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Abstract

To mitigate gender bias in contextualized lan-
guage models, different intrinsic mitigation
strategies have been proposed, alongside many
bias metrics. Considering that the end use of
these language models is for downstream tasks
like text classification, it is important to under-
stand how these intrinsic bias mitigation strate-
gies actually translate to fairness in downstream
tasks and the extent of this. In this work, we de-
sign a probe to investigate the effects that some
of the major intrinsic gender bias mitigation
strategies have on downstream text classifica-
tion tasks. We discover that instead of resolving
gender bias, intrinsic mitigation techniques and
metrics are able to hide it in such a way that
significant gender information is retained in the
embeddings. Furthermore, we show that each
mitigation technique is able to hide the bias
from some of the intrinsic bias measures but
not all, and each intrinsic bias measure can be
fooled by some mitigation technique, but not
all. We confirm experimentally, that none of
the intrinsic mitigation techniques used without
any other fairness intervention is able to con-
sistently impact extrinsic bias. We recommend
that intrinsic bias mitigation techniques should
be combined with other fairness interventions
for downstream tasks.

1 Introduction

The use of pretrained language models has seen a
surge in popularity as a result of state-of-the-art per-
formances that have been achieved with these mod-
els on various tasks. Consequently, there has been a
growing interest in exploring how gender bias per-
tains in these models (Garrido-Muñoz et al., 2021).
Pretrained language models are used in two distinct
phases: the pretraining phase and the finetuning
phase. The pretraining phase typically involves
training a model on a generic task such as masked
language modeling on a diverse set of text corpora.
In the finetuning phase, the pretrained model can
be adapted for a specific task, such as sentiment

analysis, by training on a domain-specific corpus.
Owing to the unique way of using pretrained mod-
els, bias generally manifests in two forms: intrinsic
bias and extrinsic bias. Intrinsic bias refers to bias
that inherently exists in pretrained language mod-
els whereas extrinsic bias is used to refer to bias
that exists in downstream models that are based on
the pretrained model. Since the success of down-
stream NLP tasks has mostly been dependent on
pretrained models, it is intuitive to assume that
bias in intrinsic models will compromise fairness
in downstream tasks. Only recently have more in-
depth examinations been done to investigate this
assumption (Steed et al., 2022; Orgad et al., 2022;
Kurita et al., 2019). However, conclusions have
been inconsistent and the confounding effects of
bias mitigation techniques remain unknown.

The main focus of this work is to investigate the
impact of intrinsic bias on extrinsic fairness and
if techniques to mitigate intrinsic bias actually re-
solve bias or only mask it. We develop a probe to
uncover intrinsic bias by determining the amount
of gender information in a word embedding using
a classifier. Bearing in mind how abstractly and
improperly intrinsic bias has been defined (Blod-
gett et al., 2020), coupled with the discovery that
results from different metrics for intrinsic bias in
many cases do not correlate (Delobelle et al., 2022),
we find this probe effective as an extra step in eval-
uating the efficacy of these mitigation strategies.
We realize from this study that how intrinsic bias
has been measured and the choice of bias mitiga-
tion strategies explored by some existing works
have not been ideal. We further use this probe to
investigate if some proposed mitigation strategies
superficially conceal bias.

In this work, when we refer to bias in a language
model, we mean stereotyping bias as defined by
Garrido-Muñoz et al. (2021) as “the undesired vari-
ation of the [association] of certain words in that
language model according to certain prior words
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in a given domain”. We focus our experiments on
gender bias for two primary reasons: its intuitive
nature making it easy to analyze and discuss, and
the accessibility of resources and datasets regard-
ing gender. For the same reason, we narrow our
definition of bias in our experiments and analysis
to binary gender bias1. This paper considers the
primary goal of mitigating intrinsic bias to ensure
fairness in downstream tasks.

We consider one case of binary classification and
one multiclass classification case, all on English
language corpora using the BERT-large (Devlin
et al., 2019) and the ALBERT-large (Lan et al.,
2019) pretrained models for each task.

In summary, we develop an extensive probe 2 to
uncover intrinsic bias in pertained contextualized
language models, and seek to answer three key re-
search questions: RQ1: Do different intrinsic bias
metrics respond differently to different bias mitiga-
tion techniques? (§ 4.1). RQ2: Can intrinsic bias
mitigation techniques hide bias instead of resolv-
ing it? (§ 5.1). RQ3: Do intrinsic bias mitigation
techniques in language models improve fairness in
downstream tasks? (§ 5.2)

2 Measuring and mitigating bias

Since many techniques for measuring and miti-
gating gender bias have been introduced for both
intrinsic and extrinsic bias, we only discuss tech-
niques we use in experiments in this paper.

Bias mitigation techniques can be applied to
pretrained or finetuned language models, or both.
Figure 1 illustrates these interactions with both
training settings and this section will discuss both
intrinsic (§ 2.1) and extrinsic (§ 2.3) mitigation
techniques. Additionally, this section will provide
a brief overview of bias measures 3.

2.1 Intrinsic bias mitigation techniques

Intrinsic gender bias mitigation methods target ei-
ther the pretraining data, the pretraining proce-
dure, or the pretrained model’s output, which we
refer to as pre-processing, in-processing, and post-
processing respectively (Friedler et al., 2019). We
select three popular mitigation methods to repre-
sent all three types, namely Counterfactual Data

1See Ethical considerations.
2We make our code available at https://github.

com/EwoeT/intrinsic-gender-probe
3For a more in-depth overview of mainly intrinsic mea-

sures, we refer to Delobelle et al. (2022).

Augmentation (CDA), Context-debias, and Sent-
debias. Notice that these methods create debiased
pretrained language models, as is illustrated in Fig-
ure 1. These models still need to be finetuned on a
downstream task.

CDA pretraining. The idea behind counterfac-
tual data augmentation (Zmigrod et al., 2019; Lu
et al., 2020) is to generate a counterfactual for
each example in the training corpus by replacing
attribute terms with their complimentary equiva-
lent from the other demographic classes. For ex-
ample, she will map to he in the case of binary
gender. To mitigate intrinsic bias, this counterfac-
tual augmentation has to be done as a pretraining
step. Since CDA involves retraining the model, it is
more resource-intensive compared to Sent-debias
and Context-debias. We use the pretrained CDA
models based on BERT and ALBERT from Web-
ster et al. (2020) for our implementation.

