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Abstract

Image-guided story ending generation (IgSEG)
is to generate a story ending based on given
story plots and ending image. Existing methods
focus on cross-modal feature fusion but over-
look reasoning and mining implicit information
from story plots and ending image. To tackle
this drawback, we propose a multimodal event
transformer, an event-based reasoning frame-
work for IgSEG. Specifically, we construct vi-
sual and semantic event graphs from story plots
and ending image, and leverage event-based
reasoning to reason and mine implicit infor-
mation in a single modality. Next, we con-
nect visual and semantic event graphs and uti-
lize cross-modal fusion to integrate different-
modality features. In addition, we propose a
multimodal injector to adaptive pass essential
information to decoder. Besides, we present
an incoherence detection to enhance the un-
derstanding context of a story plot and the
robustness of graph modeling for our model.
Experimental results show that our method
achieves state-of-the-art performance for the
image-guided story ending generation.

1 Introduction

Story ending generation (Guan et al., 2019) aims
to generate a reasonable ending for a given story
plot. It requires deep models to integrate powerful
language understanding capability, which is crucial
for artificial intelligence. Many efforts (Wang and
Wan, 2019; Guan et al., 2019; Yao et al., 2019;
Guan et al., 2020) have been proposed and achieved
promising results since neural models designed
for comprehending natural language allow them
to understand story plots and reason reasonable
story endings. With the advance of automatic story
generation, it has attracted outstanding attention in
multimodality research (Jung et al., 2020; Yu et al.,
2021; Chen et al., 2021).
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It was our first big backyard barbeque of summer
and we invited all friends.
We all sat around and caught up with each others’
lives.
Dave started the fire pit, look at those flames!
Everyone put hot dogs on skewers and roasted
them over the fire.

We all had a great time hanging out until very late
in the night and it was a great party!
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Figure 1: Given a multi-sentence story plot and an end-
ing image, the image-guided story ending generation
aims to generate a story ending related to the image.

However, since story plots and story ending usu-
ally correspond to different content, the context
with information bottleneck is not enough to de-
duce an informative story ending, i.e., generated
endings tend to be inane and generic. To address
this issue, Huang et al. (2021) propose an image-
guided story ending generation (IgSEG) task that
combines story plots and ending image to gener-
ate a coherent, specific and informative story end-
ing. IgSEG demands not only introducing informa-
tion from the ending image to story plots for story
ending generation but also reasoning and mining
implicit information from story plots and ending
image, respectively. As shown in Figure 1, for
story plots, “party” can be inferred from “big back-
yard barbeque” and “invited all friends”, and “all
friends”, “all sat around” and “caught up with” can
deduce “had a great time”. For the ending image,
“dim indoor” and “bright lights” can infer “very late
in the night”.

Existing methods (Huang et al., 2021; Xue et al.,
2022) focus on cross-modal feature fusion but over-
look reasoning and mining implicit information
from story plots and ending images. Nonetheless,
to effectively conduct cross-modal feature fusion,
it is necessary to reason and mine more implicit

3434



information from single-modality data. An event is
a fine-grained semantic unit, which refers to a text
span composed of a predicate and its arguments
(Zhang et al., 2020). Recently, event-centric rea-
soning displays excellent capability for context un-
derstanding and subsequent event prediction (Zhou
et al., 2022b). In this work, we propose a multi-
modal event transformer (MET) to mine implicit
information to improve cross-modal fusion. For
story plots, we leverage semantic role labeling
(SRL) parser (He et al., 2017) to extract events
from story plots and then construct them into a
semantic event graph. For an ending image, we uti-
lize scene graph parser (Zellers et al., 2018) to cap-
ture visual concepts and their relation to construct
visual event graphs. Since edges contain relation-
ships between nodes in visual and semantic event
graphs, we employ relational graph convolutional
networks (RGCN) (Schlichtkrull et al., 2018) to
encode event graphs to infer implicit information.

For cross-modal feature fusion, most recent
works (Huang et al., 2021; Xue et al., 2022) adopt
attention-based neural network models to implic-
itly integrate multi-modal features. However, due
to the complexity of cross-modal features and the
existence of dependency between single-modal fea-
tures, it is often difficult for these models to comple-
ment cross-modal features. To tackle the issue, we
propose cross-modal fusion to integrate different-
modality features. Specifically, we merge visual
and semantic event graphs and use RGCN to fuse
cross-modal features for feature complement.

