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Abstract

Open knowledge graph (KG) consists of (sub-
ject, relation, object) triples extracted from mil-
lions of raw text. The subject and object noun
phrases and the relation in open KG have se-
vere redundancy and ambiguity and need to
be canonicalized. Existing datasets for open
KG canonicalization only provide gold entity-
level canonicalization for noun phrases. In
this paper, we present COMBO, a Complete
Benchmark for Open KG canonicalization.
Compared with existing datasets, we addition-
ally provide gold canonicalization for relation
phrases, gold ontology-level canonicalization
for noun phrases, as well as source sentences
from which triples are extracted. We also pro-
pose metrics for evaluating each type of canon-
icalization. On the COMBO dataset, we em-
pirically compare previously proposed canon-
icalization methods as well as a few simple
baseline methods based on pretrained language
models. We find that properly encoding the
phrases in a triple using pretrained language
models results in better relation canonicaliza-
tion and ontology-level canonicalization of the
noun phrase. We release our dataset, baselines,
and evaluation scripts at https://github.com/

jeffchy/COMBO/tree/main.

1 Introduction

Large ontological knowledge graphs (KG) such as
Wikidata (Vrandečić and Krötzsch, 2014), DBpe-
dia (Bizer et al., 2009), Freebase (Bollacker et al.,
2008) use a complex ontology to formalize and
organize all the entities and relations. Figure 1(a)
shows an example ontological knowledge graph
(Wikidata): “Joe Biden (Q6279)” is categorized as
“Human (Q5)” in Wikidata and linked to “Scran-
ton (Q271395)” with relation “birth place (P19)”,
where prefix Q and P denote unique identities for
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Figure 1: Example of ontological KG (a) and Open KG
triples (b). The differently colored bounding boxes and
the tags on the open KG triples illustrate three types of
gold canonicalization. Yellow (e.g., Q5 Human) shows
the gold ontology-level NP cluster, the salvia blue (e.g.,
Q6279) indicates the gold entity-level NP cluster, and
the purple (e.g., P19) indicates gold RP cluster.

entity and relation respectively in Wikidata1. As
ontological KGs are well organized and canoni-
calized, one can efficiently query information and
extract knowledge from them to assist NLP models
in various tasks (Rao et al., 2013; Luo et al., 2015;
Cui et al., 2019; Murty et al., 2018; Wang et al.,
2021; Liu et al., 2023; Gao et al., 2022; Liu et al.,
2022). However, building and maintaining an ac-
curate ontological KG requires large human effort
(Färber et al., 2015).

In contrast, open knowledge graphs such as Re-

1Wikidata links https://www.wikidata.org/wiki/Q5,
https://www.wikidata.org/wiki/Property:P19
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Verb (Fader et al., 2011) and OLLIE (Mausam
et al., 2012) are built using (subject, relation, ob-
ject) triples automatically extracted from millions
of raw text by OpenIE systems (Angeli et al., 2015;
Fader et al., 2011; Mausam et al., 2012). They
are frequently used to assist in building ontologi-
cal KGs (Martinez-Rodriguez et al., 2018; Dessì
et al., 2021) and slot filling (Broscheit et al., 2017).
As OpenIE systems do not rely on pre-defined on-
tologies or human supervision, the extracted triples
contain noun phrases (NPs) and relation phrases
(RPs) that are not canonicalized. Take the open KG
triples shown in Figure 1(b) as an example. The NP

“Joseph Biden” and “Biden” both refer to the US
president Joe Biden, but the open KG regards them
as two different nodes because of their different sur-
face forms. On the other hand, “was born in” in the
first and second triple means “birth place of” and

“birth time of” respectively, but the open KG cannot
disambiguate them. These examples reveal the re-
dundancy and ambiguity of uncanonicalized open
KG (Vashishth et al., 2018), which makes query-
ing open KG inaccurate and inefficient. To this
end, open KG canonicalization aims to improve
the quality of open KGs to the level of ontological
KGs. It is therefore different from tasks such as
entity linking (Rao et al., 2013) and KB aligning
(Elsahar et al., 2018) that align entity mentions or
sentences to an existing ontological KG.

Existing open KG canonicalization datasets such
as ReVerb-base, ReVerb-ambiguous (Galárraga
et al., 2014), ReVerb45K (Vashishth et al., 2018)
and CanonicNELL (Dash et al., 2021) mainly fo-
cus on entity-level canonicalization of NPs, pro-
viding the gold Entity-level NP Canonicalization
(NPC-E). The blue tags and dashed boxes in Figure
1(b) show examples of NPC-E, e.g., “Biden” and

“Joseph Biden” should be canonicalized as the same
entity Q6279. However, these datasets do not pro-
vide the gold RP Canonicalization (RPC), and do
not consider the Ontology-level Canonicalization
of NP (NPC-O). RPC is to canonicalize RPs that
mean same relation together, for example, the sec-
ond and the third “was born in” in Figure 1(b)
should be canonicalized into the same cluster of
birth place (P19), different from the first one which
means “birth time (P569)”. Similarly, NPC-O is
to canonicalize NPs that have same type together,
for example, the “Scranton” should be canonical-
ized into class “CountySeat” and into class “Local
Government” together with “Atlantic County”, it

can be viewed as canonicalizing special ontological
relations such as “instance of ”, “subclass of ” rep-
resented by dotted arrows in Fig. 1(a). We formally
define these tasks in Sec. 3.

RPC and NPC-E are important as parts of a
canonicalization benchmark (1) Relations and on-
tology are necessary for an expressive KG (Klyne
and Carroll, 2004) (2) Most KG queries involve
relations and ontology (e.g., the query “actress
that was born in California”, involve the relational
constraint “X, birth place, California” and the on-
tological constraint “X, instance of, Actress”).

In this paper, we present COMBO, a complete
benchmark for open KG canonicalization consist-
ing of three subtasks: besides NPC-E which has
been adequately studied in previous work, we ad-
ditionally provide gold RPC and NPC-O along
with their evaluation metrics. Gold NPC-O is ob-
tained by querying the Wikidata using SPARQL,
and RPC is obtained by performing Stanford Ope-
nIE on sentences from Wiki20 (a distantly labeled
relation extraction dataset), and a per-instance hu-
man revision process to ensure the quality of ex-
tracted RPs. We introduce the data construction
process detailedly in Sec. 4.