Context-debias. Kaneko and Bollegala (2021)
introduce a debiasing method that involves retrain-
ing the language model with a constraint to make
the embeddings of stereotype terms 4 (such as doc-
tor, nurse) orthogonal to embeddings of attribute
terms 5 (such as gender pronouns like she, he and
gender nouns like woman, man). Given the dy-
namic nature of contextualized word embeddings
which causes a word to have different embeddings,
they define fixed word embeddings for each at-
tribute token by averaging the contextual embed-
dings of a word in all sentences it appears in. Train-
ing is done so that the embeddings of all stereotype
terms are made orthogonal to all fixed attribute em-
beddings. They add a regularizer that constrains
the debiased embedding to retain as much infor-
mation by ensuring that they are as similar to the
original embeddings as possible despite the orthog-
onality (§ B.1). Context-debias, as well as other
in-processing techniques, require a predefined set
of attribute and target terms before training which
may not be effective for words outside these sets.

Sent-debias. Liang et al. (2020) propose a post-
processing debiasing method akin to word embed-
ding debiasing (Bolukbasi et al., 2016) but for
contextualized embeddings. They achieve this by
first identifying the bias subspace. They extract
naturally-occurring sentences from corpora that

4We also refer to them as target words.
5We also refer to them as identity terms or protected words.
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Figure 1: Illustration of where bias mitigation techniques alter a model or training data for both intrinsic (pretrained)
and extrinsic (finetuned) biases in models.

contain certain attribute terms, generate counter-
factuals for each one, and compute the gender sub-
space based on these sentence templates. The rest
of their algorithm follows the method of hard de-
biasing (neutralization and equalization) by Boluk-
basi et al. (2016) (§ B.2). Essentially, this post-hoc
approach transforms the embeddings by removing
their projections onto the gender subspace.

2.2 Measuring intrinsic bias
To measure intrinsic bias in the pretrained mod-
els, we use SEAT and LPBS. We examine these
two metrics because of their wide use in related
literature.

Sentence Embedding Association Test (SEAT).
May et al. (2019) developed SEAT to quantify
intrinsic bias in contextualized language models
based on WEAT (Caliskan et al., 2017) which
was originally designed for non-contextualized em-
beddings. Although the authors express concern
over the efficacy of this metric, it has been widely
adopted in various works to quantify bias in con-
textualized word embeddings. We adopt the imple-
mentation by Tan and Celis (2019) that uses word-
level contextualized embeddings of attribute and
stereotype terms instead of sentence-level embed-
dings. Delobelle et al. (2022) show that using word-
level embeddings produces more consistent results
and is more robust against the effects of template
choices. SEAT is defined as: s(Xf , Xm, A,B) =

∑
xf∈Xf

s(xf , A,B)−∑
xm∈Xm

s(xm, A,B); A
and B are the respective sets of female and male
attribute (identity) terms, whereas Xf and Xm are
the sets of female and male stereotypes respectively,
The similarity measure s(x,A,B) gives the associ-
ation between a stereotype word’s embedding and
the word embeddings of attributes: s(x,A,B) =
1
|A|

∑
a∈A cos (x, a)− 1

|B|
∑

b∈B cos (x, b)

Log Probability Bias Score (LPBS). This
template-based approach proposed by Kurita et al.
(2019) quantifies bias using templates containing
target words: such as “_ is a doctor.”. They com-
pute the difference in probability scores that a lan-
guage model uses to predict words from two re-
spective groups (eg. female:she, male:he) to fill in
the blank. To account for the effect of prior proba-
bilities of gender words that may skew results, they
normalize the results by dividing each prediction by
the prior probability of the attribute term. We com-
pute LPBS as: LPBS =

∑
x∈X

∑
i |ls(ai, x) −

ls(bi, x)|; where ai and bi are equivalent forms
of a female and male attribute term respectively,
X = Xf ∪Xm is the set of all stereotype words,
ls(w, x) = log(P (w|x)

P (w) ) is the association between
an attribute term w ∈ A ∪ B and a target term
x ∈ X , P (w) is the prior probability of w, and
P (w|x) is the probability of predicting w as the
blank term given the presence of x in its context.
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2.3 Extrinsic bias mitigation techniques

We look at two downstream tasks, which are both
text classification (Bias-in-Bios (De-Arteaga et al.,
2019a) and Jigsaw6)7. To understand the relation-
ship between intrinsic and extrinsic bias, in addi-
tion to these original datasets, we include two pre-
processed versions of the datasets using Attribute
scrubbing and Attribute swapping. We use these
settings to analyze how intrinsic bias is propagated
to downstream tasks.

Attribute scrubbing. Attribute features, which
are identity terms in an NLP task, are completely
removed from text instances in the training data
(Prost et al., 2019; De-Arteaga et al., 2019b). This
approach may seem intuitive, particularly to mit-
igate explicit bias, but we suggest that deleting
tokens in NLP tasks can be tricky since it could
change the syntactic and grammatical structure of
the text, leading to out-of-distribution problems.

For datasets such as Bias-in-Bios (De-Arteaga
et al., 2019a), a lot of existing works have simply re-
lied on the scrubbed version provided in the dataset,
however, we realize that the set of gender words
scrubbed is very limited, hence, we extend this to
include all gender words from (Kaneko and Bolle-
gala, 2021) and gender names from (Hall Maudslay
et al., 2019) to make the approach more effective.

Attribute swapping. CDA has been explored
and proposed as another bias mitigation strategy for
downstream tasks, particularly in coreference reso-
lution (Lu et al., 2020) and text classification (Park
et al., 2018). The idea is to generate counterfactuals
by identifying attribute terms in the text instances
and swapping them with equivalent terms belong-
ing to the complementary group. We will term
this approach Attribute swapping to distinguish it
from pretrained CDA in Section 2.1. For pretrained
CDA, the language model is (further) pretrained on
a set of general corpora on Masked Language Mod-
eling task, whereas in attribute swapping, counter-
factuals are generated for each instance in the train-
ing data based on attribute terms; with the same y
labels assigned to both the original and counterfac-
tual examples. Whereas previous versions of CDA
ignore names of people, which are major demo-
graphic cues, Hall Maudslay et al. (2019) propose
a name intervention to generate counterfactuals for

6https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/data?select=train.csv

7See Appendix D for dataset description

names as well. We use this adaptation for attribute
swapping.

2.4 Measuring extrinsic bias
True positive rate difference (TPRD). We use
TPRD used in related works (De-Arteaga et al.,
2019a; Prost et al., 2019; Jin et al., 2021; Steed
et al., 2022). TPRD measures the gap in true pos-
itive rates between the predictions for two demo-
graphic groups: TPRD = P (ŷ = 1|y = 1, A =
a)− P (ŷ = 1|y = 1, A = a′).

Counterfactual Fairness. Since the test dataset
follows the same biased distribution of the train-
ing set, we also measure the disparity in perfor-
mance for an individual test instance if the gender
attributes are swapped. We measure counterfac-
tual fairness (Kusner et al., 2017) as the differ-
ence in the probability of a positive prediction be-
tween a test example and its counterfactual, follow-
ing CF = mean(P (|x(ŶA←a = y|A = a,X =
x)− P (ŶA←a′ = y|A = a,X = x)|)).

