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Abstract
Multi-hop reasoning, a prevalent approach
for query answering, aims at inferring new
facts along reasonable paths over a knowledge
graph. Reinforcement learning (RL) meth-
ods can be adopted by formulating the prob-
lem into a Markov decision process. How-
ever, common suffering within RL-based rea-
soning models is that the agent can be biased
to spurious paths which coincidentally lead to
the correct answer with poor explanation. In
this work, we take a deep dive into this phe-
nomenon and define a metric named Path Spu-
riousness (PS), to quantitatively estimate to
what extent a path is spurious. Guided by the
definition of PS, we design a model with a new
reward that considers both answer accuracy
and path reasonableness. We test our method
on five datasets and experiments reveal that our
method considerably enhances the agent’s ca-
pacity to prevent spurious paths while keeping
comparable to state-of-the-art performance.

1 Introduction

Knowledge Graph (KG), a set of structured facts
about real-world human knowledge, is utilized in
numerous downstream NLP applications (Hilde-
brandt et al., 2020; Zhang and Yao, 2022; Xu et al.,
2021; Ma et al., 2021). Common suffering affect-
ing many downstream tasks is KG incompleteness.
A variable amount of facts are missing in practi-
cal KGs. KG reasoning, the process to derive new
knowledge from KG (Ji et al., 2022; Zhang et al.,
2022; Huang et al., 2022), is the way to address
KG completion problem. A prevailing approach
for KG reasoning is incorporating KG embedding
(KGE), which maps entities and relations into a vec-
tor space (Bordes et al., 2013). Embedding-based
models have great power in expressing semantic
similarity of entities and relations, but usually lack
explainability due to the high-dimension represen-
tation (Chen et al., 2020; Heo et al., 2022).
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Figure 1: An example KG (we use H.S. to indicate
a certain high school for short). Supposing the query
is <Tom, educatedAt, ?> and MIT is a correct answer,
three paths leading to MIT are of different PS.

An alternative approach is multi-hop reasoning,
also referred to as path-based models (Lin et al.,
2018), which infers new facts along existing paths
in KG. Multi-hop reasoning offers explanations for
its predictions by taking advantage of reasoning
paths. Recently, reinforcement learning (RL) has
been applied to multi-hop reasoning (Xiong et al.,
2017). RL-based methods train an agent to walk
over the KG and search for a path leading to the
answer (Das et al., 2018). They have drawn surg-
ing attention in the past few years for their good
prediction accuracy and excellent explainability.

However, most prevalent RL-based models are
suffering from the spurious path problem (Guu
et al., 2017). A spurious path reaches a correct
answer merely by coincidence and has no logical
relevance with its prediction, such as the blue path
in Figure 1: we shouldn’t say Tom was educated
at MIT just because there exists one person (i.e.,
Jerry) who was born in the same country (i.e., U.S.)
with Tom and happened to visit MIT before.

Multi-hop reasoning is a typical sparse reward
scenario, where all actions except the final one
will get no feedback during the decision process.
That is to say, after the agent reached the correct
answer following a spurious path, all actions along
the decision trajectory will get positive rewards
even if they are totally irrelevant to the query. As a
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consequence, the agent will be biased toward those
wrong actions (Guu et al., 2017).

The spurious path problem causes severe dam-
age to the explainability of RL-based models when
paths found by the agent are needed to serve as
evidence to explain the answer. Moreover, spuri-
ous paths may mislead the agent to learn a wrong
policy and further harm the generalization ability
of the model. Although some studies have noticed
the spurious path problem and provided instinctive
solutions, such as action drop (Lin et al., 2018) and
rule guider (Lei et al., 2020; Hou et al., 2021), a
quantitative estimation is still absent.

To address the above-mentioned problem, we
define a new metric called Path Spuriousness (PS)
to measure to what extent a path is spurious. The
inspiration is that a spurious path is not a fake
path, but an adventitious path offering the accurate
answer for a certain query. That is to say, if we ran-
domly exchange intermediate entities of the path
and keep the relation order, it is unlikely to get the
correct prediction for the same query. With PS, we
can reflect the reasonableness of predictions made
by multi-hop reasoning models. Specifically, an-
swers obtained by following paths with low PS are
much more reasonable and explainable than those
by following paths with high PS.

With the definition of PS, we put forward a path
spuriousness-aware reward for RL-based multi-hop
reasoning models. Combined with correctness-
guided rewards, our new reward leads the agent
to not only obtain effective answers but also offer
high-quality reasoning paths.

Our major contributions are concluded as fol-
lows: (1) We first propose a quantitative metric
PS to measure the spuriousness of reasoning paths.
(2) We design a new sophisticated reward shap-
ing method by incorporating correctness-guided
reward and PS-guided reward, which leads the
agent to find effective answers following reason-
able paths. (3) We first offer an empirical evalua-
tion of the path spuriousness of multi-hop reason-
ing methods. Experiments show that our approach
has a great improvement in avoiding spurious paths
while keeping the prediction accuracy.

2 Related Work

In this section, we give outlines of two main related
areas and discuss their connection to our method.

