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Abstract
Existing work in document-level neural ma-
chine translation commonly concatenates sev-
eral consecutive sentences as a pseudo-
document, and then learns inter-sentential de-
pendencies. This strategy limits the model’s
ability to leverage information from distant
context. We overcome this limitation with a
novel Document Flattening (DOCFLAT) tech-
nique that integrates FLAT-BATCH ATTEN-
TION (FBA) and NEURAL CONTEXT GATE
(NCG) into Transformer model to utilize infor-
mation beyond the pseudo-document bound-
aries. FBA allows the model to attend to all the
positions in the batch and learns the relation-
ships between positions explicitly and NCG
identifies the useful information from the dis-
tant context. We conduct comprehensive ex-
periments and analyses on three benchmark
datasets for English-German translation, and
validate the effectiveness of two variants of
DOCFLAT. Empirical results show that our ap-
proach outperforms strong baselines with sta-
tistical significance on BLEU, COMET and
accuracy on the contrastive test set. The analy-
ses highlight that DOCFLAT is highly effective
in capturing the long-range information.

1 Introduction

Remarkable progress has been made in neural ma-
chine translation (NMT) (Sutskever et al., 2014;
Vaswani et al., 2017; Chen et al., 2018), yet human
translation still clearly outperforms NMT at the
document level (Läubli et al., 2018; Freitag et al.,
2021), because current sentence-level NMT sys-
tems ignore the inter-sentential relationships. To
narrow this gap, numerous document-level NMT
(DocNMT) approaches have been proposed in re-
cent years to improve the context awareness by in-
corporating the contextual information during the
translation (Tiedemann and Scherrer, 2017; Maruf
and Haffari, 2018; Wong et al., 2020).

Existing DocNMT systems commonly concate-
nate several consecutive sentences to form a
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Figure 1: The change of BLEU (left) and COMET
(right) given by DOC2DOC on TED with regard to the
context size of pseudo-document (in sentences) based
on the experimental setup described in Section 4.1.

pseudo-document, instead of processing the entire
document (Zhang et al., 2018b; Voita et al., 2019;
Junczys-Dowmunt, 2019; Fernandes et al., 2021).
One typical pseudo-document contains the current
sentence to be translated and the surrronding con-
text. Intuitively, larger context should result in
better performance. In our preliminary study, the
model performance does not always grow as the
context size increases as shown in Figure 1. Liu
et al. (2020) and Bao et al. (2021) also observe that
Transformer’s performance declines with longer
inputs. We refer to this phenomenon as the qual-
ity saturation problem (Glaser and Strauss, 1967).
Therefore, such formation of pseudo-document lim-
its the DocNMT systems to leverage the informa-
tion from a relatively small context. Consequently,
once the entire original document is segmented
into several pseudo-documents for reducing the
sequence length, the information out of the pseudo-
document’s scope is no longer accessible to the
current sentence. Therefore, a natural research
question to ask is that, is there a more effective way
to model the parallel documents in DocNMT?

In this work, we seek DocNMT approaches that
could better expand the context scope and improve
the corresponding translation performance. Instead
of directly training DocNMT system on the entire
document, we propose to store the document as
multiple pseudo-documents in a single batch and
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optimize the DocNMT models by leveraging the
inter-pseudo-document relationships at the batch
level. Inspired by Kossen et al. (2021), we propose
a Document Flattening (DOCFLAT) technique that
integrates FLAT-BATCH ATTENTION (FBA) and
NEURAL CONTEXT GATE (NCG) into the Trans-
former model (Vaswani et al., 2017). FBA flattens
all the current sentences in the batch with the orig-
inal order into a sequence along the temporal di-
mension. It then applies the attention mechanism
to the flattened sequence. The goal of this design
is to preserve the linguistic structure of documents
and expand the scope of context by explicitly learn-
ing the pseudo-document relationships. As there is
both supportive and noisy information in the longer
context, we introduce NCG, a simple feed-forward
network, to identify the usefulness of contextual
information and filter out the noise. With the com-
bination of FBA and NCG, DOCFLAT effectively
captures the information in the distant context. To
the best of our knowledge, Morishita et al. (2021)
propose mini-batch embedding (MBE), which is
the only close work to ours. They compute the
average representation for all the source tokens in
the batch and prepend it to the source and target
pseudo-documents. The compressed representa-
tion ignores the linguistic structure of documents,
providing limited contextual information.

Our contributions are summarized as follows.
Firstly, we propose a novel approach DOCFLAT

that allows the model to attend the content beyond
the pseudo-document boundaries using FBA and
NCG. Secondly, we demonstrate that DOCFLAT

outperforms strong baselines with statistical sig-
nificance, in terms of BLEU, COMET and ac-
curacy on the contrastive test set, on three Doc-
NMT benchmark datasets, including TED, News
Commentary and Europarl. Thirdly, we con-
duct comprehensive analyses to understand the ef-
fectiveness of DOCFLAT. The analyses highlight
that DOCFLAT is highly effective in capturing the
distant context.

2 Preliminaries

Sentence-level NMT (SentNMT) The sentence-
level NMT model neglects the inter-sentential de-
pendencies between the current sentence and its
context. Its probability of translation is defined as:

P (yyyi|xxxi) =
d∏

t=1

P (yi,t|yyyi,<t,xxxi), (1)

where xxxi and yyyi are the i-th source and target train-
ing sentence, yi,t denotes the t-th token in yyyi and d
is the sentence length of yyyi.