Our new benchmark makes it possible for the
first time to quantitatively evaluate the full range
of open KG canonicalization. We conduct compre-
hensive experiments to compare existing canonical-
ization methods as well as a few simple baseline
methods proposed by us. Somewhat surprisingly,
none of the existing methods utilizes pretrained
contextualized word embedding, probably because
previous work only focuses on NPC-E and NPs are
often not very ambiguous, making contextualiza-
tion not so helpful. For example, the “Joe Biden”
and “Joseph Biden”. However, contexts are more
helpful in RPC and NPC-O. For RPC, relations
are more ambiguous and diverse in surface forms
(e.g., “was born in” in Figure 1) and contexts are
needed for disambiguation. For NPC-O, the RP
and the other NP in the triple will help understand
the type of an NP. Therefore, our proposed baseline
methods are based on pretrained language mod-
els (PLM) (Devlin et al., 2019; Liu et al., 2019b;
Sun et al., 2019) which produce contextualized
embedding and have been shown to contain a cer-
tain amount of factual knowledge (Petroni et al.,
2019; Lauscher et al., 2020). We found that, after
properly encoding triples and contexts, our base-
line methods outperform well on all three subtasks
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compared with previous state-of-the-art methods,
especially on RPC and NPC-O. We also propose a
triple-based pretraining method and find that it fur-
ther boosts the performance on all subtasks. There-
fore, our work provides strong baselines for future
research on open KG canonicalization.

In summary, our contributions are threefold.
First, we propose a complete definition of the open
KG canonicalization problem along with the met-
rics. Second, we construct the complete benchmark
for open KG canonicalization consisting of entity-
level and ontology-level NP canonicalization and
RP canonicalization. Third, we propose a stronger
baseline based on autoencoding PLMs and conduct
a comprehensive empirical comparison of canoni-
calization methods on our benchmark.

2 Open KG Canonicalization Datasets

We introduce existing open KG canonicalization
datasets and COMBO. The statistics of datasets
are shown in Table 1.
ReVerb-Base (Galárraga et al., 2014) Constructed
using the ReVerb open KB. As half of the NPs in
ReVerb triples are linked to an entity in the onto-
logical database FreeBase (Bollacker et al., 2008),
the authors sample 150 FreeBase entities that have
at least two surface forms, collect all triples con-
taining these 150 entities, and use the entity labels
as the gold NP clusters.
ReVerb-Ambiguous (Galárraga et al., 2014)
ReVerb-Ambiguous is constructed similarly as
ReVerb-Base, it has 37K triples, but with only 445
gold NP clusters (entities). One problem with the
ReVerb-Base and ReVerb-Ambiguous datasets is
they contain too few NP clusters and too many NP
aliases, which is inconsistent with real open KGs.
ReVerb45K(Vashishth et al., 2018) ReVerb45K
increases the entity number to 7.5K and has 45K
triples in total. ReVerb45K, Reverb-Base, and
ReVerb-Ambiguous extract a source sentence for
each triple from ClueWeb09 Callan et al. (2009).
However, some of the source sentences are simply
the concatenation of triples.
CanonicNELL (Dash et al., 2021) Constructed
using the open KB NELL (Mitchell and Fredkin,
2014) and the entity linking information for NPs
(Pujara et al., 2013). They remove triples contain-
ing NPs without aliases. CanonicNELL does not
provide source sentences.
COMBO (Ours) As shown in the Table 1, the
main differences of our dataset between others are

that we additional provide gold RP canonicaliza-
tion and ontology-level NP canonicalization. Con-
structed based on the large Ontological KG Wiki-
data2, the OpenIE system, a relation extraction
dataset Wiki20m and human revisions, as detailed
in next section. Our dataset contains 18K triples
with their source sentences and we provide gold
NPC-E, RPC and NPC-O annotations. We com-
pare COMBO with existing datasets in Table 1.
Although our dataset is middle-sized, it has the
longest average triple length and the largest num-
ber of unique NPs, indicating the diversity of the
surface forms of NPs and RPs. Providing source
sentences of extracted OpenIE triples is natural but
important since additional contextual information
can be helpful in understanding and disambiguat-
ing NPs and RPs. We ensure all triples contain rich
context, and the average length of source sentences
is 21. We show some data samples in Appendix A,
and analyze our data in Sec. 4.

3 Task Definition and Evaluation Metrics

Task Definition The goal of open KG canon-
icalization is to assign NPs and RPs in triples
into clusters, such that NPs that refer to the
same entity (NPC-E) or have the same type
(NPC-O) are clustered together, and similarly,
RPs that refer to the same relation are clustered
together. Note that the task is unsupervised,
meaning that the canonicalizer does not have
access to gold annotations. We have N samples
containing triples and their corresponding source
sentences: T = {ci, ti = (si, ri, oi)| i = 1 . . . N},
where ci is the i-th sentence, ti is the i-th triple
containing subject NP si, RP ri, and object NP oi.
S = {(si, i)| i = 1 . . . N} is the indexed subject
NP set. The indexed RP set R and object NP set O
are defined similarly as R = {(ri, i)| i = 1 . . . N}
and O = {(oi, i)| i = 1 . . . N}. We have
|S| = |O| = |R| = N . The gold NPC-E, RPC,
and NPC-O annotations are defined as sets of clus-
ters. As subject NPs and object NPs are asymmetric
(Juffs and Harrington, 1995; McGinnis, 2002), we
follow Vashishth et al. (2018) and evaluate the
clusters of subject NPs and object NPs separately.
The gold NPC-E and NPC-O for subject NPs
are defined as NPC-E (Subj) = {C1 . . . CKE

s
},

NPC-O (Subj) = {C1 . . . CKO
s
}, where Ci denotes

the i-th cluster of NP. The NPC-E and NPC-O
2The official suggested replacement of Freebase after it

retired shorturl.at/kmnBR
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# NP # NPC-E # RP # RPC # NPC-O # Triples Avg triple len Context (%)
ReVerb-Base 290 150 3K ✗ ✗ 9K 5.26 78%
ReVerb-Ambiguous 717 446 11K ✗ ✗ 37K 5.27 78%
ReVerb45K 15.5K 7.5K 22K ✗ ✗ 45K 6.17 91%
CanonicNELL 8.7K 1.4K 139 ✗ ✗ 20K 6.38 ✗

COMBO (Ours) 16.5K 13.8K 3.2K 79 2946 18K 8.12 100%

Table 1: Statistics and comparison of open KG canonicalization datasets including ours. ✗ means not available in
the dataset (i.e., zero). “Avg triple len” is the average number of words in the triple. The last column shows the
ratios of triples containing additional context in their source sentences.