3 Probing for gender information

We design a probe to investigate how much gender
information is retained after mitigating bias in pre-
trained language models. Our goal is to measure
the amount of gender information in the resulting
embeddings of language models after mitigation
techniques from § 2.1 have been applied to them.

Defining attribute and stereotype terms. We
first identify two sets of attribute terms that
define females and males respectively. Let
Wf = {she, female, woman, ...} and Wm =
{he,male,man, ...} be the respective sets of fe-
male and male gender-defining words. The set
W = Wf ∪ Wm is the union set of gender-
defining words for both females and males. Sec-
ondly, we define two sets of stereotype terms
which are composed of target words associated
with females and males respectively8. Let Xf =
{cheerleader, nurse, softball, ...} and Xm =
{warrior, baseball, engineer, ...} be the respec-
tive sets of female and male stereotype words such
that X = Xf ∪Xm.

Extracting word embeddings. We extract all
sentences from a text corpus containing words
in each set of words. Especially for stereotype
terms, we ensure that the sentences do not also

8We use both attribute and stereotype wordlists from
(Kaneko and Bollegala, 2021)
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include words in the attribute wordlist since at-
tribute words in the same context can introduce
gender information in the embedding produced.
Let Sw = {sw1 , ..., swn} be the set of all sentences
containing a word w. We use the pretrained lan-
guage model to extract embeddings for w such that
w → Ew = {ew1 , ..., ewn}, where ewi ∈ Rn is
the embedding for token w in sentence swi . If w
appears in swi multiple times, then |Ew| > n.

Training the classifier. We split W into a train
and test sets WT and WI respectively such that
WT ∩ WI = ∅. This is to verify that the trained
model is not merely learning to identify words that
appear in the train set rather than words containing
gender information in general. We reserve the set of
stereotypes X solely for evaluating bias (inference)
in the language models.

Taking Ef = {ef1, ef2, ...} and Em =
{em1, em2, ...} to be the set of all embeddings for
female and male words respectively, given E =
Ef ∪ Em, we train a classifier C : E → {f,m} to
predict whether an embedding e belongs to Ef or
Em.

Evaluating bias. To determine the conformity of
a language model L to gender stereotypes X , we
introduce two bias criteria (or notions of bias):

Bias accuracy: We compute the accuracy of C
to correctly predict the gender association of all
stereotype words in X based on the embeddings
produced by L. A high accuracy depicts the pres-
ence of pro-stereotype information in the embed-
dings produced by the language model L, even
though the predictions could be of low confidence
i.e. just enough gender information to correctly
predict the gender association.

Mean bias confidence: We also consider the
mean of the individual softmax scores for each
prediction. In the case of binary gender, a soft-
max value of 0.5 means the embedding is perfectly
neutral, hence, we define mean bias confidence as
1
N

∑N
i |bias(ei)− 0.5|. High mean confidence de-

picts an enormous amount of gender information
contained in the embedding, although this informa-
tion may not necessarily be pro-stereotype.

Randomization test. To test the efficacy of our
method, We carry out a randomization test by iter-
atively splitting X = Xf ∪Xm into two random
groups Xf ′ and Xm′ . We use X ′(i) = {X(i)

f ′ , X(i)
m′}

to define the random pair generated in the ith it-
eration. We repeat this randomized split over 100

iterations; X ′(i) ∈ {X ′(1), ..., X ′(100)}. By com-
puting a p-value based on a one-sample t-test, we
compute if the mean of accuracy scores from the
random samples X ′ is significantly different from
the score from{Xf , Xm}.

4 Investigating intrinsic bias in mitigated
models with existing metrics

We first use the two existing metrics defined in
§ 2.2 (SEAT and LPBS) to quantify bias in BERT-
large and ALBERT-large pretrained models. Using
the same metrics, we then explore how intrinsic
bias changes in mitigated versions of these models
using the mitigation techniques outlined in § 2.1:
Context-debias, Sent-debias, and CDA pretraining.
This is important to evaluate the efficacy of these
mitigation strategies, and to make relevant postula-
tions.

(a) BERT-large model

Figure 2: Intrinsic bias scores using SEAT and LPBS.
Results show inconsistencies in measuring bias between
SEAT and LPBS for various mitigation strategies —
lower scores are desirable in both cases.

4.1 RQ1: Do intrinsic bias measures respond
differently to bias mitigation techniques?

In Figure 2, we plot the intrinsic bias results9 of
SEAT and LPBS on BERT-large. The first observa-
tion we point out, particularly for Context-debias
and Sent-debias, is the contradicting nature of bias
scores obtained from SEAT and LPBS. Whereas
SEAT shows a drastic reduction in intrinsic bias
for Context-debias, LPBS indicates worsening bias.
The converse is true for Sent-debias where LPBS
shows a significant reduction in intrinsic bias but
SEAT shows worse scores. This confirms our sus-
picion that different mitigation strategies respond
differently to different metrics.

9see Table 1 and Figure 8 for full results.
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Figure 3: We compare LPBS in its default form
(attribute-LPBS) and target-LPBS for BERT-large. The
plot shows a general positive correlation between the
two metrics. In both cases, Sent-debias maintains the
lowest bias score — lower scores are desirable in both
cases. See Figure 9 for ALBERT-large.

The use of some metrics can be problematic for
evaluating some mitigation techniques for in-
trinsic bias. We find that some metrics are not
ideal to use with some mitigation techniques due
to differences in how various mitigation techniques
interact with a language model. Consider a metric
like LPBS which measures the association between
a stereotype term and a gender P (A=a|X=x)

P (A=a) . This
association is captured at the inner layers of the
model, but since post-hoc approaches like Sent-
debias do not alter the internal representation of the
model, LPBS in its original form becomes ineffec-
tive — Figure 7. We refer to this original form of
LPBS as attribute-LPBS. Sent-debias ends up debi-
asing the attribute terms rather than the stereotype
terms, thus, constantly producing low probability
difference scores. Even so, we find LPBS being
used in this form with Sent-debias in works such as
(Steed et al., 2022). Using stereotype terms instead
of attribute terms P (X = x|A = a), which we re-
fer to as target-LPBS, is an option to solve this
discrepancy, but given that many stereotype terms
are usually out of vocabulary, these models will
resort to wordpiece tokenization (Sennrich et al.,
2016) which will be more challenging to handle.
Nonetheless, in Figure 3, when the two versions of
LPBS are compared, Sent-debias continues to have
the best intrinsic fairness scores in both cases 10.