2.1 Knowledge Graph Embedding

KG embedding translates semantic features of en-
tities and relations to vector space, to give an-
swers directly by operations over query vectors.
TransE (Bordes et al., 2013) did seminal work in
leveraging KG embedding to solve the QA prob-
lem and becomes the base model for a series of
algorithms (Ji et al., 2015; Wang et al., 2014; Lin
et al., 2015). DisMult (Yang et al., 2015) proposes a
unified learning framework for embedding models
and introduces an approach to mine logic rules with
learned relation embeddings. ComplEX (Trouillon
et al., 2016) uses complex vectors to represent enti-
ties and relations, to handle asymmetric relations.
ConvE (Dettmers et al., 2018) takes advantage of
a convolutional neural network for knowledge em-
bedding in a large graph. Despite the powerful rep-
resentational ability shown by embedding-based
models, they are limited in many scenarios for the
lack of explainability (Roscher et al., 2020; Liu
et al., 2017), as one-hop reasoning methods.

A promising approach is incorporating KG em-
bedding as a reward shaping function for multi-hop
reasoning methods, which is first adopted by Mul-
tiHop (Lin et al., 2018) and followed by us.

2.2 Multi-Hop Reasoning

Compared to embedding-based models, multi-hop
reasoning models predict by inferring a path step
by step. The property is exactly desired in sce-
narios where not only an answer is required, but
also evidence is demanded to explain the answer.
Reinforcement learning algorithms can be nat-
urally deployed to multi-hop reasoning. Deep-
Path (Xiong et al., 2017) first takes REINFORCE
as the generator of evidence paths which are fed to
PRA (Brin, 1998) subsequently. MINERVA (Das
et al., 2018) takes the lead to design an end-to-
end RL-based multi-hop reasoning model to ad-
dress query answering, whereas its accuracy of
answering still falls behind state-of-the-art embed-
ding models. MultiHop (Lin et al., 2018) incorpo-
rates pre-trained embedding-based models as a soft
reward function to compensate for the incomplete-
ness of KG and gets comparable performance to
embedding-based models in several datasets.

Since the agent lacks logical insights into
adopted paths, spurious paths are inevitable dur-
ing training. Once a spurious path leading to the
correct answer coincidentally is explored first, the
agent will increasingly tend to choose actions fol-
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lowing a spurious way (Guu et al., 2017). To ad-
dress this problem, MultiHop (Lin et al., 2018)
uses action drop to force the agent to explore di-
verse paths, hoping to mitigate the negative effect
of spurious paths. RARL (Hou et al., 2021) exploits
high-quality rules mined from datasets to supervise
the policy of the agent. However, there is no quan-
titative measure for the effect of the above methods,
due to the absence of the metric that scales path
spuriousness and consequently no reward that can
directly guide the agent to avoid spurious paths.

3 Preliminaries

In this section, we first give crucial definitions of
several concepts. Then the reinforcement learning
formula and reward shaping skills will be intro-
duced, which is the foundation of our model.

3.1 Multi-hop KG Reasoning

Knowledge Graph. A knowledge graph (KG) is
a directed graph G = (E ,R,Ψ) (Ji et al., 2022),
where E is the set of entities, R is the set of re-
lations and Ψ is the mapping from relations to
pairs of entities. A fact in knowledge graph G
is an ordered triple δ =< es, r, eo > satisfying that
es, eo ∈ E , r ∈ R, and Ψ(r) =< es, eo >.

In this paper, we treat each edge in a KG as
bidirectional and augment the KG with reversed
edge (eo, r

−1, es) if (es, r, eo) is a fact in G. We
call r−1 the inverse relation of r.
Multi-Hop Reasoning. Given a query q =<
es, rq, ? > (<?, rq, eo > is the same) and a KG
G, multi-hop reasoning is to predict the absent
object by finding an n-hop path τ =< es, r1, e2,
r2, · · · , en, rn, eT > in G (Wan and Du, 2021),
where the last entity eT is the predicted answer.
The path can also be represented as a predicate
τ ≡ r1(es, e2) ∧ r2(e2, e3) ∧ · · · ∧ rn(en, eT ).
Path Clause. For convenience, we use the path
clause H(τ, q) ≡ τ → rq(es, eT ) ≡ r1(es, e2) ∧
r2(e2, e3) ∧ · · · ∧ rn(en, eT )→ rq(es, eT ) to indi-
cate a reasoning path τ and its prediction, where τ
is the clause body and rq(es, eT ) is the head.

In this paper, we assume that all facts in KG are
correct. Then path clause H(τ, q) is true in KG G
if τ is a path in G and rq(es, eT ) is a fact in G. We
call H(τ, q) is valid in G if τ is a path in G.
Path Substitution. Path substitution of H(τ, q) is
defined asHe2,··· ,en,eT

x2,··· ,xn,xT ≡ r1(es, x2)∧r2(x2, x3)∧
· · · ∧ rn(xn, xT ) → rq(es, xT ), which is a path
clause derived by replacing each ei in clause

H(τ, q) with xi except es, i.e., keeping es fixed.
We denote the body of He2,··· ,en,eT

x2,··· ,xn,xT as
BH

e2,··· ,en,eT
x2,··· ,xn,xT . We call He2,··· ,en,eT

x2,··· ,xn,xT is a valid
path substitution of H(τ, q) in KG G if the body
BH

e2,··· ,en,eT
x2,··· ,xn,xT is a path in G.

Note that there may be overlaps of entities of a
path substitution with the original path clause. That
is, a path substitution may not replace all entities in
a path clause with new entities. In particular, each
path clause H(τ, q) is a path substitution of itself.

