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Abstract

Transformer models cannot easily scale to long
sequences due to their O(N2) time and space
complexity. This has led to Transformer vari-
ants seeking to lower computational complex-
ity, such as Longformer and Performer. While
such models have theoretically greater effi-
ciency, their effectiveness on real NLP tasks
has not been well studied. We benchmark 7
variants of Transformer models on 5 difficult
NLP tasks and 7 datasets. We design experi-
ments to isolate the effect of pretraining and hy-
perparameter settings, to focus on their capacity
for long-range attention. Moreover, we present
various methods to investigate attention behav-
iors to illuminate model details beyond metric
scores. We find that the modified attention in
long-range transformers has advantages on con-
tent selection and query-guided decoding, but
they come with previously unrecognized draw-
backs such as insufficient attention to distant
tokens and accumulated approximation error.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have advanced the state of the art in natural lan-
guage processing. However, their quadratic time
and space complexity hinder their application on
long texts. Various proposals have been made to ad-
dress these concerns (Tay et al., 2020c), with math-
ematical guarantees on improved time or space.
These models have been evaluated primarily via
perplexity (Dai et al., 2019) and non-NLP bench-
marks (Tay et al., 2020b). These metrics may not
be ideal (Sun et al., 2021) and may not reflect per-
formance on complex NLP tasks (Arutiunian et al.,
2020; Thorne et al., 2021). We argue these met-
rics have not been sufficient for the development
of efficient Transformers and their practical appli-
cation on long texts, and that existing benchmarks
are insufficient guides for architecture selection.

It is not straightforward to have a fair and side-
by-side comparison among those models due to the

differences between their pretraining and hyperpa-
rameter settings (Tay et al., 2020c), and the metrics
alone cannot convey detailed information about the
self-attention blocks (Sun et al., 2021). We wish
to fairly validate the effectiveness of long-range
attention techniques, and to uncover the underlying
factors behind model behaviors. We critique the re-
liance on perplexity evaluations in previous work,
experimenting with five difficult, long-text NLP
tasks. These tasks cover typical NLP modeling sce-
narios: token or span-level prediction, sequence-
level classification, and sequence-to-sequence gen-
eration. To our knowledge, this is the first work to
evaluate long-range transformers on such a wide
spectrum of representative NLP tasks.

To verify the key features of long-range trans-
formers, we ablate distant attention to measure
what they gain from long-range mechanisms. For
models without pretrained checkpoints, we migrate
parameters from their prototype models for fairness.
We cover 3 main kinds of long-range transformers,
including pattern-, recurrence-, and kernel-based
methods. To our knowledge, we are the first to
adopt all these methods to probe transformers. To
investigate the relationship between performance
and document lengths we break down the metric
with a customized algorithm (Bagga and Baldwin,
1998). Also, we use entropy and attribution anal-
ysis (Li et al., 2017) to test the effectiveness of
cached memories in recurrent transformers and the
global tokens for query-based problems.

We find that long-range context brings perfor-
mance gains to transformers in some cases, which
we attribute to more selective attention, especially
for query-based tasks like QA. Surprisingly we
observe that some long-range models do not ef-
fectively utilize distant information, and the accu-
mulated error of approximation is unacceptable.
We hope this analysis helps practitioners better un-
derstand the current state of the art of long-range
attentions and suggests paths for future research.
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Figure 1: Illustration of 5 patterns used by long-range transformers, from Beltagy et al. (2021) with permission.

2 Background

2.1 Long-Range Transformers
Researchers have proposed a number of Trans-
former variants (Tay et al., 2020c). Most of these
models support decoding (causal masking) (Peng
et al., 2021a), while only a few of them have pre-
trained checkpoints (Beltagy et al., 2020, inter alia).
We cluster these approaches into 3 main categories.

Sparsified Patterns Pattern-based methods try
to make self-attention sparse. Some apply pre-
specified attention patterns. Specifically, Long-
former (Beltagy et al., 2020) applies 3 patterns:
Sliding window requires that each token can only at-
tend to the tokens in a local window, dilated pattern
lets each token only attend at fixed intervals, while
the global pattern requires a few tokens as globally
attended and lets them to attend all tokens in the
sequence. In addition to the global pattern, Big-
Bird (Zaheer et al., 2020) applies a blocked pattern,
which splits the sequence into fixed-length blocks,
and random patterns, by which tokens can attend to
any other tokens randomly. An illustration is shown
in fig. 1. Although the attention of each layer is not
full, the receptive field can be increased as multi-
ple layers are stacked. The selected or appended
“global” tokens can be task-specific (Beltagy et al.,
2020), allowing for direct distant information ex-
change. Instead of pre-defined attention patterns,
some use content-based patterns so they become
learnable, with techniques including locality sensi-
tive hashing (Kitaev et al., 2020), the differentiable
Sinkhorn algorithm (Tay et al., 2020a), or the learn-
able routing algorithm (Roy et al., 2020).

Recurrence & Compressed Memory These
methods use segment-level recurrence to reuse
the cached hidden states of previous steps.
Transformer-XL (Dai et al., 2019) and XL-
Net (Yang et al., 2019) connects different chunks
with cross-attention, where the tokens in a block
attend to the hidden states of the previous blocks
in addition to their self-attention. Note that the
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Fixed (No Grad)
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(a) Training phase.
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Extended Context

(b) Evaluation phase.

Figure 2: Illustration of the Transformer-XL model with a segment length 4.

per-segment, which differs from the same-layer
recurrence in conventional RNN-LMs. Conse-
quently, the largest possible dependency length
grows linearly w.r.t. the number of layers as well
as the segment length, i.e., O(N × L), as vi-
sualized by the shaded area in Fig. 2b. This
is analogous to truncated BPTT (Mikolov et al.,
2010), a technique developed for training RNN-
LMs. However, different from truncated BPTT,
our method caches a sequence of hidden states in-
stead of the last one, and should be applied to-
gether with the relative positional encoding tech-
nique described in Section 3.3.

Besides achieving extra long context and re-
solving fragmentation, another benefit that comes
with the recurrence scheme is significantly faster
evaluation. Specifically, during evaluation, the
representations from the previous segments can
be reused instead of being computed from scratch
as in the case of the vanilla model. In our ex-
periments on enwiki8, Transformer-XL is up to
1,800+ times faster than the vanilla model during
evaluation (see Section 4).

Finally, notice that the recurrence scheme does
not need to be restricted to only the previous seg-
ment. In theory, we can cache as many previous
segments as the GPU memory allows, and reuse
all of them as the extra context when processing
the current segment. Thus, we can cache a prede-
fined length-M old hidden states spanning (pos-
sibly) multiple segments, and refer to them as the
memory mn

τ ∈ RM×d, due to a clear connection to
the memory augmented neural networks (Graves
et al., 2014; Weston et al., 2014). In our experi-
ments, we set M equal to the segment length dur-
ing training, and increase it by multiple times dur-
ing evaluation.

3.3 Relative Positional Encodings

While we found the idea presented in the pre-
vious subsection very appealing, there is a cru-
cial technical challenge we haven’t solved in or-

der to reuse the hidden states. That is, how can
we keep the positional information coherent when
we reuse the states? Recall that, in the standard
Transformer, the information of sequence order is
provided by a set of positional encodings, denoted
as U ∈ RLmax×d, where the i-th row Ui corre-
sponds to the i-th absolute position within a seg-
ment and Lmax prescribes the maximum possible
length to be modeled. Then, the actual input to the
Transformer is the element-wise addition of the
word embeddings and the positional encodings. If
we simply adapt this positional encoding to our
recurrence mechanism, the hidden state sequence
would be computed schematically by

hτ+1 = f(hτ ,Esτ+1 +U1:L)

hτ = f(hτ−1,Esτ +U1:L),

where Esτ ∈ RL×d is the word embedding se-
quence of sτ , and f represents a transformation
function. Notice that, both Esτ and Esτ+1 are as-
sociated with the same positional encoding U1:L.
As a result, the model has no information to dis-
tinguish the positional difference between xτ,j and
xτ+1,j for any j = 1, . . . , L, resulting in a sheer
performance loss.