Document-level NMT (DocNMT) Given a doc-
ument pair {(xxxi, yyyi)}Mi=1 where we denote the
aligned sentence pair as xxxi and yyyi and M is the
length of document in sentences, the i-th pseudo-
document pairXXXi and YYY i can be defined as:

XXXi = Concat([xxxi−c− , . . . ,xxxi, . . . ,xxxi+c+ ]),

YYY i = Concat([yyyi−c− , . . . , yyyi, . . . , yyyi+c+ ]),
(2)

where c− is the context size before the current sen-
tence and c+ is the context size after the current
sentence. The translation probability of target cur-
rent sentence yyyi in the target pseudo-document YYY i

given the source pseudo-documentXXXi in DocNMT
can be written as:

P (yyyi|xxxi,CCC−i) =
d∏

t=1

P (yi,t|yyyi,<t,xxxi,CCC−i), (3)

whereCCC−i is the collection of all the sentences in
the pseudo-document pair except (xxxi, yyyi), and xxxi
is the source current sentence. We do not consider
the context after the current sentence in this work,
so c+ is 0.

3 Document Flattening

In this section, we firstly describe the overview
of DOCFLAT (Section 3.1). We then introduce
DOCFLAT’s core components, FLAT-BATCH AT-
TENTION (FBA; Section 3.2) and NEURAL CON-
TEXT GATE (NCG; Section 3.3). Finally, we dis-
cuss the practical considerations (Section 3.4 and
Section 3.5) of DOCFLAT along with a concrete
example.

3.1 Overview of DOCFLAT

We present the overall architecture of DOCFLAT

in Figure 2. Given a sequence-to-sequence Trans-
former with L encoder layers and L decoder lay-
ers, we apply the FBA and NCG to the input
word embeddings with the residual connection
and Layer Normalization, instead of directly feed-
ing the embeddings into either encoder or de-
coder. DOCFLAT’s translation probability of the
i-th target current sentence yyyi of the original docu-
ment in the i-th target pseudo-document YYY i given
the i-th source pseudo-document XXXi in the batch
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BBB = {(XXXj ,YYY j)}nj=1, where n is the batch size, is
defined as:

P (yyyi|xxxi,CCC−i,BBB−i) =

d∏

t=1

P (yi,t|yyyi,<t,xxxi,CCC−i,BBB−i),
(4)

where CCC−i is defined as in Equation 3 and BBB−i

is the collection of all the current sentences in the
batch except (xxxi, yyyi). We categorize the context
for the current sentence into two groups, the global
context (GC) from other pseudo-documents BBB−i

and the local context (LC) from its own pseudo-
documentCCC−i (See Figure 3).

3.2 FLAT-BATCH ATTENTION

Multi-Head Self-Attention (MHSA) Scaled dot-
product attention is the core mechanism of Trans-
former model with the inputs of query QQQ, key KKK
and VVV (Vaswani et al., 2017). The attention mecha-
nism computes the attention weights by comparing
queriesQQQ with keysKKK and then updates the repre-
sentations of queries by computing the weighted
sum of values VVV with the attention weights, which
is described as follows:

Attn(QQQ,KKK,VVV ) = softmax(
QQQKKK⊤
√
e

)VVV , (5)

where e is the hidden state dimension. Multi-head
self-attention (MHSA) then allows the model to
jointly attend to information from different hidden
subspaces by concatenating a sequence of indepen-
dent attention heads as follows:

MHSA(QQQ,KKK,VVV ) =

Concat(head1, . . . , headk),
(6)

where headj is the scaled dot-product attention in
Equation 5 with independent parameters and j ∈
{1, . . . , k} for each head j.

FLAT-BATCH ATTENTION (FBA) To leverage
the contextual information beyond the pseudo-
document boundaries, we propose FLAT-BATCH

ATTENTION (FBA). It explicitly transforms the
stacked instances in the batch to a single flattened
sequence of tokens as shown in Figure 3. Given
a batch of hidden representations HHH ∈ Rn×d×e

consisting of n instances padded to the length of d
with the hidden dimension of e, FBA operates as

Softmax

Feed-Forward

Cross Attention

Masked Self-
Attention

Self-Attention

Feed-Forward

LayerNorm LayerNorm

NCG

FBA

Source Embedding

NCG

FBA

Target Embedding

×L

×L

Figure 2: The model architecture of DOCFLAT. ⊗
denotes the element-wise multiplication. ⊕ denotes the
element-wise addition. More details are in Section 3.

follows:

ĤHHflat = Flatten(HHH) ∈ R(n×d)×e,

ĤHHmhsa = MHSA(ĤHHflat, ĤHHflat, ĤHHflat),

ĤHH rsh = Reshape(ĤHHmhsa) ∈ Rn×d×e,

ĤHH = LN((1− ggg)⊗HHH + ggg ⊗ ĤHH rsh).

(7)

As shown in Equation 7, we first flatten HHH ∈
Rn×d×e to ĤHHflat ∈ R(n×d)×e, where (n × d) in-
dicates the flattened sequence length. The ĤHHflat is
then fed into a MHSA layer and reshaped back to
ĤHH rsh ∈ Rn×d×e. We then add a residual connec-
tion with ggg given by NCGψψψ followed by a sigmoid
function σ and apply the Layer Normalization (LN;
Ba et al., 2016) following the reshape operation.
⊗ denotes the element-wise multiplication. We
discuss the details of NCG in Section 3.3. Note
that FBA at the decoder side is associated with a
causal mask to preserve the auto-regressive prop-
erty. By attending to all the other current sentences
in the batch, FBA effectively allows the current
sentences to access a much larger context than the
self-attention on the pseudo-documents. In addi-
tion, this does not increase the input length of each
instance, preventing the quality saturation problem
as shown in Figure 1.