Moreover, since features from different modal-
ities suffer from domain inconsistency, previous
methods (Huang et al., 2021; Xue et al., 2022)
directly concatenate them and pass them to the de-
coder, which is not a crafted manner. To appropri-
ately combine features from different modalities,
we design a multimodal injector to integrate rel-
evant features into the decoder. In addition, we
propose an incoherence detection to enhance the
context understanding for a story plot and the ro-
bustness of graph modeling for our model.

In experiments, we conduct extensive evalua-
tions on two datasets (i.e., VIST-E (Huang et al.,
2021) and LSMDC-E (Xue et al., 2022)). Experi-
mental results show that our method outperforms
strong competitors and achieves state-of-the-art per-
formance. In addition, we conduct further analysis
and human evaluation to demonstrate the effective-
ness of our method.

2 Related Work

2.1 Story Ending Generation

Story ending generation aims to generate a story
ending for given story plots, and it is one of the im-
portant tasks in natural language generation. Many
efforts have been invested in story ending gener-
ation (Wang and Wan, 2019; Guan et al., 2019;
Yao et al., 2019; Guan et al., 2020). To make
the generated story ending more reasonable, Guan
et al. (2019) propose a model encapsulating a
multi-source attention mechanism, which can uti-
lize context clues and understand commonsense
knowledge. To ensure the coherence in generated
story endings, Wang and Wan (2019) propose a
transformer-based conditional autoencoder, which
can capture contextual clues in story splot. To
improve long-range coherence in generated sto-
ries, Guan et al. (2020) pre-train model on exter-
nal commonsense knowledge bases for the story
ending generation. Zhou et al. (2022b) propose
a correlation-aware context-to-event pre-trained
transformer, which applies to a wide range of event-
centric reasoning and generation scenarios, includ-
ing story ending generation. Beyond the limit of
single-modal information, Huang et al. (2021) in-
troduce visual information to enrich the generation
of story endings with more coherent, specific, and
informative. To improve cross-modal feature fu-
sion, Xue et al. (2022) propose a multimodal mem-
ory transformer, which fuses contextual and visual
information to capture the multimodal dependency
effectively.

2.2 Visual Storytelling

Visual storytelling task is proposed by Huang et al.
(2016), which aims to generate a story based on
a given image stream. Wang et al. (2018) present
an adversarial reward learning framework to learn
an implicit reward function from human demon-
strations. To inject imaginary concepts that do not
appear in the images, some works (Yang et al.,
2019; Chen et al., 2021; Xu et al., 2021) propose
building scene graphs and injecting external knowl-
edge into model to reason the relationship between
visual concepts. Qi et al. (2021) propose a latent
memory-augmented graph transformer to exploit
the semantic relationships among image regions
and attentively aggregate critical visual features
based on the parsed scene graphs.
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It was our first big
backyard barbeque
of summer and we
invited all friends.

Everyone put hot
dogs on skewers
and roasted them
over the fire.
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Figure 2: An overview of our model. Grey rounded rectangles denote fixed model. Blue rounded rectangles denote
parameters that will be optimized.

2.3 Event-centric Reasoning

Events always play an essential role in a story be-
cause a story is composed of multiple events and
implies the relationship between the events. An
event is a text span composed of a predicate and
its arguments (Zhang et al., 2020). Multiple events
include relations between events that conform to
human commonsense (Zhou et al., 2022a). Some
works use plot events for story generation, which is
generating a prompt and then transforming it into a
text (Ammanabrolu et al., 2020; Fan et al., 2019).
To generate a more coherent and specific ending,
understanding events in story plots and their rela-
tionship can obtain informative context, which is a
crucial step for story ending generation.

3 Method

This section will elaborate on our method for
image-guided story ending generation, including
event graph construction, event-based reasoning,
cross-modal fusion, multimodal injector and story
ending generation. The details of our method are
shown in Figure 2. Lastly, details about objectives
and training are elaborated.

3.1 Event Graph Construction

Semantic Event Graph. The story plot contains
multiple events which are correlated with each
other. The definition of an event is a text span
composed of a predicate and its arguments (Zhang
et al., 2020). The event-centric reasoning shows
excellent capability for context understanding and

subsequent event prediction (Zhou et al., 2022b).
To effectively reason and mine more implicit in-
formation from story plots, we use semantic role
labeling (SRL) to parse the story and extract events
from parsing results, as shown in Figure 2. Specifi-
cally, Given story plots S = {S1,S2,S3,S4}, we
construct semantic event graphs Gs

i = (Vs
i , Es

i ) by
SRL. Es

i consists of two vectors, one for the pos-
itive direction and one for the opposite direction,
and Vs

i = {si0, si1, si2, · · · , sin}. To obtain features
of each node, we use a pre-trained transformer en-
coder to obtain token representations in sentence
Si.