In order to avoid this failure mode, the funda-
mental idea is to only encode the relative posi-
tional information in the hidden states. Concep-
tually, the positional encoding gives the model a
temporal clue or “bias” about how information
should be gathered, i.e., where to attend. For the
same purpose, instead of incorporating bias stati-
cally into the initial embedding, one can inject the
same information into the attention score of each
layer. More importantly, it is more intuitive and
generalizable to define the temporal bias in a rela-
tive manner. For instance, when a query vector qτ,i
attends on the key vectors kτ,≤i, it does not need
to know the absolute position of each key vector
to identify the temporal order of the segment. In-
stead, it suffices to know the relative distance be-
tween each key vector kτ,j and itself qτ,i, i.e. i−j.
Practically, one can create a set of relative posi-

Figure 2: Recurrent transformers. “No Grad” means
that the gradients do not back-propagate to this block.
Obtained from Dai et al. (2019) with permission.

gradients remain in the same segment and are not
propagated to previous segments (fig. 2). To re-
duce the number of history hidden states, Rae et al.
(2020) compress them as memories for efficient
re-use with pooling or convolutions. From a dif-
ferent perspective, Izacard and Grave (2021) use
retrieval-based methods to collect evidences from
external knowledge, resulting in a more targeted
context information.

Low-Rank & Kernels These methods approxi-
mate the self-attention with low-rank approxima-
tion (Wang et al., 2020) or kernelization with-
out explictly computing the matrix production.
Among them, Choromanski et al. (2021); Peng et al.
(2021b) use random features. Katharopoulos et al.
(2020) reduce the time complexity to linear and
space complexity to constant by replacing softmax
with linear kernel features.

2.2 Benchmarks and Analysis

There is not an agreed-upon standard benchmark
for long-range transformers. Researchers have con-
sidered various tasks and domains, including lan-
guage (Dai et al., 2019), protein sequences (Choro-
manski et al., 2021), and images (Katharopoulos
et al., 2020). Few conduct experiments on long
sequence NLP tasks, including question answer-
ing (Beltagy et al., 2020) and summarization (Za-
heer et al., 2020). Tay et al. (2020b) propose Long
Range Arena comprised of six non-NLP tasks to
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exclude the factor of pretraining. Concurrent to our
efforts, Shaham et al. (2022) propose a suite of text-
to-text tasks as a long sequence NLP benchmark.

Researchers are also interested in the utility of
context in transformers. Rae and Razavi (2020)
find that Transformer-XL does not necessarily need
long and deep contexts. Sun et al. (2021) reveal
that Longformer and Routing transformers can only
reduce the perplexity of LMs on a small set of
tokens. More related to our work, Lai et al. (2020)
show that BERT can make use of a larger scope of
context than a BiLSTM.

3 Setup

3.1 Settings

It is non-trivial to compare distinct transformer
models, due to differences between their pretrain-
ing and hyper-parameter settings. Our goal is to
minimize these confounding factors to allow a fo-
cus on the long range attention ability of each
model on different tasks. We therefore propose
two sets of experimental conditions.

Restricted Attention Range To evaluate the per-
formance gain from long-range attention, we eval-
uate models in both their default context-aware
settings and a context-agnostic setting that restricts
the receptive range of the self-attention blocks. For
pattern-based transformers, we achieve the restric-
tion by segmenting the input sequence into chunks
and running the transformers on segments inde-
pendently. For recurrent models, we ablate the
recurrence to eliminate the dependencies between
segments. In practice, we segment the texts into
chunks with length L,1 which ranges from 128 to
1536. L=∞ indicates no segmentation is used.

Parameter Migration Kernel-based models usu-
ally do not come with checkpoints for general tasks,
but they may have similar structures to other pre-
trained models like BERT and may be designed
to approximate the original results. Therefore, it
is feasible to migrate parameters from pretrained
prototypes to their “efficient version” to observe
if the performance could be preserved. This type
of method can be suitable for models without addi-
tional parameters, such as Performer.

3.2 Transformers and Tasks
Transformers We consider three approaches: 1)
pattern-based: Longformer (Beltagy et al., 2020),

1We use wordpieces instead of words in this paper.

Dataset Task #tokens #docs
Ontonotes Coref. 467 3493
TriviaQA eQA 2895 95k
DocNLI NLI 399 1.44m
SummFD Summ. 5.6k 4.3k
GovRep Summ. 7.9k 19k
Qasper aQA 3.7k 5.7k
QuALITY aQA 4.2k 6.7k

Table 1: Task and dataset overview. The #tokens is the
number of tokens per doc on average.

and BigBird (Zaheer et al., 2020); 2) recurrent:
XLNet (Yang et al., 2019); and 3) kernel-based:
Performer (Choromanski et al., 2021). We also
include the results of RoBERTa (Liu et al., 2019)
and SpanBERT (Joshi et al., 2020), where some of
our approaches are initialized from those two non-
long-range models. Due to memory requirements,
we use the base version for all models.2 You may
refer to appendix B for more details.

Tasks We cover five tasks of three types, includ-
ing 1) span-level predictions: coreference resolu-
tion (Coref.) (Weischedel et al., 2011) and extrac-
tive question answering (eQA) (Joshi et al., 2017);
2) sequence classification: natural language infer-
ence (NLI) (Yin et al., 2021);3 and 3) seq2seq:
summarization (Summ.) (Chen et al., 2021; Huang
et al., 2021), abstractive QA (aQA) (Dasigi et al.,
2021; Pang et al., 2022). We pick seven datasets
that involve long texts, whose statistics are shown
in table 1. For more details about the data prepro-
cessing, please refer to appendix A.4

4 Experiments

4.1 Coreference Resolution
Coreference resolution (coref.) is the task of
identifying mention spans and clustering them
into entities. We consider multiple coreference
strategies: 1) the widely used Coarse2Fine (C2F)
method5 (Lee et al., 2018) which relies on span
representations and 2) the current state-of-the-art
method called Start2End (S2E) (Kirstain et al.,
2021) that works on token representations. The

2We used the codebase of Katharopoulos et al. (2020) for
Performer and Huggingface (Wolf et al., 2020) for the rest.

3DocNLI is modified from ANLI (Nie et al., 2020),
SQuAD (Rajpurkar et al., 2016), DUC2001, DailyMail (Nal-
lapati et al., 2016), and Curation (Curation, 2020)

4Our codebase is available on https://github.com/
hiaoxui/long-range-transformers.

5We used the re-implementation by Gardner et al. (2018).
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Encoder L=128 L=256 L=512
M

od
el

:C
oa

rs
e2

Fi
ne

Longformer 75.74 76.72 77.36
LongformerG 75.68 76.25 77.23
BigBird 75.95 76.78 77.64
XLNet 74.57 74.48 74.33
XLNetm 74.73 75.76 76.29
RoBERTa 74.64 76.45 76.83
RoBERTap 51.58 51.71 50.39
SpanBERT 75.04 75.84 76.59
SpanBERTp 52.46 52.06 50.51
Longformer 76.77 (1024) 76.32 (∞)
BigBird 77.31 (1024) 77.57 (∞)

M
od

el
:S

ta
rt

2E
nd

Longformer 74.77 76.27 77.73
LongformerG 74.15 76.19 77.41
BigBird 73.68 75.57 77.40
XLNet 45.89 60.05 68.23
XLNetm 52.61 56.37 66.91
RoBERTa 71.96 76.27 77.78
RoBERTap 40.06 42.35 41.69
SpanBERT 68.70 74.27 75.32
SpanBERTp 38.69 41.93 42.10
Longformer 77.54 (1024) 77.57 (∞)
BigBird 77.43 (1024) 77.66 (∞)

Table 2: Coref. results with the C2F and the S2E models.
Numbers are averaged F1 (MUC, B3, and CEAFϕ4

).
Longformer with G uses global tokens. XLNet with m

uses recurrence memory. Encoders with p have their
self-attention replaced with a Performer kernel.

dataset we use is Ontonotes 5.0. Transformers
considered include Longformer, XLNet, and Per-
former. We migrate the parameters of SpanBERT
and RoBERTa to Performer and include results on
these models as well. We segment the input tokens
into chunks with lengths of L . For models with
global tokens, we lack a natural choice so we con-
sider all tokens to be global. For XLNet, we keep
the memory of the same length of the segments (e.g.
we keep a memory length of 256 for a model with
segment length 256).6 The results are shown in
table 2. Refer to appendix F.1 for complete results.

