the tempera-
ture value τ for temperature scaling with a val-
idation set, in the range of (0, 2]. Also, we set
the filtering threshold for Step 2, in the range of
[median− 0.25, median+ 0.25], where median is
the median value of confidence or uncertainty for
all samples. For the number of dropout masks (i.e.,
N for the uncertainty estimation in Section 3.3) for
measuring uncertainty, we set it as 10.

We use two benchmark ConvQA datasets, which
are QuAC3 (Choi et al., 2018) and CoQA4 (Reddy
et al., 2019). Note that, while our main focus is
on predicting the extractive answers within a given
context, CoQA is designed for answering question
in a free-form text, which might not appear in a
given context. Therefore, following the experimen-
tal setting from Reddy et al. (2019), we convert the
CoQA dataset to our extractive ConvQA setting.
In particular, we assume the gold answer as the
provided rationale, and then make prediction on it,
except for simple yes or no questions. For the yes
or no questions, we additionally augment yes and
no tokens at the end of the paragraph.

B Additional Experimental Results

Realistic Evaluation of ExCorD Even though
we validate a negative impact of exposure bias in

3https://quac.ai/
4https://stanfordnlp.github.io/coqa/
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Figure 8: F1 scores with varying dropout numbers on QuAC.

Figure 3, we further explore the performance of the
unrealistic state-of-the-art model, ExCorD (Kim
et al., 2021), that uses gold answer histories, in Fig-
ure 7 with the realistic ConvQA setting that uses
predicted answers. We observe that, similar to the
mismatching evaluation experiments reported in
Figure 3, the F1-scores of ExCorD drastically drop
when evaluated with No Pred. and All Pred. set-
tings, which aligns with our motivation. On the
other hand, the performance is much improved by
further adapting our AS-ConvQA on ExCorD. This
result indicates the importance of filtering unneces-
sary predictions together with the applicability of
our AS-ConvQA model in a realistic setting.

Varying the Number of Dropout Masks In or-
der to understand how the number of dropout masks
(i.e., N used for uncertainty estimation in Sec-
tion 3.3) affects the performance, we vary the num-
ber of masks for AS-ConvQAuncer. As Figure 8
shows, the performance is stabilized after a certain
number of masks (i.e., 5). This indicates the impor-
tance of setting an appropriate sampling number,
since approximating the uncertainty with a small
number of masks is likely to be inaccurate.
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