Complexity Given a Transformer model with
L encoder layers and L decoder layers, suppose
the average sentence length is n, the pseudo-
document contains c consecutive sentences, and
the batch size is b. The complexity of self-attention
layer in the concatenation-based DOC2DOC is
O(L(cn)2). The extra complexity introduced by
FBA is O((bn)2). Lc2 and b2 have the same order
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YYY 1: yyy1

YYY 2: yyy1 yyy2

YYY 3: yyy1 yyy2 yyy3

YYY 4: yyy1 yyy2 yyy3 yyy4

YYY 5: yyy2 yyy3 yyy4 yyy5

YYY 6: yyy3 yyy4 yyy5 yyy6

Local Context Current Sentence

(a) An example batch of pseudo-documents BBBtgt = {YYY 1,YYY 2,YYY 3,YYY 4,YYY 5,YYY 6} at the target side. Each YYY j contains four
consecutive sentences and yyyi indicates the i-th sentence of the same original document. The segments in red indicate the current
sentence of each pseudo-document.

YYY flat: yyy1 yyy2 yyy3 yyy4 yyy5 yyy6

Extra Context out of YYY 6’s scope

Global Context

Current Sentence

(b) An example of the flattened sequence YYY flat transformed from BBBtgt in Figure 3a with FLAT-BATCH ATTENTION. For the
current sentence yyy6, The blue arrows indicate the extra inter-sentential attention for yyy6 that our approach can model. yyy1 and yyy2

are the extra context introduced by our approach.

Figure 3: An example batch of pseudo-documents at the target side and its flattened sequence. Another example at
the source side can be found at Appendix A.

of magnitude. The batch size b is set to be con-
stant in practice and the self-attention operation in
FBA is highly parallelizable, so integrating FBA
into Transformer does not significantly increase the
computational cost. Empirically, DOCFLAT is only
3% slower in training and 15% slower in inference,
compared with DOC2DOC (See Section 4.2).

3.3 NEURAL CONTEXT GATE

The distant context can contain both supportive
and noisy information. Supportive information can
assist the translation of the current sentence, while
the noise may damage the model predictions. To
address this issue, we introduce a novel NEURAL

CONTEXT GATE (NCG) to automatically identify
the context usefulness and control the information
flow from the distant context.

In this work, NCG ψψψ is a single-layer element-
wise feed-forward neural network followed by a
sigmoid function σ. Given a batch of hidden repre-
sentationsHHH , the operations are defined as follows:

ggg = σ(ψψψ(FBA(HHH))),

HHHo = (1− ggg)⊗HHH + ggg ⊗ FBA(HHH),
(8)

where ggg is the information gate given by NCG ψψψ
and the sigmoid function σ, HHHo is output of the
residual connection and ⊗ denotes the element-
wise multiplication. The values of ggg are continuous,
so we denote DOCFLAT with NCG described in
Equation 8 as DOCFLATC.

However, the continuous gate may result in the
noise leakage. In a long document, the noise at

different positions may accumulate, even if they
are only associated with very small gating values.
The accumulated noise can make a substantial neg-
ative impact on the model predictions. Hence, we
propose the discrete NCG as follows:

gggD = 1γ(σ(ψψψ(FBA(HHH)))),

HHHo = (1− gggD)⊗HHH + gggD ⊗ FBA(HHH),
(9)

where 1γ(·) is indicator function defined as:

1γ(g) =

{
1 if g ≥ γ,
0 otherwise,

(10)

where γ is the threshold for binarizing the gating
values. We denote DOCFLAT with the discrete
NCG in Equation 9 as DOCFLATD and set γ = 0.5
in this work. We expect DOCFLATD is more robust
against the noise in the context.

3.4 Data Shuffling

DOCFLAT aims to leverage the distant context with
FBA by flattening a batch of sequences into a sin-
gle sequence. As the ordering information among
sentences is critical in DocNMT, we do not shuffle
the pseudo-documents during the training and infer-
ence to preserve the linguistic structure of the orig-
inal document. For each sentence, we replace the
<BOS> symbol with its global index i in the doc-
ument to preserve the ordering information. Fig-
ure 3a is an example at the target side to demon-
strate how the pseudo-documents in the batch is
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Train Valid Test

TED 204.4K/1.7K 8.9K/93 2.2K/23
News 242.4K/6.1K 2.3K/81 3.2K/155
Europarl 1.8M/117.9K 3.8K/240 5.5K/360

Table 1: The number of sentences/documents of each
split of the parallel corpora.

organized in this work. Figure 3b demonstrates
how FBA flattens a batch of pseudo-documents.
Since the pseudo-documents are not shuffled, yyy6
can attend to yyy1 and yyy2 which are not in the pseudo-
document YYY 6. We apply the causal mask to FBA at
the decoder side for preserving the auto-regressive
property. Note that the pseudo-documents in a
batch are mostly from the same original document.
The batches crossing the document boundaries are
relatively rare and have little effect on performance
in our preliminary study.