NPC-E RPC NPC-O

Gold non-overlapping non-overlapping overlapping

Predicted non-overlapping non-overlapping
non-overlapping /

overlapping

Metric Ma, Mi, Pair Mi, Pair
Ma, Mi, Pair /
Jg→p, Jp→g

Table 2: Evaluation of the three subtasks. Ma, Mi, Pair
are abbreviations of macro, micro and pairwise metrics.

of object NPs are defined similarly, the gold
RPC is defined as RPC as {C1 . . . CKr}. NPC-E
(Subj) is a non-overlapping cluster assignment and
satisfies two conditions: (1)

⋃KE
s

i=1 C
i = S; (2)

Ci ∩ Cj = ∅, i ̸= j. NPC-E (Obj) and RPC satisfy
similar conditions. NPC-O (Subj) and NPC-O
(Obj) are overlapping cluster assignments, i.e., we
allow an NP to belong to multiple clusters, so they
only need to satisfy the first condition. The task is
to predict the cluster assignments of NPs and RPs
given their source triples and sentences. Following
previous works, we assume the cluster number is
unknown beforehand and split our data into the
dev (20%) and test (80%) sets.

Task Evaluation Most clustering algorithms
such as K-means (Lloyd, 1982) and Hierarchical
Agglomerative Clustering (HAC) (Maimon and
Rokach, 2005) produce non-overlapping cluster
assignments, and several algorithms (e.g., HAC)
can also produce hierarchical and overlapping clus-
ter assignment. For the NPC-E subtask, we adopt
the classic macro, micro and pairwise metrics to
compare the gold and predicted NPC-E cluster as-
signments (please refer to App. C for details). For
RPC, the macro metrics that calculate the fractions
of pure clusters are too strict because gold RP clus-
ters are large and hence are unlikely to be pure.
Therefore we only use the micro and pairwise met-
rics to evaluate RPC.

For NPC-O, the gold cluster assignments are

overlapping. If the predicted clusters are non-
overlapping, we can apply the macro and pairwise
metrics and a modified micro metric (Appendix
D). If the predicted clusters are overlapping, say
P = {Cp

1 . . . C
p
M}, we propose evaluation met-

rics Jg→p and Jp→g based on the Jaccard index
(Jaccard, 1908; Tanimoto, 1958). Jg→p (Eq.1) cal-
culates the average Jaccard index of a gold cluster
and its best matched predicted cluster. Jp→g is
similarly defined but with the roles of NPC-O and
P switched. Table 2 summarizes the evaluation
metrics of each subtask.

Jaccard(g, p) =
|g ∩ p|
|g ∪ p|

Jg→p =
1

|NPC-O|
∑

g∈NPC-O

max
p∈P

(
Jaccard(g, p)

) (1)

4 Construction of Our Dataset

We illustrate the construction process of COMBO
in Figure 2. We rely on the Wiki20 dataset (Han
et al., 2020) to obtain the source sentence and the
gold NPC-E. Wiki20 is a large multi-domain re-
lation extraction dataset constructed by aligning
the Wikipedia corpus with Wikidata using distant
supervision. As shown in the bottom of Figure 2,
each sample of Wiki20 contains a sentence with
the object and subject NP spans labeled and linked
to entities in Wikidata and the relation between
them is also labeled. To ensure data quality, we use
the recently revised version of Wiki20 (Gao et al.,
2021), which aligns the Wiki20 relation labels with
the supervisedly constructed Wiki80 dataset (Han
et al., 2019) and provides 56K human-annotated
data samples. The object and subject NP spans
and its entity linking information (e.g., Q6275) are
from Wikipedia and have high precision, so we
directly use it for task NPC-E.

Extracting Relational Phrases Wiki20 only pro-
vides the relation label of two NPs for each instance.
We further extract RP for Wiki20 instances to ob-
tain full open KG triples. We first discard samples
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with the relation label “NA” and then run the Stan-
ford OpenIE system on Wiki20 sentences to extract
triples. We choose Stanford OpenIE3 because com-
pared with older OpenIE systems such as ReVerb
and NELL that are used in constructing previous
datasets, Stanford OpenIE can leverage the linguis-
tic structure of a sentence and generalizes better to
out-of-domain and longer utterances (Angeli et al.,
2015). We empirically find that Stanford OpenIE
yields a better recall and can extract more triples per
sentence compared to ReVerb. We use the default
model configuration of Stanford OpenIE. After ob-
taining the OpenIE triples of each non-NA Wiki20
instance, we select the triples whose subject NP
and object NP are consistent with the NP spans pro-
vided by Wiki20. This triple selection step ensures
the NPs in the extracted triples have gold NPC-
E annotations, and remove wrong relation spans
caused by wrongly extracted head and tail entities.
We filter out 88% of the original triples through
this step. Although this step reduces noises caused
by OpenIE, the extracted relation spans could still
be wrong in two ways:

1. Invalid RP between correct NPs. For exam-
ple, for sentence “. . . the Althing, the ruling leg-
islative body of Iceland . . . ”, OpenIE wrongly
extracts (the Althing, body of, Iceland), while
the true triple should be (the Althing, ruling
legislative body of, Iceland).

2. Correct NPs and valid RP but RP does not
imply the relation given by Wiki20. For the
given relation mother of and sentence “. . . bart
and lisa got sent out of the house by marge
simpson . . . ”, the extracted triple (lisa, got sent
out of the house by, marge simpson) is valid but
cannot imply the mother of relation.

Therefore, we manually check all the extracted
triples for these two types of errors, correcting in-
valid relational phrase spans and removing triples
whose RP cannot imply the given relation. We also
standardize the form of RP (e.g., OpenIE some-
times includes “a” and “the” and sometimes does
not). The detailed guidelines for the check and re-
vision process are shown in the Appendix B. The
error analysis is shown in Table 3.

After all these steps, we obtain an open KG con-
sisting of 18K triples. Similar to NPC-E, we use
the relation labels given by the Wiki20 annotations

3https://stanfordnlp.github.io/CoreNLP/
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Figure 2: Steps of dataset construction.

Error Type Rate

Invalid RP 23.5%
RP doesn’t imply relation 5.5%

Table 3: OpenIE error analysis.

(e.g., P19) as the gold RPC. As shown in Figure 3,
the constructed open KG contains 79 relations in
various domains, such as relations between geopo-
litical entities (mouth of the watercourse (7.3%),
mountain range (3.8%), etc), relations between
people (spouse of (1.7%), child of (1.6%), etc),
and various relations between people and other
objects (citizenship (2.4%), work location (3.7%),
etc). The extracted RPs are diverse in surface forms.
The number of distinct RPs is 3.2K. We show RP
examples in Table 4. There exist some RPs that
represent multiple relations and one representative
example is “in”.