Consider the KG in Figure 1. For query
<Tom, educatedAt, ?>, the path in color red in-
dicates a prediction <Tom, educatedAt, MIT>,
and the path clause H=teach−1(Tom, Mary) ∧
workAt(Mary, MIT) → educatedAt(Tom, MIT).
Clearly, HMary,MIT

Dave,H.S. , i.e., teach−1(Tom, Dave) ∧
workAt(Dave, H.S.)→ educatedAt(Tom, H.S.) is a
valid path subsituition of H in the KG.

3.2 RL Formula

The RL algorithms can be naturally deployed
to multi-hop reasoning by formulating it into a
Markov decision process (MDP) (Puterman, 1994).
Following MINERVA (Das et al., 2018), we adopt
REINFORCE (Williams, 1992) algorithm. Key
components of the architecture are as follows.
States. A state encodes the status quo as well as
the origin goal. In step t, state st = (et, es, rq) is a
triple, where et is the current entity, es is the start
entity and rq is the query relation.
Actions. Action space At = {(r, e′)|(et, r, e′) ∈
G} in state st consists of all pairs of outgoing edges
and corresponding entities. That is, the valid ac-
tions are neighborhoods of the current entity et.
Transition. After the agent makes its decision
at+1 = (r, e′), the state of environment migrates
from st = (et, es, rq) to st+1 = (e′, es, rq), on
condition (et, r, e

′) ∈ G.
Policy. Agent’s policy maps states to actions,
which is usually implemented by the deep neural
network. To exploit history information, the long
short-term memory network (LSTM) (Hochreiter
and Schmidhuber, 1997) is adopted. History infor-
mation ht in step t is calculated by LSTM, taking
as input previous history ht−1 and the last action
at = (rt, et), as follows:

h0 = LSTM(0,a0) (1)

ht = LSTM(ht−1,at), t > 0. (2)
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Here at is the embedding of action at and ht is the
embedding of history ht . Policy network πθ gives
possibility distribution over At:
πθ(at+1|st) = σ(AtW2ReLU(W1[ht; et; rq])),

(3)
where At is a matrix stacking all action embed-
dings, σ is sigmoid function and ReLU is rectified
linear unit (Nair and Hinton, 2010). The agent
chooses an action subjecting to the distribution
given by the policy network.
Reward. The default binary reward Rb indicates
whether the agent arrives at the correct answer.
With the advantage of indicator function I, binary
reward can be written as follow:

Rb(eT ) = I((es, rq, eT ) ∈ G). (4)

Optimization. To get the optimal parameters, the
policy network is trained by maximizing the objec-
tive function:

J(θ) = E(es,rq ,eo)∈GqE(a1,a2,··· ,aT )∼πθ [RT ]. (5)

RT = R(sT |s1 = (es, es, rq)). (6)

J(θ) is the expected reward for all queries follow-
ing policy πθ. Gq denotes all query facts. RE-
INFORCE is deployed to solve this optimization
problem by iteratively updating θ as follows:

∇θJ(θ) ≈
T∑

t=1

RT∇θ log πθ(at|st) (7)

θ′ = θ +∇θJ(θ). (8)

3.3 Reward Shaping
Under binary reward Rb, the agent receives a posi-
tive reward only when it reaches a correct answer.
That is to say, the agent probably can’t get any
effective guidance in the early exploration stage.

To offset the incompleteness of KG, Multi-
hop (Lin et al., 2018) proposes a reward shaping
function Rs that provides a soft reward Fs between
0 and 1 other than 0 as Rb does, when the pre-
diction is not in KG during the training process.
Fs(es, rq, eT ) is implemented by a pre-trained
embedding-based model such as ConvE (Dettmers
et al., 2018) and ComplEX (Trouillon et al., 2016)
to estimate the probability that (es, rq, eT ) is true.
Then Rs is defined as follows:

Rs(eT )=Rb(eT )+(1−Rb(eT ))·Fs(es, rq, eT ).
(9)

That is, given the answer eT , if (es, rq, eT ) ∈ G,
the agent will get 1 as the final reward, otherwise
the agent will get Fs(es, rq, eT ) calculated by a
pre-trained embedding-based model.

4 Methodology

In this section, we discuss the feature of spurious
paths and give a quantitative definition of PS. Then
we introduce two kinds of reward functions that
take PS into account.

4.1 Path Spuriousness Metric
Think over the example in Figure 1. Assuming
<Tom, educatedAt, MIT> is true and can be de-
duced by the following three pathsH1, H2, andH3

(in color red, blue, and yellow, respectively):

(1) H1≡teach−1(Tom, Mary) ∧ workAt(Mary,

MIT)→ educatedAt(Tom, MIT);

(2) H2≡bornIn(Tom, U.S.)∧bornIn−1(U.S., Jer-

ry∧visit(Jerry, MIT)→educatedAt(Tom, MIT);

(3) H3≡beFriends(Tom, John)∧educatedAt(Joh-

n, MIT)→educatedAt(Tom, MIT).

However, not all of them can serve as valid evi-
dence. Clearly, H1 is solid enough since Tom must
be educated exactly where his teacher teaches. H2

is extremely spurious because there are hundreds
of millions of people born in the same place as Tom
and they visit tremendous schools, few of which
Tom can attend. Though H3 is spurious in logic,
considering that many of Tom’s friends made ac-
quaintances with him when they were in the same
school, H3 is much more valid than H2.