3.5 Inference

We discuss the batch inference of DOCFLAT in
this section. At the encoder side, each source cur-
rent sentence can attend to its own local context
(LC) and all other source current sentence as the
global context (GC) in the batch during the infer-
ence, as it is at the training stage. At the decoder
side, all the target current sentences are translated
simultaneously, so each target current sentence can
attend to its own LC and partially translated target
GC. For example, all the target current sentences
in Figure 3a are translated simultaneously during
the inference. yyy6 is conditioned on its own LC,
yyy3, yyy4 and yyy5, and partially translated target GC.
Additionally, we use the batched inference as usual
and there is no overlap between batches. For ex-
ample, the first batch of sentences to be translated
is {yyy1, · · · , yyyb}, and the second batch of sentences
to be translated is {yyyb+1, · · · , yyy2b}, where b is the
inference batch size. For decoding, we used the
iterative decoding method for decoding (Maruf and
Haffari, 2018; Maruf et al., 2019). The initial trans-
lations of each sentence were generated by a Sent-
NMT model, and then, we translate each sentence
using the DOCNMT model with the translations in
the first pass as the context.

4 Experiments

4.1 Setup

Datasets We conduct experiments on three
benchmark datasets for English-German trans-

lation, including the small-scale datasets TED
(Cettolo et al., 2012) and News Commentary
(Tiedemann, 2012), and the large-scale dataset
Europarl (Koehn, 2005). We tokenize the
datasets with the Moses (Koehn et al., 2007) and ap-
ply BPE (Sennrich et al., 2016b) with 32K merges.
Data statistics can be found in Table 1. We choose
up to 3 previous sentences as the local context for
each source and target sentence to form the pseudo-
document unless otherwise specified.

Evaluation We report the detokenized BLEU
(Papineni et al., 2002) using SacreBLEU (Post,
2018) and the neural-based COMET (Rei et al.,
2020) to measure the translation quality.1 We re-
port the results with inference batch size of 16 and
beam size of 5 for all the approaches, unless other-
wise specified.

Contrastive Evaluation This evaluation
paradigm is proposed to evaluate the contextual
awareness of DOCNMT models with an indepen-
dent test set, where each test example includes
one correct translation and several incorrect
translations. The model is required to identify the
correct translation and its overall performance
is measured by micro-average Accuracy. In this
work, we use the large-scale English-German
anaphoric pronoun test set from Müller et al.
(2018), containing 12K contrastive examples.
Given the provided context, the model of interest is
required to identify the translation with the correct
use of pronoun from er, es and sie in German.

Models All the models in this work are based
on the standard Transformer base (Vaswani et al.,
2017). Besides the direct comparisons with prior
works, we also compare DOCFLAT with several
re-implemented baselines, including SENT2SENT

(Vaswani et al., 2017), DOC2DOC (Tiedemann and
Scherrer, 2017), FLATTRANS (Ma et al., 2020),
MBE (Morishita et al., 2021) and ABD (Kossen
et al., 2021). We only apply ABD at the en-
coder side in this work unless otherwise specified,
which is its best-performing setup as shown in Ap-
pendix C. We re-produce the results of GTRANS

(Bao et al., 2021) with its official code and recom-
mended hyperparameters. The optimization details
are in Appendix B.

1SacreBLEU Signature: nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.2.0
and COMET Signature: wmt20-comet-da.
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TED News Europarl UPS
BLEU COMET Acc. BLEU COMET Acc. BLEU COMET Acc.

Reported
DocTransformer (Zhang et al., 2018b) 24.00 — — 23.08 — — 29.32 — — —
HAN (Miculicich et al., 2018) 24.58 — — 25.03 — — 28.60 — — —
Selective (Maruf et al., 2019) 24.42 — — 24.84 — — 29.75 — — —
Hybrid (Zheng et al., 2020) 25.10 — — 24.91 — — 30.40 — — —

Re-produced (standard)
SENT2SENT 24.78 0.2860 46.48 25.00 0.1993 47.71 31.24 0.5933 53.02 2.57
DOC2DOC 25.01 0.3021 66.99 24.95 0.1990 64.21 31.65 0.5929 78.18 0.86
FLATTRANS 24.71 0.2963 45.45 25.05 0.2020 48.54 31.58 0.5954 51.14 0.90
GTRANS 25.29 0.3058 — 25.59 0.2097 — 32.33 0.5904 — —

Re-produced (batch-level)
MBE 24.75 0.3032 68.12 24.86 0.1969 62.82 31.63 0.5954 77.08 0.64
ABD 24.97 0.3046 68.25 24.33 0.1772 62.52 31.98 0.5955 78.16 0.84

Ours
DOCFLATC 25.31† 0.3173† 70.92† 25.96† 0.2199† 65.45† 32.38† 0.6020† 77.65 0.84
DOCFLATD 25.41† 0.3101† 72.04† 25.38 0.2119† 66.70† 32.16† 0.5990† 79.68† 0.84

Table 2: BLEU, COMET and accuracy on three benchmark datasets for English-German translation. UPS (↑)
indicates updates per second. The best results are highlighted in bold. — indicate the result is not available. †
indicates the statistical significance at p = 0.05 against re-implemented DOC2DOC based on Koehn (2004).

4.2 Main Results

We present the main results in Table 2.

Comparisons with Baselines Compared with all
the baselines regardless whether they utilize the
batch information or not, both DOCFLATC and
DOCFLATD substantially outperform these strong
baseline approaches, especially in terms of the con-
text awareness (accuracy) which is the main empha-
sis of this work. For the approaches that utilize the
batch information, we observe that MBE and ABD
only marginally improves the performance com-
pared with DOC2DOC, suggesting the importance
of preserving the linguistic structure in utilizing the
batch-level information for DocNMT. We also ob-
serve the larger performance gain from DOCFLAT

on small TED and News, implying DOCFLAT per-
forms better in the low-resource settings.