Ti = Trans-Enc(Si),Ti ∈ {t1i , t2i , · · · , tgi } (1)

where tgi denotes token representation, and g is
length of sentence Si. Next, we conduct a mean
pooling operation for tokens presentations based
on SRL parsing result Ŝi to get presentation ŝij
for each node. In addition, we take pooling for
all token presentations of sentence Si to obtain a
presentation of sentence node ŝi0. Each node ŝij
in sentence Si is connected to the sentence node.
To preserve the relationship between sequences,
we connect sentence nodes in the order of the se-
quence.

Visual Event Graph. For ending images, previ-
ous works (Huang et al., 2021; Xue et al., 2022) use
pre-trained convolutional neural networks (CNN)
to extract feature maps directly. We construct vi-
sual event graphs to reason and mine more im-
plicit information from ending images. Scene
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graphs have been used for many tasks to produce
structured graph representations of visual scenes
(Zellers et al., 2018). Inspired by the success of
these tasks, we parse the ending image I to a scene
graph via the scene graph parser. A scene graph
can be denoted as a tuple GI = {VI , EI}, where
VI = {v0,v1,v2, · · · ,vk} is a set of k detected
objects. v0 denotes a representation of the whole
image, and other vi is a region representation of
detected object. EI = {e1, e2, · · · , em} is a set of
directed edges and each edge ei refers to a triplet
(vi, ri,j ,vj), which includes two directional edges
from vi to ri,j and from ri,j to vj . Specifically, the
construction of the scene graph can be divided into
two parts: one is object detection, and the other is
visual relation detection.

For object detection, we leverage a well-trained
object detector, Faster-RCNN (Ren et al., 2017)
with a ResNet-152 (He et al., 2016) backbone, to
classify and encode objects in the ending image
I . The outputs of detector include a set of region
representations VI = {v1,v2, · · · ,vk} and object
categories O = {o1, o2, · · · , ok}. For visual rela-
tion detection, we leverage MOTIFS (Zellers et al.,
2018) as our relation detector to classify the re-
lationship between objects. We train the relation
detector on Visual Genome dataset (Krishna et al.,
2017). The output of relation detector is a set of
relation EI = {e1, e2, · · · , em}, where ei refers to
a triplet (vi, ri,j ,vj). Lastly, we obtain the scene
graph GI = {VI , EI} of ending image by combin-
ing the results of object detection and relationship
detection.

3.2 Event-based Reasoning
We perform graph-structure reasoning over seman-
tic and visual event graphs to effectively reason and
mine more implicit information from story plots
and ending images. Since event graphs have mul-
tiple relations between nodes (e.g., relations be-
tween visual objects, relations between predicates
and arguments, etc.), we select relational graph
convolutional networks (RGCN), which can pass
different messages along different relations. Specif-
ically, for each layer l in L-layer RGCN, the node
representation wl

i is updated as follows:

wl+1
i =ReLU

(∑

r∈R

∑

j∈Nr(i)

1

|Nr(i)|
Wr ·wl

j

)
(2)

where R denote a set of all edges types, and Nr(i)
is the neighborhood of node i under relation r.

Selective Attention
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Figure 3: Details of the multimodal injector.

To reason and mine more implicit information in
single-modality, we conduct event-based reasoning
on semantic and visual event graphs, respectively.

3.3 Cross-modal Fusion

We propose cross-modal fusion for visual and se-
mantic event graphs to integrate information from
story plots and ending images. We adopt a layer
normalization for node features to reduce the cross-
modal gap between visual and semantic graphs. For
cross-modal feature fusion, previous works (Huang
et al., 2021; Xue et al., 2022) adopt attention-based
neural network models to implicitly integrate multi-
modal features. However, these models neglect the
dependency between single-modal features. There-
fore, we maintain graph structure for visual and
semantic features and connect nodes that repre-
sent whole image and sentences, as shown in Fig-
ure 2. Moreover, we utilize RGCN as Eq.2 to in-
tegrate cross-modal features in event graph, and
outputs denote as V̄s

i = {s̄i0, s̄i1, s̄i2, · · · , s̄in} and
V̄I = {v̄0, v̄1, v̄2, · · · , v̄k}.