It is a remarkable fact that these three clauses are
all true in the KG of Figure 1, despite their variance
in path spuriousness. The truth value of a valid path
clause always keeps consistent with its prediction,
regardless of whether its body is a reasonable path
or not. The key difference between spurious paths
and reasonable paths is that they have quite a few
valid substitutions in a given KG, but fail to infer
correct predictions. That is, the path spuriousness
of a path clause H is up to the proportion of such
valid substitutions. The larger the proportion is, the
more spurious H is.
Path Spuriousness. Given a KG G and a path
clause H ≡ r1(es, e2) ∧ r2(e2, e3) ∧ · · · ∧
rn(en, eT )→ rq(es, eT ), the PS of H is:

PS(H) = P(v(He2,··· ,en,eT
x2,··· ,xn,xT ) = 0), (10)
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Figure 2: An overlook of the training process. Starting from entity es, the agent walks step by step to obtain a
reasoning path H where eT denotes the predicted answer. All substitutions of H are derived by searching over the
KG. We use Si to represent the i-th substitution. Rmin and Rsum indicate our two reward shaping variants.

which is equal to:

PS(H) = 1− E(v(He2,··· ,en,eT
x2,··· ,xn,xT )) (11)

where He2,··· ,en,eT
x2,··· ,xn,xT is a valid substitution of H , v

is the value function mapping predicate space to
{0, 1}, and X = (x2, · · · , xn, xT ) are random en-
tities sampled from the ideal entity set. In practice,
the ideal entity set is usually unknown and hard to
estimate, so we propose a computation viable met-
ric based on frequency to approximate Equation 11:

PS(H)≈1−

∑
x2,··· ,xn,xT∈E

v(He2,··· ,en,eT
x2,··· ,xn,xT )

∑
x2,··· ,xn,xT∈E

v(BH
e2,··· ,en,eT
x2,··· ,xn,xT )

(12)
where BH

e2,··· ,en,eT
x2,··· ,xn,xT is the body part of

He2,··· ,en,eT
x2,··· ,xn,xT , and E is the entity set of G.
Take the KG in Figure 1 for example.

(1)H1 (in color red) has only one valid substitution
teach−1(Tom, Dave) ∧ workAt(Dave, H.S.)→ edu-
catedAt(Tom, H.S.) except H1, which is true in the
KG. Counting H2 itself in, PS(H2)=1−2/2=0.
(2) H2 (in color blue) has two valid sub-
stitutions except H1: bornIn(Tom, U.S.) ∧
bornIn−1(U.S.,Jerry) ∧ visit(Jerry,CMU) → ed-
ucatedAt(Tom, CMU) and bornIn(Tom, U.S.)
∧ bornIn−1(U.S.,Bob) ∧ visit(Bob,UC Berkeley)
→ educatedAt(Tom, UC Berkeley), but both
of them are false in the KG. Then we have
PS(H1)=1−1/3=2/3.
(3) H3 (in color yellow) has one valid substitu-
tion beFriends(Tom, Alice) ∧ educatedAt(Alice,

Stanford) → educatedAt(Tom, Stanford) except
H1, which is false in the KG. As a result,
PS(H3)=1−1/2=1/2.

4.2 Path Spuriousness-Based Reward
Both Rb and Rs are devoted to the correctness of
the terminal entity, ignoring the spuriousness of
reasoning paths. To address this, we design two
novel rewards combining the answer correctness as
well as the path spuriousness.

First, a path score function Fp(H) is required
to score the spuriousness degree of H . The most
straightforward way is taking the definition of PS
as Fp, which is effective when KG is closed (Tanon
et al., 2017). However, taking the incompleteness
of KG into consideration, we incorporate the soft
reward Rs with Equation 12 to build Fp(H):

Fp(H) = 1−Rr(H) (13)

Rr(H)=

∑
x2,··· ,xn,xT∈E

v(BH
e2,··· ,en,eT
x2,··· ,xn,xT )Rs(xT )

∑
x2,··· ,xn,xT∈E

v(BH
e2,··· ,en,eT
x2,··· ,xn,xT )

.

(14)
For simplicity, we use Rr(H) = 1 − Fp(H) to
indicate the reasonableness of H .

Because of the complexity of semantic knowl-
edge, even a reasonable path may lead to a wrong
answer in some special cases. Therefore, a rational
reward has to be a fusion of the answer accuracy
and the path reasonableness. We demonstrate two
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kinds of combinations between Rs and Rr, and dis-
cuss their performance in the experiment section.

One is taking the minimum between accuracy
and reasonableness:

Rmin(H, eT ) = min(Rs(eT ), Rr(H)). (15)

The equation is based on intuitive thinking that,
we introduce PS-based reward only for punishing
spurious paths, but not for awarding paths with
high reasonableness but low accuracy. That is, Rr
merely serves as punishment when it is lower than
Rs. Note that Rmin is friendly to developers since
it has no hyperparameters.

The other is the weighted sum of Rs and Rr:

Rsum(H, eT ) = αRr(H)+(1−α)Rs(eT ), (16)

where α decreases in the process of training. This
equation is inspired by curriculum learning, which
sets different optimizing goals in different learning
stages (Bengio et al., 2009). We give priority to
the path reasonableness in early epochs, forcing
the agent to focus more on reasonable paths, and
after we prefer the agent to concentrate on proper
answers. Curriculum learning has the chance to
achieve higher performance but makes it more dif-
ficult to tune parameters.