DOCFLATC vs. DOCFLATD As shown in Ta-
ble 2, DOCFLATC and DOCFLATD demonstrate
different strengths: DOCFLATC mainly improves
the translation quality (BLEU and COMET), while
DOCFLATD improves the context awareness (ac-
curacy). In the contrastive evaluation, we have no
access to the entire document, so the model predic-
tions are always conditioned on the golden local
context (LC) and irrelevant global context (GC).
DOCFLATD outperforms DOCFLATC in terms of
accuracy, suggesting the discrete NCG is more
robust against the noise in the context as we ex-

pected in Section 3.3. However, DOCFLATD also
aggressively filters out the supportive information
in the context as demonstrated on its lower results
in BLEU and COMET on News and Europarl.
We believe tuning γ in Equation 9 can fix this issue.

Computational Efficiency As described in Sec-
tion 3.2, FBA introduces additional computational
overhead. We thus evaluate computational ef-
ficiency of DOCFLAT along with the baselines
in terms of update per second (UPS) and re-
port the results in Table 2. When the context
size of the pseudo-document is the same, our ap-
proach DOCFLAT is almost as fast as the standard
DOC2DOC on the identical computational infras-
tructure (one Tesla A40 GPU) with significant per-
formance gain. Note that GTRANS (Bao et al.,
2021) does not support FP16 mode, so its UPS is
not reported. During the inference, DOCFLAT is
only 15% slower than DOC2DOC.

4.3 Ablation Study

Ablation Study for FBA We conduct the ab-
lation study for FBA and present the results in
Table 3. Compared with DOC2DOC, FBA at ei-
ther side can effectively improve the model perfor-
mance of DOCFLAT in terms of BLEU, COMET
and accuracy, although both FBAs does not demon-
strate orthogonal effectiveness. We also observe
that, when the FBA at the decoder side is removed,
the contextual awareness (accuracy) is slightly im-

453



Enc. Dec. BLEU COMET Acc.

DOC2DOC ∅ ∅ 24.86 0.2821 66.98

DOCFLATC 25.31 0.3173 70.92
∅ 25.58 0.3114 71.83

∅ 25.70 0.3176 71.06

DOCFLATD 25.41 0.3101 72.04
∅ 25.22 0.3112 73.60

∅ 25.71 0.3113 70.48

Table 3: Ablation study for FBA on TED. ∅ indicates
FBA is removed. The best results for DOCFLATC and
DOCFLATD are highlighted in bold respectively.

BLEU COMET Acc.

DOCFLATC 25.31 0.3173 70.92
DOCFLATD 25.41 0.3101 72.04
DOCFLATI 25.07 0.3049 69.45

Table 4: Ablation study for NCG on TED. DOCFLATI
indicates DOCFLAT with identity mapping in NCG. The
best results are highlighted in bold.

proved. All these results demonstrate that FBA can
effectively leverage the distant context beyond the
pseudo-document boundaries.

Ablation Study for NCG We present the ab-
lation study for NCG in Table 4. To probe the
utility of NCG, we replace NCG in Equation 7
with identity mapping (He et al., 2016) and de-
note this variant of DOCFLAT as DOCFLATI. The
results from DOCFLATI support our argument
that not all the information in the context is use-
ful. Both DOCFLATC and DOCFLATD outper-
form DOCFLATI on BLEU, COMET and accuracy,
which confirms NCG can effectively filter out the
noise in the context.

Ablation Study for Data Shuffling To preserve
the linguistic structure of the original document,
we do not shuffle examples during training. If the
examples are shuffled, the predictions of the cur-
rent sentence are conditioned on the gold local con-
text (LC) and the irrelevant global context (GC).
In this section, we investigate how the data shuf-
fling affects DOCFLAT. We present the results in
Table 5. We observe the performance reduction
for DOCFLATC and DOCFLATD when the current
sentence is conditioned on the gold LC but irrele-
vant GC. When conditioned on the irrelevant GC,
DOCFLAT even performs worse than DOC2DOC

which is free from the irrelevant GC. We also train
DOCFLAT and DOC2DOC with the completely ir-
relevant context and find out that both models fail

GC LC BLEU COMET Acc.

DOC2DOC ∅ ✓ 25.01 0.3021 66.99
✗ ✗ — — —

DOCFLATC ✓ ✓ 25.31 0.3173 70.92
✗ ✓ 24.86 0.2738 66.83
✗ ✗ — — —

DOCFLATD ✓ ✓ 25.41 0.3101 72.04
✗ ✓ 24.81 0.2037 69.30
✗ ✗ — — —

Table 5: Ablation study for data shuffling on TED. ✓
indicates the golden context. ✗ indicates the irrelevant
context. — indicates the model fails to converge. ∅
indicates DOC2DOC is not associated with GC. The best
results for DOCFLATC and DOCFLATD are highlighted
in bold respectively.

avg er es sie

DOC2DOC 66.99 56.82 89.20 54.95
MBE 68.12 52.57 89.72 62.07
ABD 68.25 55.30 90.65 58.82

DOCFLATC 70.92 56.65 89.52 66.60
DOCFLATD 72.04 60.02 89.67 66.42

Table 6: Accuracy (in %) on the contrastive test set for
TED with regard to the anaphoric pronoun types. The
best results are highlighted in bold.

to converge. Hence, we confirm that the related-
ness between the context and current sentence is of
vital importance in DocNMT and DOCFLAT can ef-
fectively leverage the information from the context
beyond the scope of the pseudo-documents.