3.4 Multimodal Injector

To integrate different modal sources, we propose
a multimodal injector, which adaptly extracts key
information from different modal features and inte-
grates them appropriately. As shown in Figure 3,
inputs of multimodal injector include a hidden state
hd from the decoder, visual features V̄I and seman-
tic features V̄s

i . Specifically, we first use selective
attention for key information extraction, i.e.,

hu
attn = softmax

(
QKT

√
dk

)
V, u ∈ {I, S} (3)

where Q is hd from decoder; K and V are visual
features V̄I or semantic features V̄s

i ; and dk is the
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same as the dimension of hd. Then, the gate λ ∈
[0, 1] and the fused output are defined as:

λ = σ
(
UhI

attn + V hS
attn

)
(4)

where U and V are trainable weights. λ controls
how much visual information is attended.

ĥd = λ · hI
attn + (1− λ) · hS

attn + hd (5)

where the fusion vector ĥd is fed into the decoder.

3.5 Story Ending Generation
Recently, Transformer (Vaswani et al., 2017) shows
its powerful ability to generate natural language
(Radford et al., 2019). For story ending generation,
we use a Transformer decoder as the decoder for
our model. Specifically, the decoder input includes
a segment of the generated story ending C̄ and
fusion vector ĥd from the multimodal injector. The
purpose of the decoder is to predict a probability
distribution of the next word of the segment C̄, i.e.,

hi = Trans-Dec(ĥd, C̄) ∈ Rd

where C̄ = [c1, . . . , ci−1] (6)

pi = LM-Head(hi) ∈ RV (7)

where hi refers to the hidden representation in i-th
step; V denotes token vocabulary and pi refers to
a probability distribution over V; d in ĥd denotes
the current number of layer. Lastly, the story end-
ing generation objective is defined as a maximum
likelihood estimation. The loss function is defined
as:

L(gen) = − 1

|N |
∑N

i=1
log pi(ci), (8)

where pi(ci) denotes fetching the probability of the
i-th step gold token ci ∈ C from pi. C refers to
the gold caption, and N is its length.

3.6 Incoherence Detection
To enhance the understanding context of a story
plot and robustness of graph modeling for our
model, we introduce a training objective: incoher-
ence detection. We set a 10% probability to replace
a whole sentence node in semantic event graph ran-
domly. In the objective, the final step output hn

of the decoder is passed into a MLP to classify
whether each whole sentence node is changed, i.e.,

pclf = σ(MLP(hn)) ∈ R4 (9)

where σ denotes a sigmoid function. The loss func-
tion is defined as:

L(clf) = −1

4

4∑

i=1

yi · log(pclf
i )

+ (1− yi) · log(1− pclf
i ) (10)

3.7 Training
In model training, we set a trade-off parameter α
for two losses L(gen) and L(clf). The total loss
function of our model is definite as follows:

L = L(gen) + α× L(clf) (11)

4 Experiment

4.1 Dataset and Evaluation Metric
VIST-Ending. We compare our model and
other state-of-the-art methods on the VIST-Ending
(VIST-E) dataset (Huang et al., 2021). The dataset
is built over VIST dataset (Huang et al., 2016).
The VIST-E dataset comprises 39,920 samples for
training, 4,963 samples for validation and 5,030
samples for testing. In experiments, we follow the
data split in (Huang et al., 2021).

LSMDC-Ending. LSMDC-Ending (LSMDC-E)
(Xue et al., 2022) contains 20,151 training samples,
1,477 validation samples and 2,005 test samples,
which are collected from LSMDC 2021 (Rohrbach
et al., 2017).

Visual Genome. We use the Visual Genome
(VG) dataset to train a visual relationship detec-
tor. The dataset includes 108,077 images annotated
with scene graphs, and we follow the setting in (Xu
et al., 2017), which contains 150 object classes and
50 relation classes.

Evaluation Metric. As follow Xue et al. (2022),
we utilize the same metrics to report evaluation re-
sults, and the evaluation code is open-source1. The
evaluation metrics include: BLEU (Kingma and
Ba, 2015), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), ROUGE-L (Lin,
2004) and Result Sum (rSUM) (Xue et al., 2022).