Some observations are consistent across two
coref. models. 1) Though further pretrained upon
RoBERTa, pattern-based methods do not show im-
provement over RoBERTa, even with longer at-
tention range. 2) Models gain advantage when
the segments get longer, but it is saturated when
the segment length reaches 512. Distant contexts

6We adopt the same strategies with segmentation and mem-
ories in the remainder of the paper.
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Figure 3: B3 breakdown scores of 4 models for mention
pairs with ranges from [1, 8) to [512,∞).

might not be exploited. 3) Performer-based models
under-perform their corresponding non-kernelized
models by a huge gap. 4) XLNet performs better
with cached memory, but the performance gain is
less observable when for shorter segments. 7

To further show the performance of those models
on documents with different lengths, we conduct
metric breakdown with a few typical configurations.
Instead of simply clustering the document accord-
ing to the lengths, we propose a breakdown-version
B3 metric. Given a mention distance range [L1, L2],
we calculate its corresponding B3 value by only
considering the mention pairs whose distances fall
into this range. The breakdown metrics are shown
in fig. 3. We can see that the performance of all
models follows the same trend and peaks at the
[16, 32) bucket. Also, the graph shows that Long-
former with longer context encoding does NOT
benefit on distant mentions (p value < 0.01). 8 On
the contrary, they suffer more from distance than
shorter-context models, showing that long-range at-
tention fails to capture long-distance information.

4.2 Natural Language Inference

NLI is a classification task concerning a premise
and hypothesis with variable lengths. The DocNLI
dataset uses document-length inputs with binary
labels (entailment and not entailment).
We adopt the model proposed by Yin et al. (2021),
and consider Longformer, BigBird, Performer,
and XLNet. We make the prediction on the CLS to-
ken, which is at the beginning for Longformer and
the end for XLNet. Since we are only interested
in the encoding of CLS, we adopt the strategy of
Yin et al. (2021) which truncates the sequence to
L while preserving the hypothesis for Longformer
and RoBERTa. The results are shown in table 3.

7The observations on XLNet and Performer are consistent
across all the tasks in this paper.

8We conduct significance test for the comparison between
curves. Please refer to appendix D for more details.
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Encoder L=128 L=256 L=512
XLNet 29.95 40.39 24.31
XLNetm 32.94 45.97 30.42
RoBERTa 48.96 47.78 46.04
RoBERTap 17.83 24.91 23.65
Longformer 29.11 25.73 45.28
BigBird 28.95 24.71 31.72
Longformer 45.96 (1024) 44.42 (∞)
BigBird 33.58 (1024) 18.08 (∞)

Table 3: F1 scores on the test set for DocNLI.
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RoBERTa (L=128)
Longformer (L=1024)
XLNetm (L=256)

Figure 4: The breakdown analysis of DocNLI. We pick
the best configuration for each model for brevity.

Observing table 3, surprisingly, the best perfor-
mance is achieved with short segments, though the
optimal lengths vary from model to model. Also,
the performance of Longformer and BigBird is
much lower than their baseline RoBERTa (c.f. Yin
et al. (2021)). Observing the breakdown analysis
in fig. 4, the performance of 3 best models follow
the same trend w.r.t. the document length.9 We
speculate that all models are unable to comprehend
the relationship between long documents, and long-
range attention does not bring any advantage.

4.3 Question Answering

For question answering we experiment with eQA
(TriviaQA) and aQA (Qasper and QuALITY).
Performer, Longformer, BigBird, and XLNet
are tested for encoder-only tasks; BART and
Longformer-Encoder-Decoder (LED) is used for
seq2seq tasks. For LongformerG and BigBird, we
set the question text (and candidate answers for
QuALITY) as global tokens.10 TriviaQA is a ques-

9The graph looks less smooth than fig. 3, possibly because
DocNLI is made up of examples pulled from different datasets,
which may have examples of different average lengths (cf. tab
1 in Yin et al. (2021)). Therefore the length of an example in
DocNLI may correlate with different domains making up the
dataset, which would interfere with our analysis. Future work
will consider other datasets without this confounding concern.

10The global tokens of BigBird are fixed in the first 2 blocks,
so we place the query at the beginning of the sequence.

Encoder L=128 L=256 L=512
Longformer 54.26 58.83 63.88
RoBERTa 55.81 60.29 63.45
RoBERTap 23.17 21.87 21.11
BigBird 55.28 59.39 63.51
XLNet 51.46 56.26 60.05
XLNetm 52.71 57.96 62.85
Longformer 63.91 (1024) 63.66 (∞)
LongformerG - (1024) 72.96 (∞)
BigBird 66.50 (1024) 71.78 (∞)

Table 4: Results for TriviaQA. LongformerG indicates
that the Longformer sets question as the global tokens.

Chunk 512 1024 1536 ∞

Q
as

pe
r BART 24.70 26.30 - -

LED 8.40 15.80 17.86 18.79
LEDG - - - 28.64

Q
LT

Y BART 26.80 26.00 - -
LED 30.73 31.35 31.78 31.21
LEDG - - - 29.87

Table 5: Performance Qasper and QuALITY. Qasper is
evaluated with F1 and QuALITY with accuracy. The
results on BART are from Shaham et al. (2022).

tion answering dataset that involves extracting an-
swer spans from reference documents. We adopt
the method and codebase of Joshi et al. (2017). F1
is used as evaluation metrics. Qasper addresses
the QA task in the domain of academic papers and
involves various answer types: extractive, abstrac-
tive, boolean, and unanswerable. We unify such
tasks as an abstractive QA task (cf. Shaham et al.
(2022)) and implement an LED-based decoder to
generate answers. F1 score is used for the evalu-
ation of Qasper. QuALITY is a multiple-choice
QA task. Given a question and a passage, the task
is to select the correct answer from several candi-
dates. We regard it as a seq2seq problem, with the
objective to predict the correct answer conditioned
on the concatenation of query, candidate answers,
and passage. During inference, the answer with the
least perplexity is selected. All results are shown
in tables 4 and 5, and the full results with more
metrics are shown in appendix F.2.

Across all results, we find that larger receptive
fields lead to better performance in most cases.
More importantly, setting queries as global tokens
greatly benefits the performance on both eQA and
aQA. For QuALITY, it slightly hurt the perfor-
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Figure 5: The performance of Longformer and BigBird
on different lengths of TriviaQA documents. Note that
LongformerG and BigBird (L=∞) have global tokens.

Chunk 512 1024 1536 ∞

SF

BART 26.30 27.20 - -
LED 32.81 33.07 33.22 33.57

G
R BART 45.60 47.90 - -

LED 53.86 54.13 54.83 56.60

Table 6: Results for Summarization on SummFD and
GovRep. ROUGE unigram is used as the metric. Re-
sults on BART are from Shaham et al. (2022).

mance to set both query and candidate as global
tokens. We reckon too many global tokens might
introduce more noise, similar to the case of coref.

We speculate that the performance gain mostly
comes from enhanced attention to the query, which
if further verified by the metric breakdown that
is shown in fig. 5. All models perform well on
short texts, while models with global tokens obtain
an observably greater advantage over the baseline
models for longer documents (p value < 0.01). We
think that the global token mechanism could help
the model be less distracted on long texts via more
attention on the queries (section 5.3), which conse-
quently improves the performance.

4.4 Summarization
As a typical seq2seq problem, we adopt LED to per-
form the summarization task. We chunk the source
sequence into segments (no segmentation for L =
∞) to restrict the receptive range. Intuitively, the
summary may be benefited from the contextual rep-
resentation with a broader view of the document.
Two datasets are used: SumScreen addresses the
domain of TV shows. Following Shaham et al.
(2022), we use the subset of ForeverDreaming
(SummFD) consisting of 88 different shows. The
goal is to summarize the transcript of an episode,
for which the recap is used as the ground truth
summary. GovReport is a long-document sum-
marization dataset in the domain of government
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Figure 6: The gradient distribution over tokens for
XLNetm on DocNLI documents.

policies with human-written summaries. ROUGE
(Lin, 2004) is used as the evaluation metric. Re-
sults are shown in Table 6, and the full results are
shown in appendix F.3.