4.3 Overall Training Process
The overall training process of our method is shown
in Figure 2. The agent starts from the query entity
es and makes transitions according to its policy net-
work. The history memory holds the history infor-
mation of each past step. After the agent reaches
the final entity eT , we use Breadth-First Search
to get all valid substitutions of its reasoning path.
Then all substitutions as well as the reasoning path
itself are used to calculate Rr and Rs which are
combined together to get either Rmin or Rsum.

Our PyTorch implementation and some pre-
trained models are released at https://github.
com/rubickkcibur/PSAgent.

5 Experiment

We evaluate our model on four datasets and
compare it with eight common baseline models.
Ours+min and Ours+sum indicate our two ap-
proaches with Rmin and Rsum respectively.

5.1 Setup
5.1.1 Datasets
We use five benchmark datasets for query answer-
ing: 1) UMLS (Kok and Domingos, 2007), 2) Kin-

Dataset #Ent #Rel #Fact
#degree

avg. median

Kinship 104 25 10,686 82.2 82
UMLS 135 46 6,529 38.6 28
FB15K-237 14,505 237 272,115 19.7 14
WN18RR 40,945 11 93,003 2.2 2
NELL-995 10,105 12 13,825 1.6 1

Table 1: Statistics of five KGs used in experiments.
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Figure 3: Hits@1 (red), MRR (green), and IMPS (blue)
change over the validation set during training.

ship (Lin et al., 2018), 3) FB15K-237 (Toutanova
et al., 2015), 4) WN18RR (Dettmers et al., 2018),
and 5) NELL-995 (Xiong et al., 2017). Statistics
are shown in Table 1.

5.1.2 Baselines
We compare our method with five multi-hop rea-
soning models: 1) MINERVA (Das et al., 2018),
the first end-to-end deep reinforcement learning
model for multi-hop reasoning; 2) MultiHop (Lin
et al., 2018), the first RL-based model incorporat-
ing embedding-based models as reward shaping
function and proposing the action drop skill to miti-
gate spurious path problem; 3) MetaKGR (Lv et al.,
2019), which leverages meta-information to im-
prove reasoning performance on few-shot relations;
4) RARL (Hou et al., 2021), which utilizes mined
logic rules to supervise the decision of the agent;
5) PAAR (Zhou et al., 2021), a fresh model com-
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Dataset
UMLS Kinship FB15K-237 WN18RR NELL-995

@1 @10 MRR IMPS @1 @10 MRR IMPS @1 @10 MRR IMPS @1 @10 MRR IMPS @1 @10 MRR IMPS

DisMult 82.1 96.7 86.8 N/A 48.7 90.4 61.4 N/A 32.4 60.0 41.7 N/A 43.1 52.4 46.2 N/A 55.2 78.3 64.1 N/A
ComplEX 89.0 99.2 93.4 N/A 81.8 98.1 88.4 N/A 32.8 61.6 42.5 N/A 41.8 48.0 43.7 N/A 64.3 86.0 72.6 N/A
ConvE 93.2 99.4 95.7 N/A 79.7 98.1 87.1 N/A 34.1 62.2 43.5 N/A 40.3 54.0 44.9 N/A 67.8 88.6 76.1 N/A

MINERVA 78.5 97.4 85.9 68.6 59.6 95.8 73.0 49.7 26.0 40.7 31.3 57.5 43.1 52.9 46.0 71.9 51.6 79.6 62.3 81.4
MultiHop 90.5 99.5 94.2 65.3 78.8 98.6 86.8 48.4 32.7 56.4 40.7 50.6 41.2 52.0 45.1 73.9 65.0 82.9 71.9 79.1
MetaKGR 88.6 99.3 93.1 65.1 78.2 98.4 86.3 47.6 28.3 52.7 36.9 53.5 36.5 50.9 42.0 69.6 59.4 78.7 66.7 80.3
RARL 76.2 95.6 84.2 64.5 61.3 94.4 73.3 49.6 28.4 49.7 35.8 54.4 40.0 51.7 44.6 74.0 62.8 82.2 70.4 81.4
PAAR 89.5 99.5 94 67.2 72.7 96.3 81.4 47.5 32.1 55.0 40.0 55.3 40.6 53.8 44.9 73.8 65.2 83.9 72.2 77.3
Ours+min 89.1 98.9 93.2 87.3 76.2 98.1 85.0 74.4 30.9 56.1 39.5 64.1 42.1 50.9 45.1 81.9 65.7 85.3 73.5 81.5
Ours+sum 90.5 99.5 94.6 71.3 79.1 98.1 86.9 53.7 32.5 57.0 40.9 58.4 43.4 52.6 46.8 81.4 63.8 84.1 71.4 78.1

AMIE+ 53.4 72.6 61.0 92.1 58.2 75.7 66.0 76.7 13.8 23.5 16.8 68.8 34.8 36.6 35.6 99.2 51.2 51.5 51.4 95.1

Table 2: QA Performance comparison on five datasets. The top part is embedding-based models and the bottom is
RL-based models. Ours+min and Ours+sum denote our methods with Rmin and Rsum, respectively. All metrics
are multiplied by 100. IMPS is not applicable to embedding-based models because they lack reasoning paths.

bining hierarchical information in reward shaping
for providing sufficient paths. Three embedding-
based models are also picked up as comparisons:
DistMult (Yang et al., 2015), ComplEX (Trouillon
et al., 2016), and ConvE (Dettmers et al., 2018).