5 Probing further to uncover bias

We use the methodology in Section 3 to probe for
bias in pretrained language models and their bias-

10For this comparison we only selected single-wordpiece
attribute words to avoid challenges with multiple wordpieces.

mitigated versions to see if the intrinsic bias miti-
gation techniques actually mitigate biases or super-
ficially conceal them from commonplace metrics
like SEAT and LPBS. Gonen and Goldberg (2019)
discovered that, for non-contextualized word em-
beddings, the bias mitigation techniques proposed
by (Bolukbasi et al., 2016) were hiding bias instead
of resolving bias. We use our probe to see if this
is equally the case for intrinsic bias mitigation in
contextualized embeddings. The consequence of
mitigation techniques superficially hiding bias is
that downstream classifiers can learn to pick up
residual traces of gender information.

We validate our results by carrying out a random-
ization test, as described in Section 3, to test for
statistical significance of our results. We conduct
the test under the null hypothesis H0 that the pre-
diction accuracy of our original gender-stereotype
sets will not differ significantly from the random
split. We show in Table 2 the very low p-values that
indicate statistical significant results, thus refuting
H0.

5.1 RQ2: Can intrinsic bias techniques and
metrics hide bias instead of resolving it?

Figure 4: Gray bars indicate the accuracy of detecting
gender information in attribute terms (high scores are
desirable). Red bars indicate the accuracy of detecting
gender information in stereotype terms (this should ide-
ally be 0.5 in a fair classifier, showing the inability to
correctly predict the gender association of stereotype
terms). Blue bars indicate the average confidence of
prediction: 1

N

∑N
i |bias(ei)− 0.5| (low scores are de-

sirable).

In Figure 4, we show the results11 of our probe
for BERT-large. We highlight some key observa-
tions.

Bias accuracy and mean bias confidence do not
correlate. We see from both plots in Figure 4

11see Table 2 and Figure 10 for full results.
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that, counter-intuitively, high bias accuracy does
not concur with high mean bias confidence. Actu-
ally, Sent-debias, which consistently has the high-
est bias accuracy among the mitigation techniques,
consistently has the lowest mean bias confidence.
This indicates that these two notions of bias may
not correspond. This, coupled with the finding in
Figure 2 about the inconsistency between SEAT
and LPBS, suggests that intrinsic bias could be per-
ceived or measured from conflicting perspectives.

Some mitigation techniques can conceal gender
information. For Sent-debias in ALBERT-large,
we can, almost to the same degree of accuracy
as for the unmitigated pretrained model, correctly
predict the association of stereotypes to their re-
spective genders using a simple linear classifier
even with a low confidence. This will render a
mitigation technique useless if a downstream clas-
sifier can correctly predict gender. This could only
indicate that although models like Sent-debias sig-
nificantly reduce the degree of association between
stereotypes and their respective genders, hence the
low confidence in prediction, this reduction does
not inhibit the capability to correctly predict the
associated gender of stereotypes; confirming that
an intrinsic mitigation process can be rendered use-
less for downstream fairness even if the degree of
association (confidence) is significantly reduced,
so long as the information retained remains just
enough to correctly associate the gender groups
with their associated stereotypes.

5.2 RQ3: Do intrinsic bias mitigation
techniques in language models improve
fairness in downstream tasks?

To investigate the relationship between intrinsic
and extrinsic gender bias, we train both BERT-large
and ALBERT-large together with their intrinsic-
bias-mitigated versions on the Bias-in-bios and Jig-
saw datasets using a 10-fold train-test scheme to
correctly predict the profession of each profile. We
evaluate extrinsic bias based on gender TPRD and
gender CF scores described in § 2.4. We conduct
the test under three settings: 1) Using the original
version of the training data. 2) Using our attribute
scrubbed version (see Section 2.3). 3) Using the
attribute-swap augmented version of the data (see
Section 2.3). These three settings of the dataset are
important to understand how intrinsic bias affects
downstream fairness under different data settings.

In Figure 5, we show the extrinsic bias score 12

for BERT-large and its debiased versions, and the
corresponding downstream data type for the Bias-
in-Bios dataset — see Figure 11 and Figure 12 for
all models and datasets.

Intrinsic mitigation techniques do not show a
significant improvement on TPRD. We observe
that all the intrinsic bias mitigation interventions
we consider do not significantly improve bias in
TPRD on their own. There is only a slight improve-
ment or worsening bias in some cases. For Context-
debias, we postulate this could be due to the limited
list of words used to mitigate bias. If these limited
words are not key terms in the downstream task or
do not exist in the downstream text instances, the
mitigation may not have a consequential effect on
the downstream task.

Downstream data processing significantly im-
proves downstream fairness. Secondly, we real-
ize that the downstream data has a lot more material
effect on downstream fairness. The data processing
techniques: attribute scrubbing and attribute swap-
ping showed improvements in TPRD producing the
best results.

Combining intrinsic CDA and Downstream
CDA produces best TPRD results. Thirdly, we
realize that although the downstream data seems
key to downstream fairness, a combination of in-
trinsic and downstream data intervention produces
even better extrinsic fairness results.

Sent-debias significantly improves CF scores.
Sent-debias is the only intrinsic technique that
shows significant improvement in counterfactual
fairness. Context-debias and CDA produce worse
CF scores in some cases. We observe that the mode
of application of Sent-debias in downstream classi-
fication tasks does not entirely align with the notion
of intrinsic since gender information is removed
from the sentence-level representation instead of
word-level representation.

Combining Sent-Debias and fair downstream
data produces the best CF scores. We also re-
alize from BERT (Figure 5) and ALBERT that
combining Sent-debias as a mitigation technique
and a downstream data intervention produces the
best CF scores.

12Full results with error margins are given in Table 3, Ta-
ble 4, Table 5 and Table 6.
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Figure 5: How intrinsic mitigation and downstream data intervention interact to influence fairness on the bias-in-bios
data — BERT-large.

Figure 6: Relationship between TPRD and CF based on
results from BERT model and Bias-in-Bios dataset. See
Figure 13 for ALBERT-large.

TPRD vs Counterfactual-fairness. Here, we
look at the relationship between TPRD and coun-
terfactual fairness. As both measures are used as
extrinsic fairness metrics, we aim to see how both
results correlate. From Figure 6 we find a posi-
tive correlation in general between the two metrics.
The downstream data interventions tend to improve
both TPRD and CF the most.

6 Related work

Park et al. (2018) study the effects of three tech-
niques to mitigate gender bias in abusive language
detection; debiased word embeddings (based on the
approach by Bolukbasi et al. (2016)), gender swap
(counterfactual augmentation of classification data),
bias finetuning using non-contextualized word em-
beddings: word2vec (Mikolov et al., 2013) and
FastText (Bojanowski et al., 2017). They found
that a combination of debiasing and gender swap-
ping produced the best fairness results when imple-
mented with a Gated Recurrent Unit (GRU).