From table 6, we observe slight superiority of
the context-aware models. Note that cross attention
will attend to all source tokens whether we segment
it or not, but the intuition of summarization is to
skim over the document, so we speculate that the
performance improvement may be related to the
selectivity of the encoder-side attention, which is
further analyzed in section 5.2. We do not conduct
breakdown analysis for summarization because the
sequence length directly contributes to the metric.

5 Analysis

5.1 The Attribution of Recurrence Memories

Even if we know that distant contexts can help or
hurt performance, it’s still unclear how much they
contribute to the predictions. One way to quantify
this is attribution analysis (Simonyan et al., 2014;
Li et al., 2017). Suppose ℓ is our loss function and
ei ∈ Rd is the word embedding of the i-th token.
We use αi to measure the attribution of the i-th
token to the final prediction where

αi =

∥∥∥∥
∂ℓ

∂ei

∥∥∥∥
l

. (1)

We set l = 1 to take the L1 norm in practice, and
the ground truth labels in the test set are used to cal-
culate the gradient. Intuitively, tokens with higher
contribution have greater gradient norms. Also, re-
current models like XLNet stop the gradient from
being propagated back to the cached memory, and
we temporarily turn off this feature for analysis.

We apply this method to XLNet on DocNLI,
where we pick 128 documents of lengths between
1,000 and 1,024. We normalize the αi over all
tokens for each document, and take an average on
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Figure 7: Attention distribution entropy (above) for doc-
uments with different lengths and attribution analysis
(below) over source tokens for LED on SummFD.

each token index across all documents. The results
are shown in fig. 6. Note that prediction is made in
the last segment, and previous segments contribute
only through the memory. We see the attribution
of tokens is stratified according to their segment
lengths, with a minor peak at the CLS token of each
segment. As we have more and more segments, the
attribution of distant tokens to the final prediction
becomes negligible. For example, in the case of
L=128, last segment made 53.4% of attribution,
while the first segment made less than 0.01%.

5.2 Content Selection in Cross Attention

The cross attention of LED attends to the whole
document no matter if we segment the inputs or
not, thus we suppose source tokens should have
similar attribution to decoding, which can be veri-
fied by attribution analysis in fig. 7. However, the
crucial problem for summarization is whether the
attention is selective, given that only a portion of
the document is helpful. Therefore, we inspect the
entropy 11 of the cross attention distribution over
the source tokens fig. 7.

Reading the entropy curve, we find that the en-
tropy of models without segmentation (L=∞) is
consistently lower (p value < 0.01), which can be
translated to higher selectivity of cross attention
and explains the superiority of LED (L=∞) in ta-
ble 6. Reading the gradient curve, we find that both

11The distribution entropy is averaged over decoding tokens,
attention heads, and transformer layers.
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Figure 8: The accumulated gradient on query vs. the
proportion of query, i.e. (query length / doc length) with
Longformer and BigBird (L=∞) on TriviaQA.

models have a relatively uniform attribution over
tokens with a slight slope on the left side due to
the existence of short sequences. This is reason-
able because summarization requires the decoder to
skim over the whole document, thus cross attention
should not have a locality preference.

5.3 Query-Guided Extraction and Decoding

Different from other problems, the queries in QA
can be treated as a “guidance” on how to read the
documents. To see if the encoders can exploit this
structure, we conduct attribution analysis on Triv-
iaQA with Longformer and BigBird. The results
are shown on fig. 8, where we plot the relationship
between the proportion of accumulated gradients
on queries and the proportion of query tokens in
the document. It is clear that models with global
tokens pay more attention to queries (p value < 0.01
except for one exception), which is consistent with
the purpose of their design.

For scenarios where seq2seq decoding meets
queries, intuition suggests queries could instruct
the cross-attention to attend to specific tokens, mak-
ing the decoding more selective. From fig. 9, the en-
tropy of attention distribution on source sequence
against the doc length, we see Longformer with
global token unquestionably has lower entropy (p
value < 0.01), implying more targeted decoding.

5.4 Error Accumulation of Kernel Methods

We find that Performer could not match the results
of its prototypes (tables 2 to 4). We suspect that the
error incurred by the kernel approximation may not
be acceptable for span-level tasks like coref. We
conducted another set of experiments: Instead of
training the performer model from the checkpoints
of SpanBERT, we directly replace some layers from
a fine-tuned SpanBERT model with Performer lay-
ers with their parameters preserved. Experiments
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Figure 10: Results of SpanBERT (L=512) with layers
replaced with Performer layers with “#Fea” features.
The baseline is the performance of the original model.

are conducted with C2F on Ontonotes 5.0.
In fig. 10, we try to replace P layers of

SpanBERT in a top-down manner, where P =
1, 2, . . . , 12. We also try using different feature di-
mensions to exclude the possibility of insufficient
features. We find that although large dimension of
random features brings marginal advantages to the
performance, Performer is not very sensitive to this
factor. Instead, the performance drops dramatically
as we replace more layers, from the baseline F1
78 to ~20 with all layers replaced. Based on our
findings, we conclude that Performer is a good ap-
proximation for shallow transformers, even with
very low-dimensional random features. However,
as we stack more transformer layers, the accumu-
lated errors can be unacceptable, which leads to a
failure in the performance.

6 Experiment Confounders

Pretraining and Adaptation The purpose of this
paper is to evaluate the effectiveness of different
long-range attention approaches by reducing the
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Figure 11: Results of different pooling strategies.

confounder of pre-training, but it is still unclear
how the results would change if we pre-train those
models with the same configuration from scratch.
Unfortunately, it requires much more resources and
introduces more confounders of training settings,
and we adopt the most straightforward way to ab-
late the long-range attention or migrate parameters.
For each model-task pair, we make the most natural
choice, e.g. setting queries as global tokens, trying
to minimize human biases of model adaptations.

Pooling Strategies Concatenating the represen-
tation of segments, while being natural and com-
monly used, is not the only pooling strategy. As
a comparison, we incorporate the results of other
3 solutions: 1) Split the documents into segments
of L tokens with L/2 overlapped between adjacent
segments (Joshi et al., 2019); 2) Stack an LSTM
layer over the Transformer representation of the
segment ; 3) A combination of above methods. We
conduct experiments on the coreference resolution
task with both C2F and S2E solution and many vari-
ants of transformers as our encoder. We leave the
experiment details and discussions in appendix E
and show a brief result in fig. 11. We have simi-
lar observation with Joshi et al. (2019) that over-
lapping does not bring performance improvement.
Moreover, though introducing more parameters, a
stacked LSTM even hurts the performance. We
conclude that pooling strategies do not affect our
analysis in section 5.

7 Discussion

Researchers have proposed many innovative meth-
ods for efficient self-attention over long sequences.
The key ideas work as desired in certain cases,
though we demonstrate several drawbacks.

Surprisingly, pattern-based methods, as the
most popular approach, are not necessarily ben-
efited from long-range attention in the general case.
Larger sliding windows are helpful, but the benefit
would quickly saturate or become negative (table 2).
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However, when a small portion of guidance text
(e.g. query in QA) exists, setting it as global to-
kens can make it more attended and significantly
boost the performance (section 5.3). When such
text doesn’t exist, setting all tokens as global would
hurt the performance (table 2). Moreover, we find
that long-range attention and global tokens are cor-
related with the selectivity of seq2seq problems,
which consequently helps the decoding.

The memory of recurrence models generally
improves performance, proving historical hidden
states are beneficial for transformers in various
tasks. However, XLNet does not fully exploit
the history tokens, with distant information less
attended (section 5.1). We speculate that it is be-
cause XLNet is pretrained to predict masked tokens,
which does not frequently need the participation
of long-range context (Sun et al., 2021). Also, the
stop-gradient trick may hinder the model from ef-
fectively attending to memories.