5 Analysis

In this section, we investigate the effectiveness of
DOCFLAT on the contextual awareness and the
quality saturation problem. We also demonstrate
how the inference batch size affects the model pre-
dictions. A visualization of FBA attention map is
presented in Appendix D.

Contextual Awareness In English-German trans-
lation, the choice of anaphoric pronoun types, in-
cluding feminine sie, neutral er and masculine es,
commonly depends on its context. We present
the accuracy with regard to the anaphoric pronoun
types given by the selected models trained on TED
in Table 6. DOCFLATD is the only approach that
demonstrates substantial improvements on the neu-
tral er. For the feminine sie, DOCFLATC and
DOCFLATD both outperform DOC2DOC by ap-
proximately 12% accuracy. MBE and ABD only
improves the accuracy on the feminine sie by 7%
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Figure 5: BLEU (left) and COMET (right) against
the LC size of pseudo-document (in sentences) by
DOC2DOC, DOCFLATC and DOCFLATD on TED.

and 4% respectively. We also present the change
of accuracy given by the selected models against
DOC2DOC with regard to the antecedent distance
on TED in Figure 4. Compared with DOC2DOC,
the approaches that leverage the batch-level in-
formation all effectively improves the accuracy
on the distant context (antecedent distance ≥ 2).
DOCFLATC significantly outperforms DOC2DOC

with regard to the accuracy on the distant context
by more than 8%, while DOCFLATD outperforms
DOC2DOC by more than 10% on the distant con-
text. All these results demonstrate that DOCFLAT

can effectively improve the contextual awareness
on the discourse phenomena.

Effect of DOCFLAT on Quality Saturation
DOC2DOC suffers from the quality saturation
problem as shown in Figure 1. We investigate if
DOCFLAT also suffers from the same problem. We
display the results in Figure 5 and observe that
DOCFLATC and DOCFLATD perform consistently
with regard to the LC size. We conjecture the rea-
sons for this observation from two perspectives.
When the LC size is small, the information from
GC introduced by FBA complements the miss-
ing information in LC. When the LC size is large
enough, most information from GC is already cov-
ered by LC and FBA functions as a regularizer.
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Figure 6: BLEU (left) and COMET (right) against the
inference batch size (in sentences) given by DOCFLATC
and DOCFLATD on TED.

Inference Batch Size At the inference stage,
DOCFLAT is also able to leverage the batch-
level information. We visualize how the infer-
ence batch size impacts the model performance
in Figure 6. Overall, the model performance of
DOCFLAT is positively correlated to the inference
batch size. When the batch size is 1, DOCFLATC
and DOCFLATD still outperform DOC2DOC, sug-
gesting the FBA can help the model utilize the dis-
tant context during training. The performance gain
on BLEU and COMET for both DOCFLATC and
DOCFLATD diminishes as the inference batch size
increases, and we do not observe further improve-
ment when the inference batch size is larger than
16, suggesting the over-distant context is less influ-
ential to the predictions of the current sentence.

6 Related Work

Document-Level NMT Numerous document-
level NMT approaches have been proposed in re-
cent years. Tiedemann and Scherrer (2017) firstly
proposed the simple concatenation-based DocNMT
model. Existing works in the document-level NMT
widely spread on a variety of research topics, in-
cluding the model architecture (Miculicich et al.,
2018; Maruf et al., 2019; Zhang et al., 2021), train-
ing methods (Sun et al., 2022; Lei et al., 2022),
evaluation (Bawden et al., 2018; Jiang et al., 2022),
etc. Zhang et al. (2018b) incorporate the contextual
information using an independent context encoder.
Bao et al. (2021) propose group attention that intro-
duce a locality bias to force the model to focus on
the recent context. Morishita et al. (2021) compute
the average representation of all the source tokens,
which is the only close work to ours. Maruf et al.
(2021) present a detailed review on DocNMT.

Batch-Level Information Modeling instance re-
lationships in the batch is relatively less explored.
Prior works leveraging the instance relationships
are mostly from the computer vision area. Ioffe
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and Szegedy (2015) keep the running mean and
variance in the batch to normalize the training and
testing instances. Zhang et al. (2018a) linearly
combine a random pair of instances to improve the
model generalization. Mondal et al. (2021) use
graph neural networks to aggregate information
from similar images. Hou et al. (2022) propose
BATCHFORMER to improve the long-tail recogni-
tion by combining different instances. Our work is
directly inspired by Kossen et al. (2021) that com-
putes the pairwise similarity among all the batched
instances, with distinct motivation. We aim to uti-
lize distant context beyond the pseudo-document
boundaries, instead of finding the similar patterns.

7 Conclusion

In this work, we address the limitation of the
pseudo-document formation in the DocNMT by
utilizing the batch-level information. We propose
a novel Document Flattening (DOCFLAT) tech-
nique that integrates FLAT-BATCH ATTENTION

(FBA) and NEURAL CONTEXT GATE (NCG) into
the Transformer model. FBA enables the cur-
rent sentence to access the information beyond the
pseudo-document boundaries and NCG identifies
the usefulness of context and controls the infor-
mation flow. We conduct comprehensive experi-
ments and analyses on three benchmark datasets
for English-German translation. We demonstrate
that DOCFLAT outperforms several strong base-
lines with statistical significance. The analyses
highlight that DOCFLAT can effectively alleviate
the quality saturation problem in DocNMT and
capture the long-range information.