4.2 Implementation Details
For the scene graph, we limit the maximum number
of objects to 10 and the maximum number of rela-
tionships to 20. The relational graph convolution
network includes four relational graph convolution

1https://github.com/tylin/coco-caption
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Method B@1 B@2 B@3 B@4 M R-L C rSUM

Seq2Seq (Luong et al., 2015) 13.96 5.57 2.94 1.69 4.54 16.84 12.04 57.58
Transformer (Vaswani et al., 2017) 17.18 6.29 3.07 2.01 6.91 18.23 12.75 66.44
IE+MSA (Guan et al., 2019) 19.15 5.74 2.73 1.63 6.59 20.62 15.56 72.02
T-CVAE (Wang and Wan, 2019) 14.34 5.06 2.01 1.13 4.23 15.51 11.49 53.77
MG+Trans (Huang et al., 2021) 19.43 7.47 3.92 2.46 7.63 19.62 14.42 74.95
MG+CIA (Huang et al., 2021) 20.91 7.46 3.88 2.35 7.29 21.12 19.88 82.89
MGCL (Huang et al., 2021) 22.57 8.16 4.23 2.49 7.84 21.66 21.46 88.41
MMT (Xue et al., 2022) 22.87 8.68 4.38 2.61 15.55 23.61 25.41 103.11
MET (Ours) 24.31 8.79 4.62 2.73 16.41 24.49 26.47 107.82

Table 1: Comparison results on VIST-E test set. B@n, M, R-L, C and rSUM denote BLEU@n, METEOR, ROUGE-
L, CIDEr and Result Sum, respectively.

Method B@1 B@2 B@3 B@4 M R-L C rSUM

Seq2Seq (Luong et al., 2015) 14.21 4.56 1.70 0.70 11.01 19.69 8.69 60.56
Transformer (Vaswani et al., 2017) 15.35 4.49 1.82 0.76 11.43 19.16 9.32 62.33
MGCL (Huang et al., 2021) 15.89 4.76 1.57 0.00 11.61 20.30 9.16 63.29
MMT (Xue et al., 2022) 18.52 5.99 2.51 1.13 12.87 20.99 12.41 74.42
MET (Ours) 19.98 6.48 2.89 1.77 14.53 22.73 13.85 82.23

Table 2: Comparison results on LSMDC-E test set.

layers, and the size of input and output sets of 768.
For semantic event reasoning, we use a pre-trained
BERT model (Devlin et al., 2019) as the language
model. The layers and attention heads of the de-
coder are 12 and 8. The dimension of embedding
vectors in the decoder is 768, and the dimension
of hidden states is 768. The visual feature encoder
is ResNet-152. For model training, we select the
Adam optimizer (Kingma and Ba, 2015) to opti-
mize the model with learning rate of 2e-4. The
maximum training epoch of our model is 25. The
trade-off parameter α in Eq.11 is 0.2. The batch
size, weight decay and warm-up proportion are 128,
0.01 and 0.1. During inference, we use the beam
search with a beam size of 3 to generate a story
ending with maximum sentence length is 25. Our
model is trained on one V100 GPU.

4.3 Baselines

We compare our model with following state-of-the-
art baselines: (1) Seq2Seq is a stack RNN-based
model (Luong et al., 2015) with attention mech-
anisms, and image features are directly concate-
nated. (2) Transformer, proposed by Vaswani
et al. (2017), is an encoder-decoder model with
self-attention mechanisms. (3) IE+MSA is a story
ending generation model incorporating external

knowledge (Guan et al., 2019). (4) T-CVAE (Wang
and Wan, 2019) is a conditional variational autoen-
coder based on transformer for missing story plots
generation. (5) MG+Trans consists of multi-layer
graph convolutional networks and a transformer de-
coder (Huang et al., 2021). (6) MG+CIA consists
of multi-layer graph convolutional networks, top-
down LSTM and one context-image attention unit
in the decoder (Huang et al., 2021). (7) MGCL
is an image-guided story ending generation model
with multi-layer graph convolution networks and
cascade-LSTM (Huang et al., 2021). (8) MMT is a
multimodal memory transformer for image-guided
story ending generation (Xue et al., 2022).