The approximation of kernel-based methods
works very well for shallow networks, but faces
serious error accumulation problems when trans-
former layers are deeply stacked, which cannot be
remedied by having high-dimensional random fea-
tures (section 5.4). The resulting performance drop
is not acceptable even for the “base” version of
transformer encoders with 12 layers (table 2).

8 Conclusion

We conduct experiments with various long-range
transformers on NLP tasks that involve long se-
quences, trying to fairly evaluate their long-range
attention ability. While some methods are validated
on certain tasks, we also find some previously un-
recognized drawbacks. We further analyze the at-
tention behaviors of these transformers with metric
breakdown, attribution analysis, and entropy anal-
ysis, revealing the performance of those models
might be correlated with the attribution of distant
tokens, selectivity of attentions, or the approxima-
tion errors. We hope our work would shed light on
the future development of long-range transformers.

Model Selection Takeaways Based on our find-
ings, we have the following suggestions. For
common tasks, such as sequence classification or
token-level prediction, it is still competitive to
chunk the inputs and apply short-range transform-
ers. When explicit guiding text, such as queries, ex-
ists, pattern-based models with global token mech-
anism is preferred. For seq2seq problems, long-

range transformers with pretrained checkpoints de-
liver better performance.
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9 Limitations

Energy Cost Our experiments involve a massive
amount of training with many transformers on vari-
ous tasks. Although we don’t conduct any pretrain-
ing, the energy cost is still non-negligible. How-
ever, our hope is our findings here would enable
others to more efficiently select a particular archi-
tecture for their task, rather than reproducing the
work done here.

Experimental Bias Due to the lack of pretrained
checkpoints for general purposes, we focus on rep-
resentative instead of each type of transformer vari-
ant. It is possible that these observations are par-
ticular to specific artifacts and implementations
considered here. Our goal is foremost to provide
a roadmap for continued study on questions raised
in this article, with new architectures being evalu-
ated in the future by model developers themselves.
For similar reasons, existing artifacts are biased
towards English, as are many of the datasets em-
ployed in this study. We do not believe our findings
are specific to English, but it remains for future
work in long range transformer evaluation to ex-
tend our analysis into multilingual conditions.

Language Bias For similar reasons, existing ar-
tifacts are biased towards English, as are many of
the datasets employed in this study. We do not
believe our findings are specific to English, but it
remains for future work in long-range transformer
evaluation to extend our analysis into multilingual
conditions.

3782



References

Artashes Arutiunian, Morgan McGuire, Hallvar Gis-
nås, Sheik Mohamed Imran, Dean Pleban, Priyank
Negi, and David Arnoldo Ortiz Lozano. 2020. Re-
producibility Challenge: Reformer. In Advances in
Neural Information Processing Systems (NeurIPS),
page 10.

Amit Bagga and Breck Baldwin. 1998. Algorithms for
Scoring Coreference Chains.

Iz Beltagy, Arman Cohan, Hanna Hajishirzi, Sewon
Min, and Matthew Peter. 2021. Beyond Paragraphs:
NLP for Long Sequences.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The Long-Document Transformer.

Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin
Gimpel. 2021. SummScreen: A Dataset for Abstrac-
tive Screenplay Summarization.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2021. Rethinking Attention with Per-
formers. In International Conference on Learning
Representations (ICLR).

Curation. 2020. Curation Corpus Base.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive Language Models Be-
yond a Fixed-Length Context. In Association for
Computational Linguistics (ACL).

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A Dataset
of Information-Seeking Questions and Answers An-
chored in Research Papers. In North American Asso-
ciation for Computational Linguistics (NAACL).

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. In Association for Computational
Linguistics (ACL).

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient Attentions for Long
Document Summarization. In North American As-
sociation for Computational Linguistics (NAACL),
pages 1419–1436. Association for Computational
Linguistics.

Gautier Izacard and Edouard Grave. 2021. Leverag-
ing Passage Retrieval with Generative Models for
Open Domain Question Answering. In European
Association for Computational Linguistics (EACL).

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving Pre-training by Representing and
Predicting Spans. Transactions of the Association
for Computational Linguistics (TACL), 8:64–77.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In Association for Computational
Linguistics (ACL).

Mandar Joshi, Omer Levy, Daniel S. Weld, and Luke
Zettlemoyer. 2019. BERT for Coreference Resolu-
tion: Baselines and Analysis. In Empirical Methods
in Natural Language Processing (EMNLP).

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
RNNs: Fast Autoregressive Transformers with Linear
Attention. In International Conference on Machine
Learning (ICML).

Yuval Kirstain, Ori Ram, and Omer Levy. 2021. Coref-
erence Resolution without Span Representations. In
Association for Computational Linguistics (ACL).

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The Efficient Transformer. In In-
ternational Conference on Learning Representations
(ICLR).

Yi-An Lai, Garima Lalwani, and Yi Zhang. 2020. Con-
text Analysis for Pre-trained Masked Language Mod-
els. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 3789–3804. Association for
Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order Coreference Resolution with Coarse-to-
fine Inference. In North American Association for
Computational Linguistics (NAACL).

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Juraf-
sky. 2017. Visualizing and Understanding Neural
Models in NLP. In Association for Computational
Linguistics (ACL).

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summariza-
tion Branches Out, page 8.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. S. Zettlemoyer, and V. Stoy-
anov. 2019. RoBERTa: A Robustly Optimized BERT
Pretraining Approach.

Xiaoqiang Luo. 2005. On Coreference Resolution Per-
formance Metrics. In Empirical Methods in Natural
Language Processing (EMNLP), page 8.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016. Ab-
stractive Text Summarization Using Sequence-to-
Sequence RNNs and Beyond. In Computational
Natural Language Learning (CoNLL).

3783



Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversar-
ial NLI: A New Benchmark for Natural Language
Understanding. In ACl.

Richard Yuanzhe Pang, A. Parrish, Nitish Joshi, N. Nan-
gia, J. Phang, A. Chen, V. Padmakumar, J. Ma,
J. Thompson, H. He, and S. R. Bowman. 2022.
QuALITY: Question Answering with Long Input
Texts, Yes! In North American Association for Com-
putational Linguistics (NAACL).

Hao Peng, Jungo Kasai, Nikolaos Pappas, Dani
Yogatama, Zhaofeng Wu, Lingpeng Kong, Roy
Schwartz, and Noah A. Smith. 2021a. ABC: At-
tention with Bounded-memory Control.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong.
2021b. Random Feature Attention. In International
Conference on Learning Representations (ICLR).

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar,
and Timothy P. Lillicrap. 2020. Compressive Trans-
formers for Long-Range Sequence Modelling. In
International Conference on Learning Representa-
tions (ICLR).

Jack W. Rae and Ali Razavi. 2020. Do Transformers
Need Deep Long-Range Memory. In Association for
Computational Linguistics (ACL).

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016.
SQuAD: 100,000+ Questions for Machine Compre-
hension of Text. In Empirical Methods in Natural
Language Processing (EMNLP).

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2020. Efficient Content-Based
Sparse Attention with Routing Transformers. Trans-
actions of the Association for Computational Linguis-
tics (TACL).

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, and Omer Levy. 2022.
SCROLLS: Standardized CompaRison Over Long
Language Sequences.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep Inside Convolutional Networks: Vi-
sualising Image Classification Models and Saliency
Maps.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do Long-Range
Language Models Actually Use Long-Range Con-
text? In Empirical Methods in Natural Language
Processing (EMNLP), page 16.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and
Da-Cheng Juan. 2020a. Sparse Sinkhorn Attention.
In International Conference on Machine Learning
(ICML).

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang, Se-
bastian Ruder, and Donald Metzler. 2020b. Long
Range Arena: A Benchmark for Efficient Transform-
ers.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020c. Efficient Transformers: A Survey.

James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio
Silvestri, Sebastian Riedel, and Alon Halevy. 2021.
Database Reasoning Over Text. In Association for
Computational Linguistics (ACL).

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
2017. Attention Is All You Need. In Advances in
Neural Information Processing Systems (NeurIPS).