5.1.3 Hyperparameters

The entity embedding, relation embedding, and
history embedding all have a size of 200. A three-
layer LSTM is used for multi-hop reasoning mod-
els. The training batch size is 128. The maximum
path length is 2 for UMLS and Kinship, and 3 for
others. Following MultiHop (Lin et al., 2018), we
use action drop in the training process, and the drop
rate ranges from 0.1 to 0.9. For Rsum, there are
two hyperparameters, decreasing interval D and
decreasing rate η. We perform grid search on them
and set D = 10 for UMLS and WN18RR, D = 5
for others, η = 0.75 for FB15K-237, and η = 0.9
for the other four datasets.

For MultiHop, MetaKGR, PAAR, and our
method, we universally choose ConvE to imple-
ment the soft reward function. An entropy regular-
ization term is added to the objective function in all
RL-based models and the weight coefficient varies
in (0, 0.1), as MINERVA does (Das et al., 2018).

We use Xavier initialization (Glorot and Bengio,
2010) to initialize parameters of embedding layers,
and Adam optimizer (Kingma and Ba, 2015) to
realize optimization where the learning rate is in
(0.001, 0.003).

We perform beam search to get the final predic-
tion and the beam size is 128 for all cases. A single
training on NVIDIA Tesla V100 GPU costs 20
hours on FB15K-237, and at most 10 hours among
all other datasets.

5.1.4 Evaluation Protocol
We choose Hits@k and Mean Reciprocal Rank
(MRR) to evaluate the accuracy of predictions, and
use Mean Path Spuriousness (MPS) to estimate
the spuriousness of paths. For consistency, we use
1-MPS in measurement, denoted by IMPS.

For each test case < es, r, eo >, the model takes
as input the subject es and relation r, and returns a
list of candidate answers Eo = [e1, e2, · · · , eN ]
in decreasing order of confidence, as well as
a list of corresponding reasoning paths Ho =
[H1, H2, · · · , HN ], whereN is the beam size, and
the termination of each path H i is ei for i ∈ [1, N ].

We use reo to indicate the rank of eo in Eo and
Ho to represent the path along which the agent
reaches eo. Hits@k is the percentage of test cases
where reo ≤ k, MRR is the mean of 1/reo , and
MPS is the mean of PS(Ho).

5.2 Validation of the IMPS
To verify whether the IMPS metric (i.e. 1-MPS)
could correctly evaluate the reasonableness of rea-
soning paths, we conduct experiments on rule-
based reasoning models. Rule-based models
mostly lack generalization but have highly credible
results, since they use logical rules, either designed
by experts or mined from datasets, to extract rea-
soning paths and infer new facts. That is to say, if
the IMPS metric is a proper measurement of path
reasonableness, rule-based models will perform
beyond other models on it.

We choose AMIE+ (Galárraga et al., 2015) to
mine rules and then infer answers following them.
The results (the final bar of Table 2) meet our ex-
pectations. AMIE+ gets the highest IMPS scores
on four datasets, exceeding all RL-based models.
Compared to other RL-based ones, the gap between
our model and AMIE+ is evidently smaller.
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5.3 Model Comparison

Table 2 shows evaluation performance on query
answering. Results of embedding-based models
are quoted from MultiHop (Lin et al., 2018), and
IMPS is not applicable to them because they have
no reasoning paths. Ours+min and Ours+sum de-
note two variants of our approach with Rmin and
Rsum, respectively. For all approaches, We record
performances on the validation set of each epoch
during training and choose the best one (in terms
of MRR) as the testing model.

In terms of Hits@k and MRR, embedding-based
models generally perform better, while multi-hop
approaches are comparable with embedding-based
methods in some metrics, such as Hits@10 in
UMLS, Hits@1 in Kinship and MRR in WN18RR.
Among multi-hop reasoning models, Ours+sum
outperforms previous ones in most cases.

As for IMPS metric, our methods largely surpass
other RL-based models, Specifically, 27 percent
in UMLS, 50 percent in Kinship, 10 percent in
WN18RR, and 11 percent in FB15K-237. An ex-
ception is NELL-995, where most models behave
nearly the same. It possibly results from the spar-
sity of NELL-995. Since the average node degree
is lower than 2, most reasoning paths in NELL-995
may have few valid substitutions.

An interesting fact is that performance varies be-
tween our two methods. Generally, Ours+min gets
higher IMPS scores, and Ours+sum behaves better
on Hits@k and MRR. We believe that when the rea-
soning model’s performance is not good enough,
prediction accuracy and reasonableness keep con-
sistent, but if higher performance is required, there
is a trade-off between them. In most cases, reason-
able paths lead to accurate answers, but in some
special cases, the answer can not be accessed in a
regular way. For example, the statement "if A is
metal, A is solid" is reasonable for almost all metal-
lic elements, but when A is mercury, following that
will lead to a wrong answer. The little fallback in
MRR of Ours+min may be caused by these special
cases, and the more special cases in a dataset, the
larger the gap is. Ours+sum formulation provides
a manual way to make a balance, so we can get
better MRR at the expense of IMPS.