Prost et al. (2019) examine three debiasing tech-
niques for mitigating gender bias in downstream

text classification using bias-in-bios (De-Arteaga
et al., 2019b), with non-contextualized embed-
dings. Specifically, they examine scrubbing (dele-
tion of identity terms) and approaches that focus on
non-contextualized embeddings namely: debiasing
(based on neutralization and equalization by Boluk-
basi et al. (2016)), and strong debiasing Prost et al.
(2019). Experimenting with Glove embeddings
(Pennington et al., 2014), they show that strong
debiased produces the best fairness results whilst
maintaining a good accuracy score (second only
to the unmitigated model). They again show that
standard debiasing (Bolukbasi et al., 2016) can be
counter-productive in terms of fairness; it can rather
reduce fairness in downstream text classification.

Steed et al. (2022) meticulously investigate the
effect of intrinsic bias in downstream text classifi-
cation in RoBERTa. They also conclude that intrin-
sic/upstream bias does not significantly contribute
to downstream bias. However, as we have previ-
ously discussed, using the default form of Log prob-
ability Bias score (attribute-LPBS) (Kurita et al.,
2019) which they adopt to measure intrinsic bias
may not be an effective technique to use with Sent-
debias.

Orgad et al. (2022), the closest and concurrent
with our work, investigate the relationship between
intrinsic and extrinsic bias and also develop a probe
based on a classification-based technique minimum
description length (Voita and Titov, 2020) to detect
bias in RoBERTa. They reach similar conclusions
indicating how intrinsic metrics, like CEAT in their
case, could conceal bias.

7 Conclusion

In this paper, we develop a probe to investigate
intrinsic bias in two language models, BERT-large
and ALBERT-large on two text classification tasks.
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We use this probe to answer key research questions
outlined for this research. We find that intrinsic
bias metrics can be sensitive to certain intrinsic bias
mitigation techniques. We also show that intrinsic
bias mitigation techniques and metrics are capable
of concealing bias instead of resolving it. We dis-
cover that intrinsic bias mitigation techniques we
considered do not significantly improve fairness in
text classification when used without other fairness
interventions like data pre-processing. We recom-
mend that intrinsic bias mitigation should ideally
be combined with other fairness interventions.

Limitations

One obvious limitation of this work is the restric-
tion to the use of English language as a basis. In
future, we will explore how these conclusions vary
in other language settings. Secondly, although we
aimed to make the list of gender and attribute terms
used in our experiments as extensive as possible,
it is nearly impossible to cover all possible gender
and target words in such contexts. Nonetheless,
for the scope under consideration, we believe our
compilation is extensive enough to give a general
outlook and to draw the necessary conclusions. Fi-
nally, our work is heavily based on binary notions
of gender which is a limitation considering the
growing use of non-binary categorizations of gen-
der and other biases which we outline in the ethical
considerations section.

Ethical considerations

For practical reasons such as access to datasets and
resources on gender bias, we limit our work to a
binary representation of gender. We draw readers’
attention to the fact that non-binary gender repre-
sentations are nuanced and intricate (Dev et al.,
2021), as such, this should be in cognizance when
applying conclusions from this work in non-binary
settings. Nonetheless, considering binary gender
as a base form of gender categorization, the in-
sights and conclusions from this work can form
the baseline for exploring more complex gender
categorizations.
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Appendix

A Word lists for experiments

We generate the wordlist we use, given below, from
the more extensive wordlist from (Kaneko and
Bollegala, 2021). To mitigate the effect of multi-
wordpiece tokens, we only select tokens with a
single wordpiece. Hence we obtain the following
wordlists:

A.1 attribute terms
• female list: ’witches’, ’mothers’, ’diva’, ’ac-

tress’, ’mama’, ’dowry’, ’princess’, ’abbess’,
’women’, ’widow’, ’ladies’, ’madam’,
’baroness’, ’niece’, ’lady’, ’sister’, ’nun’,
’her’, ’mare’, ’convent’, ’ladies’, ’queen’,
’maid’, ’chick’, ’empress’, ’mommy’, ’fem-
inism’, ’gal’, ’estrogen’, ’goddess’, ’aunt’,
’hostess’, ’wife’, ’mom’, ’females’, ’ma’,

’belle’, ’maiden’, ’witch’, ’miss’, ’cow’,
’granddaughter’, ’her’, ’mistress’, ’nun’,
’actresses’, ’girlfriend’, ’lady’, ’maternal’,
’ladies’, ’sorority’, ’duchess’, ’ballerina’, ’fi-
ancee’, ’wives’, ’maternity’, ’she’, ’heroine’,
’queens’, ’sisters’, ’stepmother’, ’daughter’,
’lady’, ’daughters’, ’mistress’, ’hostess’,
’nuns’, ’priestess’, ’filly’, ’herself’, ’girls’,
’lady’, ’vagina’, ’wife’, ’mother’, ’female’,
’womb’, ’heiress’, ’waitress’, ’woman’,
’bride’, ’grandma’, ’bride’, ’gal’, ’lesbian’,
’ladies’, ’girl’, ’grandmother’, ’mare’,
’maternity’, ’nuns’

• male list: ’wizards’, ’fathers’, ’actor’,
’bachelor’, ’papa’, ’dukes’, ’hosts’, ’air-
men’, ’penis’, ’prince’, ’governors’, ’abbot’,
’men’, ’gentlemen’, ’sir’, ’baron’, ’gods’,
’nephew’, ’lord’, ’brother’, ’priest’, ’his’,
’marquis’, ’princes’, ’emperors’, ’stallion’,
’chairman’, ’monastery’, ’priests’, ’king’,
’spokesman’, ’tailor’, ’cowboys’, ’dude’, ’em-
peror’, ’daddy’, ’guys’, ’guy’, ’godfather’,
’god’, ’patriarch’, ’uncle’, ’sir’, ’brotherhood’,
’host’, ’testosterone’, ’husband’, ’dad’, ’stew-
ard’, ’males’, ’pa’, ’beau’, ’stud’, ’bache-
lor’, ’wizard’, ’sir’, ’bull’, ’grandson’, ’horse-
men’, ’rooster’, ’bachelor’, ’him’, ’mas-
ter’, ’lad’, ’policeman’, ’monk’, ’actors’,
’boyfriend’, ’statesman’, ’paternal’, ’landlord’,
’brethren’, ’lords’, ’fraternity’, ’duke’, ’fi-
ance’, ’colts’, ’husbands’, ’he’, ’business-
man’, ’hero’, ’deer’, ’kings’, ’brothers’, ’mas-
ters’, ’stepfather’, ’son’, ’cowboy’, ’sons’,
’baritone’, ’salesman’, ’monks’, ’lads’, ’con-
gressman’, ’priest’, ’barons’, ’beard’, ’colt’,
’himself’, ’boys’, ’lions’, ’gentleman’, ’pe-
nis’, ’his’, ’bulls’, ’uncles’, ’lion’, ’sorcerer’,
’father’, ’male’, ’sperm’, ’prostate’, ’business-
men’, ’heir’, ’waiter’, ’headmaster’, ’man’,
’governor’, ’god’, ’grandpa’, ’groom’, ’dude’,
’gay’, ’boy’, ’grandfather’, ’priests’