Extracting Ontology To obtain ontology-level
NP clusters for the NPC-O subtask, we query Wiki-

spouse of
was married twice to , was married to,

lover, consort of, second husband, widow of
’s wife, ’s second wife, arranged a wedding with

mountain range
peak, large nunatak, summits of, the only crossing of the

most prominent feature of, small glacier, summits in
valley in, only crossing of, northernmost subrange of, in

location
is headquartered in, moved to, is carved on

took place at, ironworks in, was again held at, in

Table 4: RP examples.
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Figure 3: Pie charts of 79 RP clusters.

data for the classes of each entity. For example,
to obtain the classes of “Joe Biden (Q6275)”, we
run the SPARQL (RDF query language) query “
Q6275 P31 ?”, where P31 represents the “instance
of” relation in Wikidata. This query obtains all the
classes of an NP. If an NP does not have a class, its
NPC-O annotation is the same as its NPC-E annota-
tion. If an NP has more than one class, we include
all of them in the NPC-O annotation (e.g., city and
big city for “New York”). We query Wikidata us-
ing a third-party client Wikidata Integrator4.As the
ontology information in Wikidata is crowdsourced
and contains errors, we apply pattern-based correc-
tions to the extracted ontological NP clusters, for
example, if an NP belongs to the cluster million
cities, it should also belong to the cluster city. The
resulting 2.9K ontological NP clusters form a 6-
level overlapping hierarchy which allows a node to
have more than one parent. We illustrate part of the
hierarchy in Figure 5 and show the statistics of the
top 12 ontological NP clusters in Figure 4.
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Figure 4: Size of top 12 ontological NP clusters.

4https://github.com/SuLab/WikidataIntegrator
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Figure 5: Part of the class hierarchy in our dataset.

5 Comprehensive Evaluation of Methods

Our benchmark makes it possible to conduct a com-
prehensive empirical comparison of different meth-
ods on the full range of open KG canonicalization.
Below we first give an overview of existing meth-
ods and propose a few new baseline methods. Then
we present our experimental settings and results.

5.1 Previous Methods

Non-neural Methods Galárraga et al. (2014) uti-
lizes token features such as TF-IDF scores and
Jaccard token similarity to canonicalize NPs. They
merge similar NPs based on a threshold (tuned on
the validation set) to form clusters. For RPs, they
use AMIE (Galárraga et al., 2013), an unsupervised
algorithm based on statistical rule mining, to ob-
tain relation clusters. Vashishth et al. (2018) use
additional side information obtained from various
sources (such as PPDB (Ganitkevitch et al., 2013),
WordNet (Miller, 1992)) to produce clusters.
SE-HAC Trivial baseline that performs HAC clus-
tering over phrase embeddings produced by aver-
aging static word embeddings such as GloVe (Pen-
nington et al., 2014) or random embeddings.
CESI Vashishth et al. (2018) encode phrases using
the same method as in SE-HAC; then apply the
HolE graph embedding algorithm (Nickel et al.,
2016) on triples and incorporate side information
to finetune the embedding, and finally run HAC
clustering on the learned embeddings.
CUVA Dash et al. (2021) adopt VAEGMM (Jiang
et al., 2017) to jointly learn and cluster the embed-
dings. They initialize VAEGMM by performing
HAC clustering on GloVe NP and RP embeddings,
and then simultaneously optimize the knowledge
embedding loss, side information loss, and VAE
loss for the final clustering.

Previous methods encode NPs and RPs using
either token frequency features or static word em-
bedding. Although CESI and CUVA learn graph
embedding on open KG triples, they assign the
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Data Encoding Clusters

Triple Pretraining

HAC

Figure 6: Pipeline of the proposed PLM-based method.

same representation to phrases with the same sur-
face form and therefore cannot deal with ambiguity.
No method utilizes original sentences to provide
additional contexts. HAC is a popular choice of
the clustering algorithm because it does not require
knowing the number of clusters, but instead re-
quires a distance threshold indicating when to stop
merging. Unlike the number of clusters, the thresh-
old can be tuned on a validation set and directly
applied to the test set.

5.2 PLM-Based Baseline Methods

We propose a set of new baseline methods based on
PLMs that produce contextualized embedding. We
use a pipeline similar to CESI as shown in Figure
6. We encode NPs and RPs using different PLMs,
PLM layers, and span representation methods and
apply HAC clustering over their representations.
We use the cosine similarity as the distance func-
tion and apply the complete linkage variant of HAC
clustering because we prefer compact clusters and
the single linkage variant suffers from the chaining
phenomenon. Before encoding, an optional triple-
level continuous pretraining step can be applied
for better canonicalization. Token similarity and
other side information are not used in our PLM-
based method, but we generate them for our data
using the code provided by Vashishth et al. (2018)
to facilitate running of other methods.

5.2.1 Encoding

PLMs We use autoencoding PLMs5 including
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), ERNIE2.0 (Sun et al., 2019) which inte-
grates entity information, and SpanBERT (Joshi
et al., 2020) which is pretrained with span masks.

Input Given a triple ti = (si, ri, oi) and its cor-
responding source sentence ci, we formulate the
input of PLM in the following four ways to obtain
the contextualized embedding of words in the NPs
and RP. Note that the fourth method sep indepen-

5Huggingface models https://huggingface.co/

dently encodes each phrase in the triple.

sentence: [CLS] . . . si . . . ri . . . oi . . . [SEP ]

triple: [CLS] si ri oi [SEP ]

triple-sep: [CLS] si [SEP ] ri [SEP ] oi [SEP ]

sep: [CLS] si/ri/oi [SEP ]

(2)

Phrase Representation After obtaining the con-
textualized embedding of words in an NP or RP
span, denoted as hi . . . hj , we follow Toshniwal
et al. (2020) and use three methods to produce a
single span embedding. Following Timkey and van
Schijndel (2021), we also standardize the embed-
dings to remove rogue dimensions (Appendix E).
Previous work (Vulić et al., 2020; Liu et al., 2019a)
shows that different layers of a PLM contain differ-
ent information, so we investigate contextualized
embedding from different layers .

mean: average_pooling(hi . . . hj)

max: max−pooling(hi . . . hj)

diff-sum: [hi − hj ;hi + hj ]

(3)

5.2.2 Triple-level Pretraining
Inspired by the HolE algorithm used in previous
works (Vashishth et al., 2018; Dash et al., 2021),
we may perform an optional triple-level continuous
pretraining step before encoding to mimic the link
prediction objectives in knowledge graph embed-
ding learning. For each sentence in our dataset,
we randomly mask a phrase in the triple and then
train the PLM to predict the whole masked span.
We perform pretraining for 10 epochs using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a linear scheduler and a start learning rate of
5e-5. We then use the continuously pretrained ver-
sion of PLM as the phrase encoder. We also use
the causal subword-level MLM strategy in BERT
(Devlin et al., 2019) for comparison.