5.4 Learning Process

We are interested in the effect on the dynamic learn-
ing process of three different rewards Rs, Rmin,
and Rsum. So we draw curves of Hits@1, MRR,

#decreasing rate 

Figure 4: MRR (left) and IMPS (right) performance
change w.r.t. decreasing interval D and rate η of Rsum.
Each line represents metric variety over various de-
creasing rates for a certain decreasing interval.

and IMPS metrics on validation set during training.
As shown in Figure 3, from left to right, the three
columns are MultiHop, Ours+min, and Ours+sum,
using Rs, Rmin, and Rsum respectively.

In the early stage of training, the MultiHop’s
IMPS score falls as MRR and Hits@1 rise, which
is much more significant on UMLS and Kinship.
This phenomenon evidently shows the misleading
of spurious paths. As a comparison, our two ap-
proaches have a higher IMPS score at the beginning
and maintain or elevate it as MRR increases. As
illustrated, the promotion of reasoning paths rea-
sonableness by incorporating PS-aware reward (i.e.
Rmin and Rsum) is mainly reflected in the early
training process.

Compared to Ours+min, the IMPS score of
Ours+sum first lifts and then slowly decreases
while the MRR score keeps rising. It justifies that
prediction accuracy and path reasonableness are in
consistency when performance is not sufficiently
good, but need a trade-off if better performance is
required. However, this balance is not obvious in
WN18RR, where Ours+sum gets great scores in
both MRR and IMPS with proper hyperparameters.
We suppose one reason is that the proportion of
special cases which can not be accessed by regular
logical path is small.

MultiHop and Ours+min show a similar train-
ing convergence rate, while Ours+sum converges
slower. The successive change of the coefficient α
in Rsum makes the agent learn different goals and
therefore hard to converge.

5.5 Hyperparameter Study

We study the hyperparameters relevant to Rsum,
specifically the decreasing interval D and decreas-
ing rate η. Figure 4 shows MRR and IMPS results
on UMLS with 20 permutations of D and η. We
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#reasoning hops 

Figure 5: IMPS comparison among MINERVA (blue),
MultiHop (gray), and our method (red), over different
reasoning hops. IMPS metric is multiplied by 100.

figure out that when decreasing interval is small,
MRR varies little with decreasing rate, and vice
versa. It is quite fair because smaller D or η im-
plies more priority to the accuracy-guided part of
Rsum during training, which prompts better per-
formance on MRR. However, settings of middle
D and η achieve the best score, and we believe it
reveals that proper tendency to the spuriousness-
guided part ofRsum in the early training stage has a
positive influence over accuracy. In terms of IMPS,
it declines on the whole as η becomes smaller, and
the larger D is, the slower it falls. Generally, in
small and dense datasets, small decreasing inter-
vals and rates would lead the agent to get higher
scores on MRR, while larger intervals and rates
make the agent prefer more reasonable paths. A
balance where the agent gets high scores on both
MRR and IMPS exists with refined parameters.

5.6 Analysis on Reasoning Hops
We also want to throw some light on the influence
of the maximum length of reasoning paths (i.e.,
reasoning hops). We permute reasoning hops and
test performance in IMPS of three models, MIN-
ERVA, MultiHop, and ours. We pick WN18RR
as the benchmark because UMLS and Kinship are
so dense that all entities can be reached within 2
hops starting anywhere. As Figure 5 shows, the
reasonableness of paths picked by three models
drops as reasoning hops increase, without excep-
tion. Compared to baseline models, our method has
a better resistance against the tendency. Thereby,
the gap between our method and baselines widens
as reasoning hops go up.

6 Conclusion

In this paper, we discuss the spurious path prob-
lem which widely exists in the RL-based multi-hop

reasoning models. To address this problem, we
define a new metric named Path Spuriousness (PS)
to quantitatively evaluate to what extent a path is
spurious and consequently propose a new reward
that considers both the prediction accuracy and
path reasonableness. Under the guidance of the
reward, the agent can be aware of not only whether
its prediction is right, but also the spuriousness of
its reasoning path, and thus avoid spurious paths.

Experiments show our method largely outper-
forms baseline models in terms of PS, and keep
comparable to the state-of-the-art performance of
prediction accuracy. Detailed analysis indicates
that a trade-off between pursuing better prediction
accuracy and keeping high path reasonableness ex-
ists. Its significance varies among different datasets.
We provide a method to make a balance by manu-
ally pruning hyperparameters.

Analysis on reasoning hops shows potential in
long-hop reasoning tasks. In future work, we would
like to further investigate it.

Limitations

Our job has two major limitations regarding the
definition of PS and the computational cost.

The definition of PS (i.e., Equation 10 and Equa-
tion 11) is constructed on the assumption that all
facts in a KG are correct. However, some datasets
contain mistaken facts in practice. It could make
the PS a biased estimation. Moreover, experiments
on NELL-995 indicate that the sparsity of KG may
limit the effectiveness of our PS-aware reward.
How to avoid spurious paths in sparse KGs and
even KGs that contain mistakes remains a hard
topic for future work.