8 Limitations

As suggested in Figure 6, the performance of
DOCFLAT is positively correlated to the inference
batch size. This is because large inference batch
size could help DOCFLAT to better utilize distant
context within the same inference batch. However,
this property of DOCFLAT could become an issue
when there are only limited inference computa-
tional resources available.
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A A Concrete Example at the Source Side

We present a concrete example at the source side
in Figure 7.

B Optimization and Hyperparameters

We use a two-stage training routine following the
previous works (Zhang et al., 2018b; Voita et al.,
2019; Lopes et al., 2020; Bao et al., 2021).

Stage I We first train a SENT2SENT NMT model.
The model is randomly initialized and optimized
with Adam (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98 and the learning rate α = 5×10−4. The
model is trained with the batch size of 32K tokens
for both datasets and the dropout rate p = 0.3. The
batch size of 32K tokens is achieved by using the
batch size of 4096 tokens and updating the model
for every 8 batches. The learning rate schedule
is the same as described in Vaswani et al. (2017)
with 4K warmup steps. We use early stopping on
validation loss.

Stage II The document-level models are all fine-
tuned from the best SENT2SENT model in the
Stage I. With the same learning rate schedule as the
Stage I, we set the learning rate α = 2× 10−4. All
the other hyperparameters are identical. Training
is early stopped on validation loss, and we average
the last 5 checkpoints to report the model perfor-
mance, following Vaswani et al. (2017). Following
Bao et al. (2021), we apply word dropout (Gal and
Ghahramani, 2016; Sennrich et al., 2016a) to the
inputs with p = 0.1.

C ATTENTION BETWEEN DATAPOINTS

We adapt ATTENTION BETWEEN DATAPOINTS

(ABD) proposed by Kossen et al. (2021) to the
DocNMT. The model architecture is identical to
DOCFLAT as shown in Figure 2 with FBA replaced
with ABD. Given a batch of hidden representations
HHH ∈ Rn×d×e, ABD is defined as follows:

H̃HHavg = AvgPool(HHH) ∈ Rn×1×e,

H̃HHflat = Flatten(H̃HHavg) ∈ R1×n×e,

H̃HHmhsa = MHSA(H̃HHflat, H̃HHflat, H̃HHflat) ∈ R1×n×e,

H̃HH rsh = Reshape(Repeat(H̃HHmhsa)) ∈ Rn×d×e,

H̃HH = LN(HHH + H̃HH rsh) ∈ Rn×d×e.

(11)

There is a noticeable difference in Equation 11
from Equation 7 that we apply the average pooling

Enc. Dec. BLEU COMET Acc.

DOC2DOC ✗ ✗ 25.01 0.3021 66.99

ABD 18.57 -0.1202 66.55
✗ 18.46 -0.1123 66.47

✗ 24.97 0.3046 68.25

Table 7: Preliminary study on the usage of ABD on
TED. ✗ indicates ABD is removed.

to the sequence to obtain the instance representa-
tion, instead of directly flattening the token repre-
sentations into a single vector. ABD is originally
designed for fixed-length data, and it is non-trivial
to apply ABD to the variable-length inputs, and
hence, we use the average pooling for simplicity.

We present the preliminary study of ABD on
TED in Table 7. When ABD is applied at the de-
coder side, the model performance is significantly
reduced. This observation suggests that the linguis-
tic structure at the target side is of vital importance
to DocNMT.

D Visualization of FBA

To better understand the behavior of FBA, we vi-
sualize the sentence-wise attention map learned by
the FBA of DOCFLATC and DOCFLATD at the en-
coder side in Figure 8. The sample document for
producing Figure 8 can be found in Table 8.

It is infeasible to visualize the token-wise atten-
tion map for a very long sequence, so we aggregate
the token-wise attention scores into the sentence-
level. We denote the token-wise attention map for
the flattened sequence as A. For each pair of sen-
tences sssi attending to sssj , their token-wise attention
map is a patch of A, denoted as Ap

ij . We aggre-
gate the token-level attention scores in the attention
patch Ap

ij into a sentence-level score, as follows:

AS(i, j) =
1∣∣∣Ap
ij

∣∣∣

∑
Ap

ij (12)

where
∣∣∣Ap

ij

∣∣∣ is the size of Ap
ij and AS(i, j) is the

sentence-level attention score for sssi attending to
sssj .

The FBA of DOCFLATC at the encoder side
considers all the sentences in the document to be
equally important, while the one of DOCFLATD
approximately splits the whole documents into two
parts. As shown by DOCFLATD in Figure 8, sen-
tences in the first half focus more on its neigh-
bors in the same split but those in the second half
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XXX1: xxx1

XXX2: xxx1 xxx2

XXX3: xxx1 xxx2 xxx3

XXX4: xxx1 xxx2 xxx3 xxx4

XXX5: xxx2 xxx3 xxx4 xxx5

XXX6: xxx3 xxx4 xxx5 xxx6

Local Context Current Sentence

(a) An example batch of pseudo-documents BBBsrc = {XXX1,XXX2,XXX3,XXX4,XXX5,XXX6} at the source side. Each XXXj contains four
consecutive sentences and xxxi indicates the i-th sentence of the same original document. The segments in red indicate the current
sentence of each pseudo-document.