A.2 List of stereotypes(target words)
• female list: ’beauty’, ’blonde’, ’cheer-

leading’, ’cooking’, ’flirt’, ’flower’, ’gos-
sip’, ’housekeeper’, ’jewelry’, ’nanny’,
’nurse’, ’nurses’, ’pink’, ’pretty’, ’reception-
ist’, ’sewing’, ’softball’, ’makeup’, ’therapist’,
’maid’, ’chairperson’

• male list: ’warrior’, ’strong’, ’terrorist’, ’sol-
dier’, ’sniper’, ’baseball’, ’sergeant’, ’body-
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guard’, ’boss’, ’boxer’, ’captain’, ’carpenter’,
’chancellor’, ’colonel’, ’commander’, ’con-
ductor’, ’diplomat’, ’drummer’, ’engineer’,
’gangster’, ’geek’, ’guitarist’, ’industrialist’,
’marshal’, ’mechanic’, ’philosopher’, ’physi-
cist’, ’scientist’, ’rapper’, ’mechanic’, ’carpen-
ter’, ’clergy’

B Intrinsic metrics

B.1 Context-debias

Li =
∑

t∈Vt

∑

x∈Ω(t)

∑

a∈Va
(vi(a)

TEI(t, x; θe))
2))

Lreg =
∑

x∈A

∑

w∈x

∑

i=1

||Ei(w, x; θe)−Ei(w, x; θpre)||2

L = αLi + βLreg

Where Li is the orthogonality constraint such that
Ei(w, x; θe) denotes the embedding of token w in
the i-th layer of a contextualised word embedding
model E with parameters θe. vi(a) is the non-
contextualised embedding of an attribute word a.
Lreg is a regularizer that constrains the Euclidean
distance between the contextualized word embed-
ding of a word w in the ith layer in the original
pretrained model with parameters θpre.

B.2 Sent-debias

v = PCAk(∪j=1 ∪w∈Rj (w − µj))

hv =

k∑

j=1

⟨h, vj⟩vj

ĥ = h− hv

where v represents the top-k gender subspace, h
the representation of a given embedding, hv the
projection of h onto v, and ĥ the resulting debiased
subspace.

C Experiment set-up

We train all models for 4 epochs, a learning rate
of 2e−5 on Tesla V100-SXM3-32GB. We use a se-
quence length of 100 as the default for all extrinsic
tasks. For all downstream tasks, we use a one-layer
linear classifier.

D Datasets

Bias-in-bios (De-Arteaga et al., 2019a) consists
of online English biographies of people. We use
this dataset to predict the occupations of people.

Since the gender labels are provided, we can com-
pute disparities in predictive performance between
male and female gender groups.

We select the top 7 female and top 7 male pro-
fessions based on the gender percentages. We take
these two sets to represent female and male domi-
nated jobs respectively.

Jigsaw dataset 13 from the online platform Civil
comments contains online comments. This dataset
is scored from 0 to 10 with the perceived gender of
the targets of these comments as well as the toxicity
levels of these comments. We use this dataset to
predict whether or not a comment is toxic against
the target persons. We use gender labels to compute
predictive disparities.

We select all comments with toxicity score above
0.5 as the toxic comments and those with a score
of exactly 0 as the non-toxic ones in order to elim-
inate fine-margins. We use the same technique to
annotate gender by labeling a gender positive if it
scores above 0.5 whilst its complimentary gender
has a score of exactly 0.

E Measuring intrinsic bias with LPBS
when debiasing is done with
Sent-debias

Figure 7: Measuring intrinsic bias in Sent-debias with
target-LPBS.

F Results

13https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/data
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Table 1: Intrinsic bias scores from SEAT and LPBS. For SEAT we capture the test statistic score: SEAT test score
and the effect size: SEAT eff. size. For LPBS we capture results from two variants: attribute-LPBS: attr-LPBS and
target-LPBS: target-LPBS.

(a) Intrinsic bias BERT-large-uncased

Model SEAT test score SEAT eff. size attr-LPBS target-LPBS

pretrained 0.055 1.675 1.301 0.886
Context-debias 0.002 0.260 1.650 1.180

Sent-debias 0.055 1.675 0.514 0.322
CDA 0.033 1.148 0.409 0.351

(b) Intrinsic bias ALBERT-large

Model SEAT test score SEAT eff. size attr-LPBS target-LPBS

pretrained 0.051 1.715 0.870 0.446
Context-debias 0.003 0.244 1.343 0.346

Sent-debias 0.051 1.717 0.187 0.111
CDA 0.006 1.170 0.654 0.772

Table 2: Results of gender detection probe: Gender acc denotes the accuracy of detecting gender information
in attribute/gender terms (high scores are desirable). Stereotype acc indicates the accuracy of detecting gender
information in stereotype terms (this should ideally be 0.5 in a fair classifier, showing the inability to correctly
predict the gender association of stereotype terms). Stereotype conf indicate the average confidence of prediction
of stereotypes: 1

N

∑N
i |bias(ei)− 0.5| (low scores are desirable). P-values are from the randomization test.

(a) Detecting gender information BERT-large-uncased

Model Gender acc Stereotype acc Stereotype conf p-value

pretrained 1.0 0.78 0.20 9.055e-73
Context-debias 0.97 0.62 0.16 1.398e-51

Sent-debias 1.0 0.76 0.02 8.772e-70
CDA 0.99 0.75 0.16 7.824e-77

(b) Detecting gender information Alert-large-uncased

Model Gender acc Stereotype acc Stereotype conf p-value

pretrained 1.0 0.83 0.33 2.763e-71
Context-debias 0.97 0.63 0.19 1.700e-48

Sent-debias 1.0 0.82 0.02 2.335e-95
CDA 0.94 0.63 0.12 3.497e-61

Table 3: Extrinsic bias scores from Bias in Bios - BERT-large: We capture true positive rate difference, false positive
rate difference, counterfactual fairness, accuracy scroes for both gender groups, counterfactual augmented true
positive rate difference and counterfactual augmented false positive rate diference scores.