4.4 Main Results

The experimental results on VIST-E and LSMDC-
E are shown in Table 1 and Table 2. From the
tables, we can make two observations. Firstly, our
model achieves state-of-the-art performance on the
VIST-E and LSMDC-E datasets compared to other
strong competitors. In addition, MG+CIA, MGCL,
MMT and our model significantly and consistently
outperform other models that directly concatenate
visual features. It indicates that mining visual in-
formation is essential and can provide rich infor-
mation to predict the ending. Moreover, our model
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Method B@1 B@2 B@3 B@4 M R-L C rSUM

MET 24.31 8.79 4.62 2.73 16.41 24.49 26.47 107.82
w/o ID 23.84 8.70 4.51 2.56 15.91 24.10 25.86 105.48
w/o CMF 23.47 8.65 4.47 2.53 15.91 23.85 25.66 104.54
w/o MI 22.68 8.56 4.33 2.48 15.83 22.99 24.74 101.61
w/o VER 22.41 8.25 4.33 2.50 15.86 23.09 25.03 101.47
w/o SER 23.78 8.73 4.46 2.55 15.88 24.04 25.87 105.31
w/o CMF, MI 21.03 8.03 4.16 2.36 15.43 21.14 22.44 94.59

Table 3: Ablation study. “w/o ID” denotes removing the incoherence detection objective; “w/o CMF” denotes
removing the cross-modal fusion; “w/o MI” denotes removing the multimodal injector; “w/o VER” denotes removing
the event-based reasoning in visual event graph; “w/o SER” denotes removing the event-based reasoning in semantic
event graph; “w/o CMF, MI” removing the cross-modal fusion and multimodal injector.

Method B@1 B@2 B@4 M R-L

Seq2Seq 14.27 4.27 1.05 6.02 16.32
Transformer 17.06 6.18 1.57 6.55 18.69
IE+MSA 20.11 6.62 1.68 6.87 21.27
T-CVAE 20.36 6.63 1.88 6.74 20.98
Plan&Write 20.92 5.88 1.44 7.10 20.17
KE-GPT2 21.92 7.40 1.90 7.41 20.58
MG+Trans 18.55 6.76 2.33 7.31 19.02
MGCL 20.27 6.26 1.81 6.91 21.01
MET 21.88 7.28 2.36 7.41 21.32

Table 4: Result of the SEG task on the VIST-E dataset
(plain text). The bold / underline denotes the best and
the second performance, respectively.

achieves better results than MG+CIA, MGCL and
MMT, demonstrating that reasoning and mining
implicit information from story plots and ending
image is significant for image-guided story ending
generation.

4.5 Ablation Study

To verify the effectiveness of our method, we con-
duct an ablation study and show the results in Ta-
ble 3. Firstly, the table shows that removing each
component or objective decreases the model per-
formance, which demonstrates our method’s effec-
tiveness. In addition, we observe that removing
cross-modal fusion and multimodal injector brings
a great performance drop, which shows that cross-
modal information mining and adaptive integration
play a crucial role in story ending prediction.

4.6 SEG Setting

To investigate the effectiveness of visual informa-
tion mining in our method, we remove the image

from the VIST-E dataset and evaluate it on only
plain text. The results are shown in Table 4. From
the table, we observe that our model keeps com-
petitive with Plan&Write (Yao et al., 2019) and
KE-GPT2 (Guan et al., 2020) models designed es-
pecially for textual story generation. Moreover,
our model outperforms MG+trans, which verifies
the effectiveness of our incoherence detection and
semantic event-based reasoning. Our model per-
forms better when adding the image, as shown in
Table 1. It demonstrates that mining implied visual
information can help story ending generation.

4.7 Analysis

4.7.1 Impact of Event-based Reasoning
To investigate the effectiveness of event reasoning,
we analyze its impact, and the results are shown in
Table 5. From the table, we can observe that replac-
ing semantic role labeling with dependency parsing
leads to decreased performance. Moreover, replac-
ing the visual event graph with whole image fea-
tures (i.e., features extracted by pre-trained CNN)
shows a performance drop. In addition, removing
cross-modal fusion also shows a performance drop.
These demonstrate the effectiveness of event-based
reasoning for the image-guided story ending gener-
ation.