5.3 Experimental Setup
For each subtask, we use grid search to tune the
HAC distance threshold on the dev set to obtain
non-overlapping clusters for all the methods. We
select the best threshold based on the average of the
metrics shown in Table 2. We obtain overlapping
clusters for NPC-O from the full HAC hierarchy.
As HAC is deterministic, we run experiments once
for methods without randomness and four times for
methods involving random initialization (CUVA,
Random+HAC). As Token Sim+SI and VAEGMM
based methods cannot provide overlapping cluster
assignments, we do not evaluate them by metrics
based on the Jaccard index. For our PLM-based
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NPC-E RPC NPC-O
Subj Obj Relation Subj Subj-Jaccard Obj Obj-Jaccard

Token Sim+SI (Galárraga et al., 2014) 82.90 79.35 33.94 33.14 - 40.59 -
Random+HAC 85.32 85.11 35.98 37.31 38.79 44.90 44.40
GloVe+HAC 78.31 86.57 35.57 38.00 39.04 47.35 45.45
GloVe+HolE+HAC (Vashishth et al., 2018) 80.13 87.33 17.93 39.63 39.87 48.25 47.18
GloVe+SI+HAC (Vashishth et al., 2018) 80.42 87.34 17.91 39.87 39.83 48.26 47.11
CESI (Vashishth et al., 2018) 80.11 86.82 18.37 39.93 39.89 48.25 47.19
VAEGMM+SI (Dash et al., 2021) 80.86 82.91 34.10 37.41 - 46.90 -
VAEGMM+HolE (Dash et al., 2021) 80.15 82.87 36.12 37.22 - 46.88 -
CUVA (Dash et al., 2021) 80.68 82.95 36.13 37.09 - 46.89 -
Bert-base 86.93 86.91 54.47 42.97 44.16 50.71 46.99
Roberta-base 82.85 85.00 41.08 39.21 41.24 46.07 44.14
SpanBert-base 84.38 86.32 44.04 41.61 43.16 47.29 45.35
ERNIE2.0-base 86.68 88.11 54.66 42.60 44.05 52.27 47.05
Bert-base-triple 86.01 88.92 58.45 43.71 45.19 51.78 47.49
Roberta-base-triple 85.37 87.22 50.81 42.29 44.33 50.31 46.81
SpanBert-base-triple 85.73 85.89 46.18 42.53 44.23 47.60 45.56
ERNIE2.0-base-triple 87.21 86.93 57.28 43.21 44.33 50.66 47.27
Bert-large 87.09 89.05 50.31 42.34 44.16 50.71 47.25
Roberta-large 83.50 85.81 40.51 39.88 42.35 48.35 45.58
SpanBert-large 86.32 86.67 45.84 40.96 42.90 47.92 45.68
ERNIE2.0-large 86.21 88.86 49.80 42.71 44.01 51.98 47.22

Table 5: Averaged metrics (of Table 2) on all the subtasks. For example, NPC-O, Subj is the average of Ma,Mi
and Pair metrics on the ontology-level canonicalization of subject NPs, and NPC-O, Obj-Jaccard is the average
of Jp→g and Jg→p for the overlapping clustering assignment of object NPs. Full results including the results of
large-triple models are shown in Appendix F

methods, we select the best input form and span
representation strategy based on the dev set per-
formance. We also compare different encoding
strategies in Appendix G, and layer-wise perfor-
mances in Appendix H.

5.4 Overall Results

We report averaged metrics for each subtask in Ta-
ble 5 because of limited space. The full results
are shown in Appendix F. The results show that
our PLM-based baseline methods outperform previ-
ous methods in most cases, especially on RPC and
NPC-O, indicating the importance of contextual in-
formation. Trivial baselines such as Token Sim+SI,
Random+HAC and GloVe+HAC already perform
well (around 80%) on NPC-E, because NPs refer-
ring to the same entity usually have similar surface
forms and do not have to rely on contexts for cor-
rect prediction. However, they perform badly on
RPC and NPC-O, because surface forms alone are
no longer adequate for these two subtasks because
of higher ambiguity. CESI has bad RPC perfor-
mance but is very competitive on NPC-E (Obj),
and better than SpanBERT and RoBERTa with-
out triple-level pretraining, but is still worse than
the other PLM-based methods. CUVA performs
generally badly, probably because it is sensitive to
VAEGMM initialization and relies heavily on side
information. As our dataset has the longest aver-

age triple length and consists of texts from various
domains, it could be more challenging for methods
that do not use contextualized embedding.

For PLM-based methods, BERT leads to the
best overall performance on NPC-E (Obj), RPC
and NPC-O (Subj); ERNIE2.0 performs best on
NPC-E (Subj) and NPC-O (Obj) and is compara-
ble to Bert on NPC-E (Obj) and RPC; RoBERTa
and SpanBERT fall behind, but are still better than
most other non-PLM methods on NPC-O and RPC.
Large PLMs are better than base PLMs on NPC-E,
comparable on NPC-O, but worse on RPC. We also
found the triple-level pretraining effective, having
a positive influence in most cases, especially on
RPC (e.g., +9.73 for RoBERTa). In contrast, using
the causal subword-level pretraining for Bert im-
proves the object NPC but harms the subject NPC
and RPC (-1.07 points). A detailed comparison
between triple-level and subword-level pretraining
is shown in Appendix I.

6 Conclusion

We present COMBO, a complete benchmark for
open KG canonicalization. COMBO consists of
three subtasks, entity-level and ontology-level NP
canonicalization, and RP canonicalization. We con-
struct the data and propose the evaluation metrics
for the RPC and NPC-O that are not been ade-
quately studied before. We also propose a stronger
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canonicalization method based on autoencoding
PLMs and conduct a comprehensive comparison of
different canonicalization methods on our dataset.

For future study, NPC-O and RPC still have a
lot of room for improvement and the efficiency of
canonicalization methods is also worth studying.
We also note that COMBO can be additionally
used as a probing benchmark for PLMs and as a
phrase-level relation classification dataset.
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Limitations

One limitation of our work is that, the size of our
dataset (18K) is relatively small compared to previ-
ous datasets (Table 1). Another limitation is that,
similar to previous work, we perform clustering
for three subtasks and evaluate the canonicalization
results independently, but canonicalization of the
head NP, tail NP and RP is in fact closely corre-
lated. For example, the NPC-O clusters of the head
NP and tail NP reveal the domain and range of the
relation given by RPC. We leave jointly canoni-
calization and evaluation as future work. Our pro-
posed baseline is straightforward. We encourage
future studies to investigate better canonicalization
methods based on pretrained language models.