Marc Vilain, John Burger, John Aberdeen, Dennis
Connolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Conference
on Message Understanding, page 45. Association for
Computational Linguistics.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-Attention with
Linear Complexity.

R. Weischedel, E. Hovy, M. Marcus, M. Palmer,
R. Belvin, S. Pradhan, L. Ramshaw, and N. Xue.
2011. OntoNotes: A large training corpus for en-
hanced processing. In Handbook of Natural Lan-
guage Processing and Machine Translation. Springer.
Springer.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 38–45. Association for Computa-
tional Linguistics.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhut-
dinov, and Q. V. Le. 2019. XLNet: Generalized
Autoregressive Pretraining for Language Understand-
ing. In Advances in Neural Information Processing
Systems (NeurIPS).

Wenpeng Yin, Dragomir Radev, and Caiming Xiong.
2021. DocNLI: A Large-scale Dataset for Document-
level Natural Language Inference. In Association for
Computational Linguistics (ACL).

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for
Longer Sequences. In Advances in Neural Informa-
tion Processing Systems (NeurIPS).

3784



A Data Preprocessing

The coref task usually consumes a large amount of
GPU memory. For the experiments on Ontonotes,
we truncate the sequence longer than 2000 tokens
(for c2f model) or 1400 tokens (for s2e model) for
the memory concern. The truncation was applied
only to the training set.

We didn’t do any pre-processing steps for Doc-
NLI (Yin et al., 2021), except for the truncation that
we discussed in section 4. Notably, DocNLI is an
aggregated dataset constructed from ANLI (Nie
et al., 2020), SQuAD (Rajpurkar et al., 2016),
DUC2001, CNN/DailyMail (Nallapati et al., 2016),
and Curation (Curation, 2020). Documents from
different sources may be distinguishable from their
lengths (refer to tab 1 in Yin et al. (2021).

For TriviaQA, we use the scripts of Long-
former (Beltagy et al., 2020) to pre-process the
data. There is no further modifications on the data.

We adopt the dataset of QuALITY and GovRe-
port from Shaham et al. (2022), which picked long
sequences from those datasets.

For Qasper and SummScreen, we simply adopt
the original dataset and scripts for preprocessing.

B Implementation Details of
Transformers

In this section, we discuss the details of modifica-
tion we did to the transformers.

Recurrence-Based Methods We tested XLNet
for recurrence-based methods. We adopt the code-
base of Huggingface as the base model, and fol-
lowed the common strategy to stop gradient from
being propagated back into the cached memory.
For each segment of the recurrence, we appended
two special tokens SEP and CLS to the sequence,
making it like an ordinary input sequence to the
XLNet model except for the possible existence of
memory states. We concatenated the token repre-
sentations after recurrences and remove the special
tokens from all but the last segment. Empirically,
we found that having special tokens can signifi-
cantly boost the performance.

Pattern-Based Methods For the pattern-based
methods, when we chunked the input sequence into
segments, we appended the SEP as we did for the
XLNet, and prepended the CLS token as a conven-
tion of other transformers. After concatenation, we
removed all the special tokens except for the first

CLS the last SEP, which made it structurally simi-
lar to the outputs of non-segmented transformers.
What’s more, for sliding window mechanism, we
might reduce the window size to segment length if
needed to save compute and memory.

Kernel-Based Methods We tested Per-
former (Choromanski et al., 2021) as a repre-
sentative of kernel-based methods. Given that
training from random initialization would lead
to suboptimal results, we migrate the parameters
from base models (e.g. BERT, RoBERTa) to kernel
methods. In detail, we replace the self-attention
layers of the base models with kernels. Given that
Performer does not require any additional param-
eters, except for the orthogonal random feature
vectors in the FAVOR+ mechanism. Following
the default implementation of the fast transformer
codebase12, we set the feature dimension as the
query dimension by default for main experiments,
though we found the performance isn’t sensitive to
those features in section 5.4.

C Experiments Details

In this section, we introduce the details of our
experiments in the main paper, including hyper-
parameters, training strategies, data split and load-
ing, and other configurations that are necessary to
replicate our results.

Computational Resources All of our experi-
ments were done with NVIDIA RTX 6000 GPU
with 24GB of memory. We did most of the experi-
ments with single cards, except for TriviaQA, for
which we used multi-GPU training with 4 cards.

Coreference Resolution We used two mod-
els: coarse2fine (C2F) (Lee et al., 2018) and
start2end (S2E) (Kirstain et al., 2021). For C2F
model, we used the codebase reimplemented by Al-
lenNLP (Gardner et al., 2018) for its flexibility on
encoder exchange. We used the official codebase
of S2E model for other experiments. We didn’t
change any hypermeters except for the difference
on the encoders. We adopted the same training
strategy of these repos without any modifications,
i.e. we train the model with certain epochs (40
for C2F and 129 for S2E) or until convergence
and pick the model performed best on the dev set
for evaluation. The typical training time of coref
models was 10h for C2F and 24h for S2E.

12https://github.com/idiap/
fast-transformers
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Natural Language Inference Due to the size of
DocNLI dataset (942k training and 234k dev ex-
amples), it’s infeasible to adopt the common train-
ing strategies. Instead, we train the model with
mini-batch gradient descent with a batch size of
4 for only one epoch. Because the training and
dev set are too large to fit into CPU memory, we
split the training set into smaller datasets consisting
of 32768 examples, and iterate over training and
dev set during training. We pick the model with
best performance on the dev set (not the whole
set but one iteration) for test. We use the whole
test set consisting of 267k examples for the final
evaluation. We adopt the same architecture as the
model used in Yin et al. (2021) and reimplement it
with AllenNLP Gardner et al. (2018). The typical
training time is around 2 days and the test time is
around 4 hours.

Question Answering For TriviaQA, we adopted
the training scripts and hyperparameters used by
Beltagy et al. (2020) except for that we set the
training batch size as 4 and number of epochs as
8. The performance is evaluated on the dev set and
we pick the best checkpoint with patience of 3.

For Qasper, we follow the training scripts and
hyper-parameters in its official repository. 13 We
disable the evidence setting, and extend the training
to a maximum epoch of 20. The performance is
evaluated on the dev set with patience of 5.

For QuALITY, we adopt the LED model with
“allenai/led-base-16384” configuration from Hug-
gingface. 14 We concatenate the question, candi-
date answers, and passages as the encoder input,
and the correct answer as the decoder input for
training. During inference, we feed each candidate
answer as the decoder input, and consider the one
with the lowest perplexity as the predicted answer.
We use a warmup steps of 1000 and learning rate
of 5× 10−5 for training. Evaluation is performed
on the dev set with a patience of 5.

Summarization For both the SummScreen and
GovReport datasets, we use the LED model with
“allenai/led-base-16384” configuration. We use a
warmup steps of 1000 and learning rate of 5×10−5

for training and patience of 5 for testing. GovRe-
port is evaluated on the dev set and SummScreen
is evaluated on its official test set.

13https://github.com/allenai/
qasper-led-baseline

14https://huggingface.co/allenai/
led-base-16384

D Significance Test

For the comparison between curves in the section 5,
we conduct significance test using bootstrapping
methods to verify our conclusions. Let D be the
test set for a task. For the performance comparison
between two configurations, we sample a new D∗

from D with replacement and we keep |D∗| =
|D|. We treat the event “configuration A performs
better than B” as a Bernoulli random variable P ,
and compute the probability of the null hypothesis
P < 0.5 as the p value. We sample B = 1024 test
sets for each comparison. If multiple significance
tests are conducted, we only report the larges value
that we obtain. 15

For example, in fig. 3, we claim that the per-
formance of Longformer (L=512) is better than
any other encoders regardless of the mention dis-
tances. To verify it, we conduct significance test
between Longformer (L=512) and other 3 encoders
for every mention distance. The greatest p value
among 24 p tests is smaller than 0.01, so our claim
is secured by our significance test.

E More Pooling Strategies

We conduct experiments with 4 transformers, in-
cluding 2 short-range transformers (RoBERTa and
SpanBERT) and 2 long-range transformers (Long-
former and BigBird) on the coreference resolution
task. We set L=512, which is the maximum accept-
able length for short-range transformers.