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.135± 0.03 0.012± 0.0 0.984± 0.0 0.982± 0.0 0.051± 0.0 0.116± 0.02 0.008± 0.0 0.982± 0.0 0.981± 0.0
Pretrained Scrubbing 0.125 ± 0.02 0.011 ± 0.0 0.984 ± 0.0 0.982 ± 0.0 0.033 ± 0.0 0.113 ± 0.02 0.008 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Pretrained Swapping 0.122 ± 0.02 0.008 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.008 ± 0.0 0.12 ± 0.02 0.008 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Context-debias Default 0.14 ± 0.03 0.012 ± 0.0 0.984 ± 0.0 0.982 ± 0.0 0.051 ± 0.0 0.119 ± 0.02 0.008 ± 0.0 0.982 ± 0.0 0.98 ± 0.0
Context-debias Scrubbing 0.117 ± 0.03 0.01 ± 0.0 0.984 ± 0.0 0.981 ± 0.0 0.026 ± 0.0 0.109 ± 0.03 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Context-debias Swapping 0.122 ± 0.03 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.008 ± 0.0 0.12 ± 0.03 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
CDA Default 0.132 ± 0.02 0.012 ± 0.0 0.983 ± 0.0 0.982 ± 0.0 0.047 ± 0.0 0.111 ± 0.02 0.008 ± 0.0 0.982 ± 0.0 0.98 ± 0.0
CDA Scrubbing 0.123 ± 0.03 0.009 ± 0.0 0.982 ± 0.0 0.981 ± 0.0 0.014 ± 0.0 0.121 ± 0.03 0.009 ± 0.0 0.982 ± 0.0 0.981 ± 0.0
CDA Swapping 0.116 ± 0.02 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.007 ± 0.0 0.116 ± 0.02 0.009 ± 0.0 0.983 ± 0.0 0.981 ± 0.0
Sent-debias Original 0.132 ± 0.02 0.012 ± 0.0 0.983 ± 0.0 0.982 ± 0.0 0.007 ± 0.0 0.115 ± 0.02 0.008 ± 0.0 0.981 ± 0.0 0.98 ± 0.0
Sent-debias Scrubbing 0.132 ± 0.02 0.01 ± 0.0 0.983 ± 0.0 0.981 ± 0.0 0.003 ± 0.0 0.122 ± 0.03 0.008 ± 0.0 0.982 ± 0.0 0.98 ± 0.0
Sent-debias Swapping 0.121 ± 0.02 0.009 ± 0.0 0.982 ± 0.0 0.98 ± 0.0 0.003 ± 0.0 0.119 ± 0.02 0.009 ± 0.0 0.982 ± 0.0 0.98 ± 0.0

Table 4: Extrinsic bias scores from Bias in Bios - ALBERT-large

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.138 ± 0.02 0.013 ± 0.0 0.982 ± 0.0 0.979 ± 0.0 0.06 ± 0.0 0.118 ± 0.02 0.009 ± 0.0 0.979 ± 0.0 0.978 ± 0.0
Pretrained Scrubbing 0.127 ± 0.01 0.01 ± 0.0 0.982 ± 0.0 0.978 ± 0.0 0.021 ± 0.0 0.12 ± 0.01 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
Pretrained Swapping 0.121 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.979 ± 0.0 0.01 ± 0.0 0.121 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.979 ± 0.0
Context-debias Default 0.137 ± 0.02 0.012 ± 0.0 0.983 ± 0.0 0.98 ± 0.0 0.062 ± 0.0 0.114 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
Context-debias Scrubbing 0.129 ± 0.02 0.01 ± 0.0 0.98 ± 0.0 0.978 ± 0.0 0.021 ± 0.0 0.124 ± 0.02 0.009 ± 0.0 0.979 ± 0.0 0.977 ± 0.0
Context-debias Swapping 0.116 ± 0.02 0.009 ± 0.0 nan ± nan nan ± nan 0.011 ± 0.0 0.115 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
CDA Default 0.142 ± 0.02 0.013 ± 0.0 0.981 ± 0.0 0.978 ± 0.0 0.063 ± 0.0 0.121 ± 0.02 0.009 ± 0.0 0.979 ± 0.0 0.977 ± 0.0
CDA Scrubbing 0.127 ± 0.02 0.01 ± 0.0 0.979 ± 0.0 0.977 ± 0.0 0.012 ± 0.0 0.125 ± 0.02 0.01 ± 0.0 0.979 ± 0.0 0.977 ± 0.0
CDA Swapping 0.115 ± 0.01 0.009 ± 0.0 0.98 ± 0.0 0.977 ± 0.0 0.011 ± 0.0 0.116 ± 0.02 0.009 ± 0.0 0.98 ± 0.0 0.977 ± 0.0
Sent-debias Original 0.145 ± 0.02 0.013 ± 0.0 0.981 ± 0.0 0.978 ± 0.0 0.007 ± 0.0 0.119 ± 0.03 0.009 ± 0.0 0.978 ± 0.0 0.976 ± 0.0
Sent-debias Scrubbing 0.12 ± 0.02 0.01 ± 0.0 0.978 ± 0.0 0.976 ± 0.0 0.002 ± 0.0 0.108 ± 0.02 0.009 ± 0.0 0.978 ± 0.0 0.976 ± 0.0
Sent-debias Swapping 0.117 ± 0.03 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0 0.002 ± 0.0 0.114 ± 0.02 0.009 ± 0.0 0.981 ± 0.0 0.978 ± 0.0
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Table 5: Extrinsic bias scores from Jigsaw - BERT-large