The other deficiency is that we use a breadth-
first tree search to find path substitutions, whose
worst-case time cost increases exponentially as the
search depth grows. This shortcoming has been
reflected by the experiment time cost on FB15K-
237 and limits our method’s capability to scale to
much larger datasets. We expect pruning skills or
end-to-end deep models would be able to tackle
this problem and leave it for future work.
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A Experiment Details

A.1 Case Study
We select four test cases in the UMLS dataset and
look deep into the difference between reasoning
paths extracted by MultiHop and our method. Ta-
ble 3 shows the comparisons. In each case, we only
concentrate on the accurate predictions as well as
their paths. The reasonableness of paths is indi-
cated by Rr(Ho), and the rank of correct answer
eo is represented as reo .

For most cases, the reasoning path of our method
to obtain the correct answer is much more reason-
able than MultiHop.

(1) Case 1. In case 1, to get the relation loca-
tion_of, our reasoning path through relations adja-
cent_to and location_of is much more convinced
than MultiHop’s path through relations issue_in
and method_of−1. That’s because Adjacent rela-
tion is clearly more relevant than method relation
since we want to know where is the location.

(2) Case 2. Case 2 shows insight into the dif-
ferent preferences between the two approaches in
respect of picking paths. The two paths differ in
the last relation, where MultiHop reaches the fi-
nal answer via issue_in−1 while our method picks
issue_in.

Picking issue_in is reasonable in this case.
(a) It is a special coincidence that occupa-

tion_or_discipline and biomedical_occupation_or
_discipline are reciprocal causation in UMLS
dataset. However, in terms of reasonableness,
the fact “A causes C ” cannot be derived by “A
causes B” and “C causes B” (i.e., issue_in(A, B) ∧
issue_in−1(B, C)).

(b) Guided by the embedding-based model,
MultiHop only captures the semantic information
between occupation_or_discipline and biomedi-
cal_occupation_or_discipline and obtains a correct
answer incidentally. In contrast, our method not
only concentrates on the semantic correctness of
certain entities but also takes path spuriousness into
account. The extremely lower path reasonableness
of issue_in−1 prohibits our method from picking it
to construct the reasoning path.

(3) Case 3. Though the path returned by Multi-
Hop gets a score 0.49 ofRr, it is still lower than the
path given by our method, considering that adjacent
things possibly belong to different concepts, like
lung and air. Relation part_of is definitely more
proper to derive an conceptual_part_ofrelation.

(4) Case 4. In case 4, we get a reasonable path
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Case 1:<body_location_or_region, location_of, therapeutic_or_preventive_procedure> reo Rr(Ho)

MultiHop body_location_or_region issue_in−−−−−→ occupation_or_discipline
method_of−−−−−−−→

−1
therapeutic_or_preventive_procedure 3 0.22

Ours+min body_location_or_region
adjacent_to−−−−−−−→ body_part_organ_or_organ_component

location_of−−−−−−−→ therapeutic_or_preventive_procedure 0 0.71

Case 2:<physical_object, issue_in, biomedical_occupation_or_discipline> reo Rr(Ho)

MultiHop physical_object issue_in−−−−−→ occupation_or_discipline issue_in−−−−−→
−1

biomedical_occupation_or_discipline 0 0.01

Ours+min physical_object issue_in−−−−−→ occupation_or_discipline issue_in−−−−−→ biomedical_occupation_or_discipline 0 0.99

Case 3:<cell_component, conceptual_part_of, body_system> reo Rr(Ho)

MultiHop cell_component
adjacent_to−−−−−−−→ body_space_or_junction

conceptual_part_of−−−−−−−−−−−−→ body_system 3 0.49

Ours+min cell_component
part_of−−−−−→ cell

conceptual_part_of−−−−−−−−−−−−→ body_system 0 0.99

Case 4:<indicator_reagent_or_diagnostic_aid, interacts_with, chemical> reo Rr(Ho)

MultiHop indicator_reagent_or_diagnostic_aid causes−−−−→ experimental_model_of_disease inv_causes−−−−−−−→ chemical 0 0.05

Ours+min indicator_reagent_or_diagnostic_aid interacts_with−−−−−−−−−→ hazardous_or_poisonous_substance interacts_with−−−−−−−−−→ chemical 5 0.99

Table 3: Comparison of selected paths between MultiHop and our method on 4 cases. The reasonableness of paths
is indicated by Rr(Ho) and reo represents the rank of correct answer eo in candidate list Eo.

Dataset HCmin PCAmin #Rules

UMLS 0.50 0.40 160
Kinship 0.60 0.40 74
WN18RR 0.10 0.50 34
NELL-995 0.10 0.30 8
FB15K-237 0.30 0.24 1074

Table 4: AMIE+ setting details. HCmin and PCAmin

indicate the minimum head coverage and PCA confi-
dence respectively, which is threshold for mining rules.

but with a lower rank. That is, the agent does
not always pick a path with a high Rr. It may be
limited to the representation power of the policy
network. We leave this problem for future research.

A.2 AMIE+ Settings
To validate our proposed metric IMPS, we choose
AMIE+ to mine rules and then infer answers fol-
lowing them. There are two hyperparameters of
AMIE+: the head coverage and PCA confidence
(denoted by HCmin and PCAmin respectively).
The higher the two parameters are, the smaller the
number of qualified mined rules. In Table 4 we
show the settings of HCmin and PCAmin, and the
number of qualified rules we mined using AMIE+.
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