The full results are shown in table 7, and a box
plot can be found in fig. 11. In overall, we have
similar observations as Joshi et al. (2019) that over-
lapped segments do not offer improvements on the
performance. Similar findings can be found for
LSTM settings and the combination of them. More
importantly, the performance difference of table 7
is consistently with tables 8 and 11 except for a
few outliers. Thus, we conclude that direct concate-
nation is already enough to exploit the pretrained
transformers, and changing pooling strategies do
not greatly interfere our analysis.

F Full Experiment Results

In this section, we list the full results of all the
experiments in the main paper.

15For the curves in fig. 8, we exclude one exception case at
x = 0.6. For the curves in fig. 9, we exclude one exception
case at x = 500.
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F.1 Coreference Resolution
The full results of coreference resolution are
shown in tables 8 and 11. We use MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFϕ4 (Luo, 2005) as the evaluation metrics. Fol-
lowing the convention, we use the “Avg.” as the
main metric, which is an average among the F1
score of 3 metrics. All the results are reported on
the test set.

F.2 Question Answering
The full experiment results on TriviaQA is shown
in table 9. We use both F1 and exact match (EM)
as the metrics. A few cells are left blank because
of the constraints of the transformers.

F.3 Summarization
The full results on summarization is shown in ta-
ble 10. We used ROUGE (Lin, 2004) as the metric.
R1, R2, and R3 stands for ROUGE unigram, bi-
gram, and longest common subsequence. Note
that 1536 is the windows size of the LED model,
and 1024 is the maximum length supported by the
BART model.

3787



Encoder
MUC B3 CEAFϕ4 Avg.

P R F1 P R F1 P R F1

M
od

el
:C

oa
rs

e2
Fi

ne

RoBERTa 81.6 85.0 83.3 72.1 78.2 75.1 72.1 72.2 72.2 76.8
RoBERTaoverlap 82.9 84.5 83.7 73.1 77.1 75.0 73.5 71.7 72.5 77.1
RoBERTaLSTM 84.3 83.9 84.1 75.0 76.2 75.6 74.5 71.0 72.7 77.5
RoBERTaLSTM

overlap 84.1 84.8 84.5 75.4 77.4 76.4 74.5 72.4 73.5 78.1
Longformer 82.4 85.3 83.8 73.0 78.6 75.7 72.6 72.5 72.5 77.4
Longformeroverlap 82.4 83.8 83.1 72.9 76.0 74.4 72.3 70.5 71.4 76.3
LongformerLSTM 84.2 83.8 84.0 75.3 75.8 75.5 73.8 71.7 72.8 77.4
LongformerLSTM

overlap 84.3 84.2 84.2 75.4 76.6 76.0 74.4 72.3 73.4 77.9
BigBird 81.5 86.9 84.1 71.5 80.9 75.9 72.7 73.1 72.9 77.6
BigBirdoverlap 83.0 84.3 83.6 73.9 76.7 75.3 72.4 72.0 72.2 77.0
BigBirdLSTM 84.2 84.4 84.3 75.0 77.1 76.0 74.0 72.1 73.1 77.8
BigBirdLSTM

overlap 84.5 84.3 84.4 75.7 76.8 76.2 74.8 72.2 73.5 78.0
SpanBERT 83.3 82.9 83.1 74.4 74.8 74.6 72.6 71.7 72.1 76.6
SpanBERToverlap 83.1 83.0 83.0 74.4 75.0 74.7 72.2 72.2 72.2 76.7
SpanBERTLSTM 83.4 82.8 83.1 74.3 74.7 74.5 72.8 70.9 71.8 76.5
SpanBERTLSTM

overlap 83.6 82.6 83.1 74.4 74.6 74.5 72.6 70.8 71.7 76.4

M
od

el
:S

ta
rt

2E
nd

RoBERTa 85.7 82.6 84.1 78.1 74.3 76.2 75.2 70.9 73.0 77.8
RoBERTaoverlap 85.0 82.6 83.8 77.7 73.5 75.6 74.4 71.5 73.0 77.4
RoBERTaLSTM 83.8 81.4 82.6 75.1 72.3 73.7 72.1 69.4 70.8 75.7
RoBERTaLSTM

overlap 83.7 82.9 83.3 75.6 74.6 75.1 73.7 71.4 72.5 77.0
Longformer 85.5 82.6 84.0 78.0 74.5 76.2 75.2 70.7 72.9 77.7
Longformeroverlap 83.9 82.2 83.1 75.5 73.3 74.4 73.8 69.9 71.8 76.4
LongformerLSTM 84.0 80.8 82.3 75.7 71.2 73.4 72.5 68.3 70.3 75.3
LongformerLSTM

overlap 83.7 81.6 82.6 75.3 72.5 73.8 72.5 69.5 71.0 75.8
BigBird 85.7 82.3 84.0 77.9 73.9 75.9 75.7 69.4 72.4 77.4
BigBirdoverlap 84.1 82.4 83.2 76.3 74.2 75.2 74.7 70.8 72.7 77.1
BigBirdLSTM 83.2 81.7 82.4 74.2 72.5 73.3 72.1 68.5 70.3 75.3
BigBirdLSTM

overlap 83.7 81.9 82.8 75.5 73.0 74.2 73.3 69.9 71.6 76.2
SpanBERT 83.5 81.3 82.4 74.6 71.9 73.2 72.3 68.5 70.3 75.3
SpanBERToverlap 82.9 81.2 82.0 74.0 72.3 73.2 72.2 68.5 70.3 75.2
SpanBERTLSTM 70.4 58.9 64.1 47.8 44.7 46.2 59.6 26.7 36.9 49.1
SpanBERTLSTM

overlap 68.3 61.5 64.7 43.6 47.8 45.6 59.3 26.3 36.5 48.9

Table 7: The full results of all experiments with different pooling strategies. All models use the segment length
L=512. Models with superscript “LSTM” indicate it uses LSTM, and subscript “overlap” indicates it uses overlapped
concatenation method. Note that both methods can be applied in the meantime.
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Encoder
MUC B3 CEAFϕ4 Avg.