Ethics Statement

Our dataset is constructed based on Wiki20 and
Wikidata. The two sources are both publicly avail-
able. Wiki20 is under the MIT Licence and the
Wikidata is under the Creative Commons CC0 Li-
cense. Both of them allow modification and distri-
bution. Regarding human revision during dataset
construction, the annotators were properly paid.
The annotating procedure lasted 12 days and the
daily workload was relatively light: around 2.5
hours per day. During human inspection, we did
not identify any unethical instances in our dataset.
Regarding baseline models, we use PLMs as our
text encoder and our task is inherently unsuper-
vised. As PLMs are learned on large corpora, our
method can potentially create biased clustering re-
sults. How to de-bias PLM embedding is worth
further investigation.
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A Dataset Examples

We show examples of our dataset in Figure 7.

B Guidelines for Revising Relational
Phrases

B.1 RP Annotating Procedure

1. We first split all triples by relations and form 79
json files for two major paid annotators, each
annotator is responsible for around 40 relations.

2. Annotators should check one relation file at a
time for annotating consistency, and start the
next one after the former one is finished.

3. For each relation, annotators are given: (a) The
original sentences of the relation with markers
indicating the head NP, tail NP and RP extracted
by OpenIE. (b) The name (e.g., composer), and
the Wikidata ID (e.g., P86) of the gold relation.

4. Annotators should first understand the rela-
tion by querying the Wikidata, take the re-
lation “composer (P86)” as an example, an-
notators should first query Wikidata through
the link https://www.wikidata.org/wiki/

Property:P86 to obtain the definition of the
relation and skim through example relational
phrases of RPs. The Figure 8 shows the Wiki-
data page containing the definition and exam-
ples of “composer”.

5. After fully comprehend the relation, annotators
can start to check and revise triples in each file,
the details and examples of RP revision and
justification of if RP implies the relation are
shown in the next two subsection (Appendix
B.2, Appendix B.3).

6. After two annotators finished their part, we ran-
domly sample 100 samples from each part and
ask the annotator responsible for the other part
to check. The annotators reached a consensus
for approving 97% of these samples.

B.2 Guideline for checking the validity of RPs
and revision

Definition of relational phrases Relational
phrases are textual representations of relations be-
tween named entities (Grycner et al., 2015), we
follow ReVerb (Fader et al., 2011) and require
the relational phrases be continuous span in the
sentence. We summarize most cases of relational
phrases occurring in our dataset, and the guideline
for annotating each case. The annotated RPs are
shown in pink.

• Case 1: Verb example: [A] married [B], in-
clude different tenses of verbs.

• Case 2: Verb+preposition example:
[A] located at [B].

• Case 3: Passive voice example: [A] is de-
signed by [B], [A] is headquartered in [B] the
linking verb is sometimes omitted: [A], de-
signed by [B].

• Case 4: When the tail entity is the apposi-
tive of the head entity example: [A] ’s son is
[B], [A] ’s son , [B], [A] ’s masterpiece , [B],
the content between the appositives is usually
informative and regarded as RPs.

• Case 5: Compound predicate A common case
is that the tail NP is a part of the compound
predicate of the head NP, e.g., [A] is the civil
branch of [B], [A] is an agency of [B], [A] is
a novel by [B]. When encountering these cases,
we do not include the linking verb and article
because they are not informative (e.g., “is the”).

• Case 6: Cases omit verb Some cases omit
verb, we only annotate the preposition. For ex-
ample, [yokosuka arts theatre], part of the bay
square complex by [kenzou tange], this sentence
omits the verb “built”.
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{'h': {'id': 'Q533336', 'instance': ['Q18812508'], 'name': ['node', '1'], 'pos': [16, 18]}, 'r': 
{'label': 'manufacturer', 'name': ['built', 'by'], 'pos': [19, 21]}, 't': {'id': 'Q66', 'instance': 
['Q891723', 'Q4830453', 'Q936518', 'Q6881511', 'Q2538889', 'Q2995256'], 'name': ['boeing'], 'pos': 
[21, 22]}, 'text': ['this', 'was', 'followed', 'in', 'december', 'by', 'the', 'first', 'u.s.', 
'module', ',', '`', 'unity', '`', 'also', 'called', 'node', '1', ',', 'built', 'by', 'boeing', 'in', 
'facilities', 'at', 'msfc', '.']}
{'h': {'id': 'Q18391244', 'instance': ['Q13406463', 'Q105543609'], 'name': ['motets'], 'pos': [18, 
19]}, 'r': {'label': 'composer', 'name': ['are', 'composed', 'by'], 'pos': [19, 21]}, 't': {'id': 
'Q81752', 'instance': ['Q5'], 'name': ['anton', 'bruckner'], 'pos': [21, 23]}, 'text': ['two', 
'asperges', 'me', ',', 'wab', '3', 'the', 'two', 'thou', 'wilt', 'sprinkle', 'me', ',', 'wab', '3', 
',', 'are', 'sacred', 'motets', 'composed', 'by', 'anton', 'bruckner', '.']}

{'h': {'id': 'Q3764815', 'instance': ['Q47461344'], 'name': ['pedda', 'bala', 'siksha'], 'pos': [0, 
3]}, 'r': {'label': 'language of work or name', 'name': ['is', 'encyclopedia', 'in'], 'pos': [3, 
7]}, 't': {'id': 'Q8097', 'instance': ['Q34770', 'Q1288568'], 'name': ['telugu'], 'pos': [8, 9]}, 
'text': ['pedda', 'bala', 'siksha', 'is', 'an', 'encyclopedia', 'in', 'the', 'telugu', ',', 
'suitable', 'for', 'children', 'and', 'adults', '.']}

Figure 7: Examples of our dataset, “h” means head or subject NP, “r” means relation, “t” means tail or object NP.
“instance” stands for the gold ontology-level clusters.

Figure 8: Wikidata query example.

We also provide several revision examples of
wrong OpenIE triples, part of them are shown in
the Table 6 below.

B.3 Guideline for justifying if RP implies the
given relation

As we stated in the fourth step of the overall an-
notating process in the Appendix B.1, we require
annotators to fully understand the meaning of the
given relation. For each triple, annotators should
ask themselves if the relational phrase could ex-
press the relation of the head and tail NP in the
given context sentence. Note that we don’t require
the relation could be solely implied by the RP, for
example, given the triple and its context: “[mount
elbert] in the [sawatch range] is the highest sum-
mit of the rocky mountains”, it is impossible to
infer the relation by the RP “in”, but RP is a rea-
sonable text representation of the relation mountain
range in this context. We found that the extracted
RPs can imply the relation in most cases, we show
some concrete bad cases to the annotators to help
them identify the bad RPs, part of the examples are
shown in the Table 7.

C Classic Metrics

Gold cluster assignment: G = {Cg
1 . . . C

g
K}, pre-

dicted cluster assignment: P = {Cp
1 . . . C

p
M},

where Cg
i and Cp

j are gold and predicted cluster
respectively.