4.7.2 Case Study
To extensively evaluate our method, we conduct
a case study for our model and MGCL, and some
random sampling examples are shown in Figure 4.
For example, in the left case, we can observe that
our model can reason that the man in the image is a
soldier, while the result from MGCL is not signifi-
cantly related to visual content. For example, in the
right case, our model can generate the word "relax"
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Method B@1 B@2 B@3 B@4 M R-L C rSUM

MET 24.31 8.79 4.62 2.73 16.41 24.49 26.47 107.82
w/ Dependence Parser 23.47 8.70 4.50 2.57 15.88 24.15 24.06 103.33
w/o Visual Event Graph 22.13 8.19 4.21 2.44 15.76 22.88 23.93 99.54
w/o CMF 23.47 8.65 4.47 2.53 15.91 23.85 25.66 104.54

Table 5: Impact of event reasoning. “w/ Dependency Parser” denotes replacing semantic role labeling with
dependency parsing; “w/o Visual Event Graph” denotes removing the visual event graph and provides the whole
image features as inputs; “w/o CMF” denotes removing the cross-modal fusion.

Ending Image:

Story Plot:
the day of our family vacation finally arrived.
we made out way down to the lake after leaving our belongings in the lodge.
there were a lot of other people out on the river.
they really looked like they were having fun as well.

Generated Story Ending:
MGCL: at the end of the day , we ready to take a
picture .
MET: after we go home , we decided to take a relax in
chair .

Ending Image:

Story Plot:
i went to the award ceremony yesterday .
there were a lot of people there .
everyone received an award for their effort .
they had a great time .

Generated Story Ending:
MGCL: we ended the day with a
great time .
MET: the soldiers were singing
together at the end of the ceremony .

Figure 4: Random sampling examples generated by MET and MGCL.

after we go home , we decided to 
take a relax in chair .

the soldiers were singing together 
at the end of the ceremony .

the day of
our family
vacation

to the award 
ceremony

Figure 5: Interpretable visualization analysis of our
method (better viewed in color).

based on the objects "human" and "chair". It shows
that our model can mine the implicit information
based on visual and semantic information.

4.7.3 Interpretable Visualization Analysis

To investigate the effectiveness of the multimodal
injector, we conduct an interpretable visualization
analysis. The results are shown in Figure 5. The
word with a blue underline denotes that the multi-
modal injector is assigned the greater probability in
the node of visual event graph. Green corresponds
to greater probability in the node of semantic event
graph. The dotted boxes below represent the spe-
cific content of nodes. From the results, we can
observe that nodes in visual and semantic event

Method Gram. Logic. Rele.

MET 3.49 3.37 2.94
MGCL 3.36 3.15 2.66
MG+Trans 3.22 2.78 2.71

Table 6: Human evaluation.

graphs are able to deduce implicit information.

4.7.4 Human Evaluation

To evaluate our method more comprehensively, we
conducted a human evaluation to compare further
the performance of our model and MGCL and
MG+trans. As follow Huang et al. (2021), we con-
sidered three metrics for the story ending generated
by models: Grammaticality (Gram.) (Wang and
Wan, 2019) evaluates correctness, natural, and flu-
ency of story endings; Logicality (Logic.) (Wang
and Wan, 2019) evaluates reasonability and coher-
ence of story endings; Relevance (Rele.) (Yang
et al., 2019) measures how relevant between im-
ages and generated story endings. We randomly
sampled 100 samples from the test set and display
them to 3 recruited annotators. Thereby, each an-
notator worked on 300 items from 3 models. We
show 3 annotators all outputs from all 3 models at
once and shuffle the output-model correspondence
to ensure that annotators do not know which model
the output is predicted from. Following Yang et al.
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(2019), we set a 5-grade marking system, where
one is the worst grade, and five is the maximum.
The results show that the performance of our model
is significantly better than MGCL and MG+trans.
That is, our model can generate higher-quality story
endings.

5 Conclusion

In this work, we propose a multimodal event trans-
former, a framework for image-guided story end-
ing generation. Our method includes event graph
construction, event-based reasoning, cross-model
fusion, multimodal injector and story ending gen-
eration. Different from previous work, our method
not only focuses on cross-modal information fu-
sion but also on reasoning and mining implicit in-
formation from single-modality data. In addition,
we propose an incoherence detection to enhance
the understanding context of a story plot and ro-
bustness of graph modeling for our model. In the
experiments, results show that our method delivers
state-of-the-art performance.

Limitations

Although our proposed method can effectively
reason and mine implicit information from story
plots and ending image, it suffers from weaknesses
in integrating cross-modal information. Specifi-
cally, our method connects visual and semantic
event graphs by connecting whole image nodes
and whole sentence nodes. It lacks fine-grained
information to pass between semantic events to vi-
sual objects. In further work, we will study how to
pass fine-grained information between visual and
semantic event graphs.
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