P R F1 P R F1 P R F1
BigBird (L=128) 80.5 85.5 83.0 69.8 78.5 73.9 70.8 71.2 71.0 75.9
BigBird (L=256) 81.1 86.2 83.6 70.5 79.8 74.9 72.1 71.7 71.9 76.8
BigBird (L=512) 81.5 86.9 84.1 71.5 80.9 75.9 72.7 73.1 72.9 77.6
BigBird (L=1024) 82.2 85.5 83.8 72.8 78.4 75.5 72.7 72.5 72.6 77.3
BigBird (L=4096) 81.8 87.0 84.3 71.5 81.0 76.0 72.7 73.2 73.0 77.7
Longformer (L=128) 81.7 83.7 82.7 71.6 75.8 73.7 71.3 70.4 70.9 75.7
LongformerG (L=128) 81.1 84.3 82.7 70.6 76.5 73.4 71.0 70.9 70.9 75.7
Longformer (L=256) 81.6 85.2 83.4 71.8 78.1 74.8 71.6 72.3 72.0 76.7
LongformerG (L=256) 81.4 84.8 83.1 71.4 77.6 74.4 71.0 71.7 71.3 76.3
Longformer (L=512) 82.4 85.3 83.8 73.0 78.6 75.7 72.6 72.5 72.5 77.4
LongformerG (L=512) 82.6 85.0 83.8 73.2 77.9 75.5 72.4 72.4 72.4 77.2
Longformer (L=1024) 82.1 84.9 83.5 72.3 77.7 74.9 72.0 72.0 72.0 76.8
Longformer (L=4096) 82.0 84.2 83.1 72.4 76.2 74.3 71.6 71.6 71.6 76.3
RoBERTa (L=128) 81.4 82.5 81.9 70.7 73.9 72.2 71.4 68.2 69.7 74.6
RoBERTap (L=128) 69.4 57.7 63.0 55.9 42.5 48.3 49.9 38.4 43.4 51.6
RoBERTa (L=256) 82.0 84.5 83.2 72.2 77.2 74.6 72.3 70.7 71.5 76.5
RoBERTap (L=256) 68.7 57.9 62.9 55.7 43.1 48.6 49.3 39.2 43.7 51.7
RoBERTa (L=512) 81.6 85.0 83.3 72.1 78.2 75.1 72.1 72.2 72.2 76.8
RoBERTap (L=512) 68.0 56.1 61.5 55.1 40.8 46.9 48.4 38.4 42.8 50.4
SpanBERT (L=128) 82.0 82.2 82.1 72.0 73.7 72.8 71.5 69.0 70.2 75.0
SpanBERTp (L=128) 70.6 56.8 63.0 58.1 42.9 49.4 50.8 40.5 45.1 52.5
SpanBERT (L=256) 82.7 82.8 82.7 73.0 74.1 73.5 71.9 70.6 71.3 75.8
SpanBERTp (L=256) 70.0 56.4 62.5 58.5 41.7 48.7 50.1 40.8 45.0 52.1
SpanBERT (L=512) 83.3 82.9 83.1 74.4 74.8 74.6 72.6 71.7 72.1 76.6
SpanBERTp (L=512) 67.6 55.7 61.1 56.2 40.8 47.3 47.2 39.8 43.2 50.5
XLNet (L=128, m=0) 81.6 82.7 82.1 71.2 73.4 72.3 70.0 68.6 69.3 74.6
XLNet (L=128, m=128) 81.7 82.6 82.1 71.9 73.3 72.6 69.9 69.0 69.5 74.7
XLNet (L=256, m=0) 79.4 84.2 81.7 68.5 76.0 72.0 68.5 70.9 69.7 74.5
XLNet (L=256, m=256) 84.3 81.8 83.0 75.4 72.2 73.8 72.2 68.9 70.5 75.8
XLNet (L=512, m=0) 79.0 85.2 82.0 67.4 77.4 72.1 69.1 68.8 69.0 74.3
XLNet (L=512, m=512) 82.1 84.1 83.1 72.5 76.1 74.3 72.8 70.3 71.5 76.3

Table 8: Full results on Ontonotes with the coarse2fine model. L is the segment length used to chunk the text.
m is the memory length used for the XLNet model. G denotes that the global tokens are used. p denotes that th
self-attention computation is replaced with Performer kernels.

Encoder
L=128 L=256 L=512 L=1024 L=∞

F1 EM F1 EM F1 EM F1 EM F1 EM
Longformer 54.26 50.02 58.83 54.48 63.88 59.13 63.91 58.91 63.41 58.89
LongformerG - - - - - - - - 72.96 67.88
RoBERTa 55.81 50.73 60.29 56.11 63.45 58.84 - - - -
RoBERTap 23.17 16.80 21.87 15.56 21.11 15.09 - - - -
BigBird 55.28 50.66 59.39 54.34 63.51 58.50 66.50 61.15 71.78 66.86
XLNet 51.46 47.10 56.26 52.08 60.05 55.62 - - - -
XLNetm 52.71 48.03 57.96 52.93 62.85 58.13 - - - -

Table 9: Full results on TriviaQA. We adopt the same notation as we used in table 8.
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Encoder
L=512 L=1024 L=1536 L=∞

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

SF

BART 26.3 5.1 16.2 27.2 4.9 16.7 - - - - - -
LED 32.8 7.0 18.8 33.1 7.3 18.9 33.2 7.0 18.6 33.6 7.1 18.7

G
R BART 45.6 16.9 21.8 47.9 18.6 22.7 - - - - - -

LED 53.9 24.7 27.1 54.1 25.1 27.9 54.8 25.7 27.8 56.6 26.6 29.1

Table 10: Full results on summarization. “SS” stands for the SummScreen dataset, and “GR” stands for the
GovReport dataset. The BART model does not support sequence longer than 1024 tokens.

Encoder
MUC B3 CEAFϕ4 Avg.

P R F1 P R F1 P R F1
BigBird (L=128) 84.5 78.5 81.4 75.2 68.6 71.7 73.5 63.2 68.0 73.7
BigBird (L=256) 85.1 80.3 82.6 76.7 71.2 73.8 74.7 66.4 70.3 75.6
BigBird (L=512) 85.7 82.3 84.0 77.9 73.9 75.9 75.7 69.4 72.4 77.4
BigBird (L=1024) 85.2 82.5 83.8 77.1 74.5 75.8 76.3 69.6 72.8 77.4
BigBird (L=4096) 85.1 82.8 83.9 77.7 75.1 76.4 75.6 70.1 72.7 77.7
Longformer (L=128) 84.4 80.0 82.1 75.3 70.5 72.8 72.9 66.0 69.3 74.8
LongformerG (L=128) 84.4 79.1 81.7 75.1 69.2 72.0 72.8 65.2 68.8 74.2
Longformer (L=256) 84.8 81.7 83.2 76.2 72.5 74.3 73.9 68.8 71.2 76.3
LongformerG (L=256) 84.4 81.8 83.1 75.6 73.1 74.3 74.3 68.3 71.2 76.2
Longformer (L=512) 85.5 82.6 84.0 78.0 74.5 76.2 75.2 70.7 72.9 77.7
LongformerG (L=512) 84.5 83.4 83.9 76.2 75.2 75.7 74.3 70.9 72.6 77.4
Longformer (L=1024) 86.0 82.1 84.0 78.7 73.4 76.0 75.2 70.2 72.6 77.5
LongformerG (L=1024) 82.4 79.2 80.8 72.2 69.5 70.8 72.2 65.4 68.6 73.4
Longformer (L=4096) 85.2 82.9 84.1 77.4 74.6 76.0 74.8 70.7 72.7 77.6
RoBERTa (L=128) 81.1 78.0 79.6 70.5 68.0 69.3 71.2 63.3 67.0 72.0
RoBERTap (L=128) 61.3 45.0 51.9 45.9 30.3 36.5 41.4 25.8 31.8 40.1
RoBERTa (L=256) 84.7 81.8 83.2 76.0 72.6 74.3 74.2 68.5 71.3 76.3
RoBERTap (L=256) 67.7 46.0 54.8 53.0 30.8 39.0 43.8 26.9 33.3 42.4
RoBERTa (L=512) 85.7 82.6 84.1 78.1 74.3 76.2 75.2 70.9 73.0 77.8
RoBERTap (L=512) 67.0 45.0 53.9 53.0 29.8 38.1 43.2 26.8 33.1 41.7
SpanBERT (L=128) 78.2 75.5 76.8 66.6 64.3 65.5 68.2 60.5 64.1 68.7
SpanBERTp (L=128) 56.5 45.7 50.5 39.8 31.5 35.1 38.4 25.1 30.4 38.7
SpanBERT (L=256) 83.2 79.6 81.4 74.4 70.1 72.2 71.7 67.0 69.3 74.3
SpanBERTp (L=256) 64.1 46.5 53.9 49.8 31.8 38.8 40.7 27.9 33.1 41.9
SpanBERT (L=512) 83.5 81.3 82.4 74.6 71.9 73.2 72.3 68.5 70.3 75.3
SpanBERTp (L=512) 63.7 47.0 54.1 48.7 32.0 38.6 42.2 27.9 33.6 42.1
XLNet (L=128, m=0) 79.4 39.8 53.0 69.1 30.1 41.9 61.6 32.7 42.7 45.9
XLNet (L=128, m=128) 78.1 49.1 60.3 66.0 39.4 49.3 63.8 38.8 48.2 52.6
XLNet (L=256, m=0) 78.8 59.5 67.8 68.0 48.6 56.7 66.4 47.9 55.7 60.1
XLNet (L=256, m=256) 64.6 67.5 66.0 48.4 55.0 51.5 59.8 45.3 51.6 56.4
XLNet (L=512, m=0) 80.3 71.7 75.7 70.7 61.4 65.7 66.9 60.0 63.3 68.2
XLNet (L=512, m=512) 76.2 73.0 74.6 64.2 63.8 64.0 66.4 58.3 62.1 66.9

Table 11: Full results on Ontonotes with the start2end model. We adopt the same notation as we used in table 8.
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