Macro Metrics

Pmacro(G,P) =
|{p ∈ P|∃g ∈ G, p ⊆ g}|

|P|
Rmacro(G,P) = Pmicro(P,G)

(4)

Micro Metrics

Pmicro(G,P) =

∑
g∈G maxp∈P |g ∩ p|

N
Rmicro(G,P) = Pmicro(P,G)

(5)

Where N is the total number of different phrases
that appear in G (or P).

Pairwise Metrics

Ppair(G,P) =∑
p∈P |{(u, u′) ∈ p, ∃g ∈ G, ∀(u, u′) ∈ p}|

∑
p∈P C

|p|
2

Rpair(G,P) =∑
p∈P |{(u, u′) ∈ p,∃g ∈ G,∀(u, u′) ∈ p}|

∑
g∈G C

|g|
2

(6)

For more details about classic metrics, please refer
to the Sec. 7.2 of the CESI paper (Vashishth et al.,
2018).
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Bad OpenIE RP ... [the generalitat de catalunya], the governing body of [catalonia], approved ...
Revised ... [the generalitat de catalunya], the governing body of [catalonia], approved ...

Bad OpenIE RP ... the “[althing]” , the ruling legislative body of [iceland]
Revised ... the “[althing]” , the ruling legislative body of [iceland]

Bad OpenIE RP ... [t-d center] dominion centre, designed by [ludwig mies van der rohe] ...
Revised ... [t-d center] dominion centre, designed by [ludwig mies van der rohe] ...

Bad OpenIE RP [ace attorney investigations 2] ... and features character designs by
tatsuro iwamoto and music by [noriyuki iwadare]

Revised [ace attorney investigations 2] ... and features character designs by
tatsuro iwamoto and music by [noriyuki iwadare]

Bad OpenIE RP [A] is a farcical musical comedy with music by [walter alfred slaughter]
Revised [A] is a farcical musical comedy with music by [walter alfred slaughter]

Bad OpenIE RP [beta cygni a] is a bright star from the constellation [cygnus]
Revised [beta cygni a] is a bright star from the constellation [cygnus]

Bad OpenIE RP ... [daya district], taichung, taiwan in the [chinese taipei]
Revised ... [daya district], taichung, taiwan in the [chinese taipei]

Table 6: Examples of revising RPs in OpenIE triples.

P1001
applies to jurisdiction

...the process to amend the constitution cannot be initiated in times of war
or when the [belgian federal parliament] is unable to freely meet in [belgium]

P84
architect [u. b. city], the headquarters of the [united breweries group], is a high-end commercial zone.

P40
child he was a great-grandson of [berge sigval natanael bergeson], grand-naphew of [ole bergeson]

P25
mother bart and [lisa], sent out of the house by [marge simpson] ...

Table 7: Examples of bad RPs that cannot imply the given relations.

D Extension of Micro Metrics

Gold overlapping clusters: NPC-O =
{CO

1 . . . CO
K3

}, predicted clusters P =
{Cp

1 . . . C
p
M}.

Pmicro(NPC-O,P) =

∑
g∈NPC-O maxp∈P |g ∩ p|∑

g∈NPC-O |g|
Rmicro(NPC-O,P) = Pmicro(P,NPC-O)

(7)
We modify the denominator compared to the micro
metric in (Vashishth et al., 2018).

E Standardization

Following Timkey and van Schijndel (2021), we
perform standardization for phrase embeddings
to remove the rogue dimensions. Denote ER ∈
RN×D as the embedding matrix of all RP phrases,

where N is the number of triples, and D is the
dimension of contextual embedding. The standard-
ized RP embedding matrix E′

R is:

µ =
1

N

N∑

i

ER[i]

σ =

√√√√ 1

N

N∑

i

(ER[i]− µ)2

E′
R[i] =

ER[i]− µ

σ

(8)

We empirically find that the standardized phrase
embedding is better than the original one in most
cases.

F Full Result

We show the full results in Table 8 and Table 9.
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NPC-E (subject) NPC-E (object) RPC
Ma Mi Pair AVG Ma Mi Pair AVG Mi Pair AVG

Token Sim+SI 86.85 88.41 73.43 82.90 78.43 85.34 74.29 79.35 50.26 17.62 33.94
Random+HAC 87.97 89.90 78.10 85.32 81.24 88.11 85.97 85.11 48.47 23.49 35.98
GloVe+HAC 85.63 87.22 62.07 78.31 79.90 87.06 92.74 86.57 47.92 23.22 35.57
GloVe+HolE+HAC 88.74 89.59 62.06 80.13 80.85 88.20 92.95 87.33 27.05 8.80 17.93
GloVe+SI+HAC 88.72 89.82 62.72 80.42 80.85 88.21 92.95 87.34 27.02 8.79 17.91
CESI 88.72 89.58 62.02 80.11 82.93 88.37 89.17 86.82 27.31 9.43 18.37
VAEGMM+SI 85.63 87.51 69.44 80.86 78.55 85.93 84.26 82.91 47.86 20.34 34.10
VAEGMM+HolE 85.50 87.26 67.69 80.15 78.54 85.91 84.17 82.87 47.92 24.31 36.12
CUVA 85.58 87.45 69.00 80.68 78.56 85.95 84.33 82.95 47.94 24.32 36.13
Bert-base 90.84 92.11 77.84 86.93 86.84 90.53 83.36 86.91 55.85 53.09 54.47
Roberta-base 87.74 89.59 71.22 82.85 83.12 88.22 83.66 85.00 44.81 37.35 41.08
SpanBert-base 91.14 91.86 70.14 84.38 85.82 89.92 83.22 86.32 43.49 39.36 44.04
ERNIE2.0-base 91.19 92.50 76.35 86.68 83.15 88.89 92.29 88.11 53.94 55.38 54.66
Bert-base-triple 90.05 91.57 76.41 86.01 83.57 89.67 93.51 88.92 57.53 59.36 58.45
Roberta-base-triple 90.40 91.05 74.66 85.37 81.07 87.96 92.62 87.22 52.75 48.86 50.81
SpanBert-base-triple 91.95 91.87 73.36 85.73 85.26 89.19 83.23 85.89 48.09 44.26 46.18
ERNIE2.0-base-triple 91.14 92.34 78.16 87.21 85.71 90.12 84.96 86.93 56.58 57.98 57.28
Bert-large 90.47 91.93 78.87 87.09 83.81 89.78 93.56 89.05 53.81 46.81 50.31
Roberta-large 88.34 90.14 72.03 83.50 84.48 89.01 83.93 85.81 43.01 38.02 40.51
SpanBert-large 85.82 89.92 83.22 86.32 87.14 90.81 82.07 86.67 45.5 46.18. 45.84
ERNIE2.0-large 91.06 92.26 75.30 86.21 83.09 89.56 93.92 88.86 49.48 48.32 48.90
Bert-large-triple 90.02 92.35 93.64 92.00 87.47 90.99 84.49 87.65 56.27 60.04 58.16
Roberta-large-triple 87.93 89.35 72.93 83.40 84.24 88.57 83.56 85.46 47.37 41.41 44.39
SpanBert-large-triple 90.57 94.26 94.74 93.19 85.87 89.80 82.34 86.00 49.24 45.68 47.46
ERNIE2.0-large-triple 93.32 94.41 85.90 91.21 86.19 90.65 91.21 89.35 54.37 53.32 53.85

Table 8: Full results of NPC-E and RPC.