XXXflat: xxx1 xxx2 xxx3 xxx4 xxx5 xxx6

Extra Context

Global Context

Current Sentence Extra Context

Global Context

(b) An example of the flattened sequence XXXflat transformed from BBBtgt with FLAT-BATCH ATTENTION. For the current sentence
xxx5, The blue arrows indicate the extra inter-sentential attention for xxx5 that our approach can model. xxx1 and xxx6 are the extra
context introduced by our approach.

Figure 7: An example batch of pseudo-documents at the source side and its flattened sequence.

10 20 30 40
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30

40

DOCFLATC

10 20 30 40

DOCFLATD

1

2

3

·10−3

Figure 8: Sentence-wise attention map produced by the
FBA of DOCFLATC and DOCFLATD at the encoder side.
x-axis indicates sentences as the keys of FBA. y-axis
indicates sentences as the queries of FBA.

roughly attend to all the sentences in the documents.
This observation implies that the latter context is
more dependent on the former context.
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idx Context

1 <d>
2 We’re at a tipping point in human history, a species poised between gaining the stars and losing the planet we call home.
3 Even in just the past few years, we’ve greatly expanded our knowledge of how Earth fits within the context of our universe.
4 NASA’s Kepler mission has discovered thousands of potential planets around other stars, indicating that Earth is but one of billions of planets in our galaxy.
5 Kepler is a space telescope that measures the subtle dimming of stars as planets pass in front of them, blocking just a little bit of that light from reaching us.
6 Kepler’s data reveals planets’ sizes as well as their distance from their parent star.
7 Together, this helps us understand whether these planets are small and rocky, like the terrestrial planets in our own Solar System, and also how much light

they receive from their parent sun.
8 In turn, this provides clues as to whether these planets that we discover might be habitable or not.
9 Unfortunately, at the same time as we’re discovering this treasure trove of potentially habitable worlds, our own planet is sagging under the weight of

humanity.
10 2014 was the hottest year on record.
11 Glaciers and sea ice that have been with us for millennia are now disappearing in a matter of decades.
12 These planetary-scale environmental changes that we have set in motion are rapidly outpacing our ability to alter their course.
13 But I’m not a climate scientist, I’m an astronomer.
14 I study planetary habitability as influenced by stars with the hopes of finding the places in the universe where we might discover life beyond our own

planet.
15 You could say that I look for choice alien real estate.
16 Now, as somebody who is deeply embedded in the search for life in the universe, I can tell you that the more you look for planets like Earth, the more you

appreciate our own planet itself.
17 Each one of these new worlds invites a comparison between the newly discovered planet and the planets we know best: those of our own Solar System.
18 Consider our neighbor, Mars.
19 Mars is small and rocky, and though it’s a bit far from the Sun, it might be considered a potentially habitable world if found by a mission like Kepler.
20 Indeed, it’s possible that Mars was habitable in the past, and in part, this is why we study Mars so much.
21 Our rovers, like Curiosity, crawl across its surface, scratching for clues as to the origins of life as we know it.
22 Orbiters like the MAVEN mission sample the Martian atmosphere, trying to understand how Mars might have lost its past habitability.
23 Private spaceflight companies now offer not just a short trip to near space but the tantalizing possibility of living our lives on Mars.
24 But though these Martian vistas resemble the deserts of our own home world, places that are tied in our imagination to ideas about pioneering and frontiers,

compared to Earth Mars is a pretty terrible place to live.
25 Consider the extent to which we have not colonized the deserts of our own planet, places that are lush by comparison with Mars.
26 Even in the driest, highest places on Earth, the air is sweet and thick with oxygen exhaled from thousands of miles away by our rainforests.
27 I worry – I worry that this excitement about colonizing Mars and other planets carries with it a long, dark shadow: the implication and belief by some that

Mars will be there to save us from the self-inflicted destruction of the only truly habitable planet we know of, the Earth.
28 As much as I love interplanetary exploration, I deeply disagree with this idea.
29 There are many excellent reasons to go to Mars, but for anyone to tell you that Mars will be there to back up humanity is like the captain of the Titanic

telling you that the real party is happening later on the lifeboats.
30 Thank you.
31 But the goals of interplanetary exploration and planetary preservation are not opposed to one another.
32 No, they’re in fact two sides of the same goal: to understand, preserve and improve life into the future.
33 The extreme environments of our own world are alien vistas.
34 They’re just closer to home.
35 If we can understand how to create and maintain habitable spaces out of hostile, inhospitable spaces here on Earth, perhaps we can meet the needs of both

preserving our own environment and moving beyond it.
36 I leave you with a final thought experiment: Fermi’s paradox.
37 Many years ago, the physicist Enrico Fermi asked that, given the fact that our universe has been around for a very long time and we expect that there are

many planets within it, we should have found evidence for alien life by now.
38 So where are they?
39 Well, one possible solution to Fermi’s paradox is that, as civilizations become technologically advanced enough to consider living amongst the stars, they

lose sight of how important it is to safeguard the home worlds that fostered that advancement to begin with.
40 It is hubris to believe that interplanetary colonization alone will save us from ourselves, but planetary preservation and interplanetary exploration can work

together.
41 If we truly believe in our ability to bend the hostile environments of Mars for human habitation, then we should be able to surmount the far easier task of

preserving the habitability of the Earth.
42 Thank you.

Table 8: The sample document used for producing Figure 8.
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