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.044 ± 0.02 0.118 ± 0.04 0.896 ± 0.01 0.934 ± 0.0 0.116 ± 0.01 0.061 ± 0.01 0.029 ± 0.02 0.866 ± 0.01 0.902 ± 0.01
Pretrained Scrubbing 0.026 ± 0.02 0.076 ± 0.03 0.891 ± 0.01 0.914 ± 0.01 0.031 ± 0.0 0.026 ± 0.01 0.058 ± 0.02 0.889 ± 0.01 0.904 ± 0.01
Pretrained Swapping 0.027 ± 0.01 0.065 ± 0.02 0.892 ± 0.01 0.92 ± 0.01 0.01 ± 0.0 0.029 ± 0.01 0.066 ± 0.01 0.893 ± 0.01 0.921 ± 0.01
Context-debias Default 0.047 ± 0.02 0.128 ± 0.04 0.895 ± 0.01 0.931 ± 0.01 0.116 ± 0.01 0.049 ± 0.02 0.032 ± 0.02 0.868 ± 0.01 0.894 ± 0.01
Context-debias Scrubbing 0.014 ± 0.01 0.032 ± 0.02 0.701 ± 0.22 0.874 ± 0.06 0.015 ± 0.01 0.015 ± 0.01 0.026 ± 0.02 0.698 ± 0.21 0.87 ± 0.06
Context-debias Swapping 0.031 ± 0.01 0.049 ± 0.02 0.889 ± 0.01 0.915 ± 0.01 0.01 ± 0.0 0.031 ± 0.01 0.05 ± 0.02 0.888 ± 0.01 0.915 ± 0.01
CDA Default 0.055 ± 0.02 0.114 ± 0.03 0.902 ± 0.01 0.932 ± 0.0 0.115 ± 0.01 0.048 ± 0.01 0.024 ± 0.01 0.872 ± 0.01 0.899 ± 0.0
CDA Scrubbing 0.023 ± 0.01 0.053 ± 0.03 0.894 ± 0.01 0.904 ± 0.01 0.018 ± 0.0 0.022 ± 0.01 0.041 ± 0.02 0.892 ± 0.01 0.899 ± 0.01
CDA Swapping 0.026 ± 0.02 0.038 ± 0.02 0.891 ± 0.01 0.913 ± 0.01 0.008 ± 0.0 0.026 ± 0.02 0.036 ± 0.02 0.891 ± 0.01 0.913 ± 0.01
Sent-debias Original 0.074 ± 0.02 0.108 ± 0.03 0.898 ± 0.01 0.926 ± 0.01 0.069 ± 0.01 0.041 ± 0.02 0.025 ± 0.01 0.865 ± 0.01 0.89 ± 0.01
Sent-debias Scrubbing 0.033 ± 0.01 0.035 ± 0.01 0.889 ± 0.01 0.909 ± 0.01 0.012 ± 0.0 0.037 ± 0.01 0.023 ± 0.02 0.885 ± 0.01 0.901 ± 0.01
Sent-debias Swapping 0.021 ± 0.02 0.045 ± 0.01 0.893 ± 0.01 0.916 ± 0.01 0.006 ± 0.0 0.021 ± 0.02 0.045 ± 0.01 0.893 ± 0.01 0.915 ± 0.01

Table 6: Extrinsic bias scores from Jigsaw - ALBERT-large

Model Data TPRD FPRD ACC-F ACC-M CF CF-TPRD CF-FPRD CF-ACC-F CF-ACC-M

Pretrained Default 0.077 ± 0.04 0.115 ± 0.04 0.894 ± 0.01 0.916 ± 0.01 0.143 ± 0.01 0.035 ± 0.02 0.039 ± 0.02 0.862 ± 0.01 0.86 ± 0.02
Pretrained Scrubbing 0.032 ± 0.02 0.025 ± 0.02 0.789 ± 0.14 0.819 ± 0.1 0.031 ± 0.01 0.035 ± 0.03 0.033 ± 0.02 0.783 ± 0.14 0.808 ± 0.1
Pretrained Swapping 0.037 ± 0.02 0.029 ± 0.01 0.869 ± 0.02 0.895 ± 0.02 0.012 ± 0.0 0.038 ± 0.02 0.032 ± 0.02 0.869 ± 0.02 0.895 ± 0.02
Context-debias Default 0.064 ± 0.02 0.122 ± 0.02 0.891 ± 0.01 0.92 ± 0.01 0.137 ± 0.01 0.051 ± 0.02 0.025 ± 0.01 0.857 ± 0.01 0.875 ± 0.01
Context-debias Scrubbing 0.031 ± 0.01 0.05 ± 0.03 0.885 ± 0.01 0.891 ± 0.01 0.039 ± 0.01 0.024 ± 0.01 0.041 ± 0.02 0.878 ± 0.01 0.874 ± 0.01
Context-debias Swapping 0.023 ± 0.01 0.048 ± 0.02 0.874 ± 0.01 0.904 ± 0.01 0.011 ± 0.0 0.025 ± 0.01 0.048 ± 0.02 0.875 ± 0.01 0.905 ± 0.01
CDA Default 0.078 ± 0.02 0.115 ± 0.03 0.887 ± 0.01 0.913 ± 0.01 0.139 ± 0.01 0.043 ± 0.02 0.031 ± 0.01 0.855 ± 0.01 0.865 ± 0.01
CDA Scrubbing 0.026 ± 0.01 0.052 ± 0.02 0.866 ± 0.02 0.865 ± 0.02 0.024 ± 0.0 0.021 ± 0.01 0.036 ± 0.02 0.867 ± 0.02 0.857 ± 0.02
CDA Swapping 0.042 ± 0.02 0.038 ± 0.02 0.866 ± 0.01 0.9 ± 0.01 0.011 ± 0.0 0.041 ± 0.02 0.037 ± 0.02 0.867 ± 0.01 0.9 ± 0.01
Sent-debias Original 0.102 ± 0.05 0.106 ± 0.05 0.765 ± 0.18 0.87 ± 0.05 0.064 ± 0.03 0.023 ± 0.02 0.03 ± 0.02 0.736 ± 0.17 0.824 ± 0.03
Sent-debias Scrubbing 0.011 ± 0.01 0.021 ± 0.02 0.685 ± 0.21 0.831 ± 0.04 0.009 ± 0.01 0.011 ± 0.01 0.018 ± 0.02 0.683 ± 0.21 0.825 ± 0.03
Sent-debias Swapping 0.031 ± 0.02 0.031 ± 0.02 0.821 ± 0.13 0.88 ± 0.04 0.006 ± 0.0 0.034 ± 0.02 0.031 ± 0.02 0.818 ± 0.13 0.88 ± 0.04

(a) BERT-large model (b) ALBERT-large model

Figure 8: Intrinsic bias scores using SEAT and LPBS. Results show inconsistencies in measuring bias between
SEAT and LPBS for various mitigation strategies — lower scores are desirable in both cases.

Figure 9: We compare LPBS in its default form (attribute-LPBS) and target-LPBS for both BERT and ALBERT.
The plot shows a general positive correlation between the two metrics. In both cases, Sent-debias maintains the
lowest bias score — lower scores are desirable in both cases
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Figure 10: Gray bars indicate the accuracy of detecting gender information in attribute terms (high scores are
desirable). Red bars indicate the accuracy of detecting gender information in stereotype terms (this should ideally
be 0.5 in a fair classifier, showing the inability to correctly predict the gender association of stereotype terms). Blue
bars indicate the average confidence of prediction: 1

N

∑N
i |bias(ei)− 0.5| (low scores are desirable).

Figure 11: How intrinsic bias mitigation and downstream data intervention interact to influence fairness on the
bias-in-bios dataset.
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Figure 12: How intrinsic mitigation and downstream data intervention interact to influence counterfactual fairness
on the jigsaw data.

Figure 13: Relationship between TPRD and CF based on results from the Bias-in-Bios dataset.
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