G Encoding Strategy Comparison

sentence
trip

le

trip
le-se

p sep

mean

max

diffs
um
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55.0
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Figure 9: Overall average performance of different en-
coding strategies.

We compare the performance of encoding strate-
gies averaged on all subtask metrics and PLM mod-
els in Figure 9, and the task-specific and model-
specific comparison of encoding strategies are
shown in Figure 10. sentence is the best input
form in general, probably because it is easier for
a PLM to encode a valid sentence and the source
sentence contains more context. sep is the worst
on the RPC because it separately encodes the RPs
and NPs. However, it is comparable to triple-sep
and triple on NPC-E because NPC-E requires less
context. mean is the best strategy for phrase rep-

resentation, which is consistent with the results
obtained by (Toshniwal et al., 2020)6, and diffsum
is a bad choice for phrase canonicalization.

H Layerwise PLM Performance

We show the layerwise performance for all PLMs
(base) on all subtasks in Figure 11, and find dif-
ferent layers perform differently on three subtasks.
We empirically find that lower layers [1,2,3] per-
form well for NPC-E, upper layers [10,11,12] per-
form best for RPC and NPC-O (subj), while middle
layers [3,4,5,6,7] perform relatively better on NPC-
O (obj). As context-specificity increases in upper
layers (Ethayarajh, 2019), these results make sense
as NPC-E requires less context while RPC and
NPC-O need more context.

I Triple Pretraining

We show the average performance difference after
triple-level or causal subword-level pretraining in
Figure 12 for different PLMs and subtasks.

6Toshniwal et al. (2020) shows that mean pooling is best
for named entity labeling, which is a semantic task for NPs.
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NPC-O (subject) NPC-O (object)
Ma Mi Pair Avg Jg→p Jp→g Avg Ma Mi Pair Avg Jg→p Jp→g Avg

Token Sim+SI 63.28 35.86 0.29 33.14 - - - 66.24 51.61 3.91 40.59 - - -
Random+HAC 69.04 42.20 0.69 37.31 62.54 15.05 38.79 74.72 54.25 5.72 44.90 66.78 22.02 44.40
GloVe+HAC 70.37 42.80 0.84 38.00 63.00 15.07 39.04 74.08 60.25 7.73 47.35 68.73 22.17 45.45
GloVe+HolE+HAC 71.41 46.06 1.43 39.63 63.95 15.78 39.87 76.68 60.38 7.68 48.25 71.06 23.30 47.18
GloVe+SI+HAC 71.68 46.32 1.62 39.87 63.88 15.78 39.83 76.63 60.43 7.72 48.26 70.96 23.26 47.11
CESI 71.66 46.51 1.62 39.93 63.98 15.90 39.89 76.57 60.45 7.74 48.25 71.14 23.24 47.19
VAEGMM+SI 69.32 42.08 0.83 37.41 - - - 72.52 60.10 8.07 46.90 - - -
VAEGMM+HolE 69.09 41.81 0.75 37.22 - - - 72.48 60.09 8.07 46.88 - - -
CUVA 68.76 41.76 0.76 37.09 - - - 72.48 60.12 8.08 46.89 - - -
Bert-base 78.77 47.20 2.93 42.97 73.27 15.04 44.16 68.10 63.71 20.32 50.71 76.41 17.56 46.99
Roberta-base 74.18 42.67 0.78 39.21 68.06 14.42 41.24 78.22 54.17 5.81 46.07 71.24 17.04 44.14
SpanBert-base 79.00 44.58 1.25 41.61 71.54 14.78 43.16 80.58 55.29 6.00 47.29 68.52 22.18 45.35
ERNIE2.0-base 78.64 46.85 2.31 42.60 72.93 15.17 44.05 68.15 66.89 21.76 52.27 71.81 22.29 47.05
Bert-base-triple 80.71 47.58 2.84 43.71 75.02 15.36 45.19 67.87 65.96 21.51 51.78 77.56 17.42 47.49
Roberta-base-triple 78.49 46.94 1.44 42.29 73.36 15.31 44.33 82.31 60.14 8.47 50.31 76.09 17.53 46.81
SpanBert-base-triple 80.49 45.47 1.63 42.53 73.47 14.98 44.23 80.17 56.15 6.49 47.60 68.84 22.29 45.56
ERNIE2.0-base-triple 79.10 47.61 2.91 43.21 73.51 15.15 44.33 69.07 66.02 16.90 50.66 72.22 22.33 47.27
Bert-large 77.93 46.33 2.76 42.34 73.09 15.22 44.16 71.92 63.47 16.75 50.71 76.92 17.58 47.25
Roberta-large 75.16 43.63 0.86 39.88 69.96 14.73 42.35 78.54 59.72 6.80 48.35 69.07 22.09 45.58
SpanBert-large 77.40 43.99 1.48 40.96 71.08 14.72 42.90 81.05 56.38 6.33 47.92 69.00 22.36 45.68
ERNIE2.0-large 76.86 48.16 3.11 42.71 72.90 15.11 44.01 71.49 64.90 19.56 51.98 72.06 22.39 47.22
Bert-large-triple 80.19 47.92 2.11 43.41 75.46 15.58 45.52 66.59 64.34 21.86 50.93 77.63 17.96 47.79
Roberta-large-triple 77.56 46.91 1.99 42.15 71.82 14.99 43.40 76.83 59.18 7.64 47.88 74.44 17.42 45.93
SpanBert-large-triple 82.09 44.88 0.62 42.53 70.47 14.71 42.59 81.97 56.08 5.81 47.95 73.79 16.85 45.32
ERNIE2.0-large-triple 79.81 48.04 3.04 43.63 75.28 15.52 45.40 71.23 64.80 20.93 52.32 76.67 17.71 47.19

Table 9: Full results of NPC-O.
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Figure 10: Comparison on different input forms and span representations for tasks and PLMs.
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Figure 11: Layerwise performances
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Figure 12: Average performance difference after triple-
level or causal subword-level pretraining for different
PLMs and subtasks.
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