
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3026–3040
May 2-6, 2023 ©2023 Association for Computational Linguistics

Incorporating Task-Specific Concept Knowledge into Script Learning

Chenkai Sun, Tie Xu, ChengXiang Zhai, Heng ji
University of Illinois at Urbana-Champaign, IL, USA

Alibaba, Hangzhou, China
{chenkai5, czhai, hengji}@illinois.edu

xutie.xt@alibaba-inc.com

Abstract

In this paper, we present TETRIS, a new task
of Goal-Oriented Script Completion. Unlike
previous work, it considers a more realistic and
general setting, where the input includes not
only the goal but also additional user context,
including preferences and history. To address
this problem, we propose a novel approach,
which uses two techniques to improve perfor-
mance: (1) concept prompting, and (2) script-
oriented contrastive learning that addresses step
repetition and hallucination problems. On our
WikiHow-based dataset, we find that both meth-
ods improve performance.

1 Introduction

A Goal-Oriented Script refers to a sequence of
events that describe some stereotypical activities
for achieving a specified goal (Feigenbaum et al.,
1981; Lyu et al., 2021). It is important to study
how to automatically construct instructional scripts
because it enables many high-impact applications
such as robot action planning (Conti et al., 2020;
Mohanan and Salgoankar, 2018), causal reason-
ing (Guo et al., 2020), and task-oriented dialogue
generation (Chen et al., 2017). While previous
work has shown that neural models are capable
of constructing the entire script given a goal (Lyu
et al., 2021; Sakaguchi et al., 2021), their proposed
tasks are highly restrictive and based on overly sim-
plified assumptions about the application because it
ignored both the usage context (e.g., what is a pre-
ferred way of solving the problem, and what steps
have been executed already) and the variable per-
sonal preferences that a user may have (e.g., a goal
might need be achieved in different ways). Take
“Make Eggless Cupcakes” as an example, the user
might want to make it with different equipment
(e.g., by using a rice cooker instead of an oven)
or styles (e.g., to have some banana flavor), or the

https://github.com/chenkaisun/Tetris

Goal: Wash Linen Shirts

Added detergent

I �lled a sink with cool water

Wash the shirt by swishing it around in the sudsy water.

Soak the shirt in the tub for 10-20 minutes.

Rinse the shirt with water until all the suds are gone.

Washing by Hand

Hang up your shirt and let it air-dry for the best results.

History

Preference

Figure 1: An example illustrating the task. The input
consists of a specified goal (e.g., wash line shirts), an op-
tional preference (e.g., washing by hand), and a history
of steps. The model is asked to generate the remaining
steps to achieve the goal.

user has already completed some steps but would
like to seek information on what to proceed next; a
machine learning model trained on goal-to-script
tasks as done in the existing work cannot adaptively
provide solutions under such situations.

We address the limitations of the previous task
formulation and propose TETRIS, a more general
task of goal-oriented script learning that allows
flexible usage scenarios, and therefore it accommo-
dates more realistic needs in downstream applica-
tions. More specifically, as shown in Figure 1, the
task considers both user preference and history as
input in addition to the goal. From a probabilistic
perspective, instead of modeling the problem with
p(Script|G), we model it as

p(Completion of Script|H,P,G)
=

∏

i

p(Scripti|Script<i,P,G)

where i indicates each step index in the script, P
denotes user preference, H indicates History, and
G abbreviates Goal.

To solve the new problem, we can use a com-

3026

https://github.com/chenkaisun/Tetris

monly used baseline method, i.e., using a seq2seq
model (Lewis et al., 2019; Raffel et al., 2019), but
a direct application of such a model would not
be optimal because the model’s understanding of
the context of the goal is inevitably shallow and
thus unlikely be able to fully exploit the extra con-
text information we have in the problem setup. To
address this limitation, we propose to enrich the
representation with additional task-specific con-
cepts so as to enable the model to understand the
context more deeply and leverage relevant knowl-
edge about those concepts encoded in the training
data the model has been exposed to. To obtain
task-specific knowledge needed for solving script
learning, we introduce TASK CONCEPT DICTIO-
NARY (TCD), a novel Key-Value Knowledge Base
(KB) that consists of task phrases as the key and
the associated concepts involved in the solution
process for each task as the value. The concepts
contain not only items needed for the task but also
concerned attributes (e.g., “thickness”) and inter-
mediate products during the process (e.g., “dough”
appears during Making Rice Noodles). In our work,
as a proof of concept, we automatically construct
the knowledge base from WikiHow1, one of the
most used and actively updated How-to websites.

Once we construct a TCD, it can be potentially
used for solving the problem of script completion
in many ways. In this paper, we focus on exploring
how to leverage it to acquire task-specific relevant
concepts for enriching the task representation used
in a baseline model for script completion. Specif-
ically, inspired by how humans use mind-map to
construct solutions, we introduce a novel "concept
prompting" framework that first acquires relevant
concepts from TCD and then connects them with
the input as a prompt for the language generator
to complete the script (Figure 2). We further in-
troduce two complementary ways of concept ac-
quisition. The first method retrieves concepts of
close neighbors from TCD. The second method in-
volves a generative model pretrained on TCD that
is capable of generating associated concepts for a
given goal, which can generalize beyond similar
cases. Discovering that the model often repeats
historical steps and hallucinates actions and enti-
ties, we also developed a script-oriented contrastive
learning approach to address these issues by con-
structing corresponding negative samples.

We perform experiments on a dataset con-

1www.wikihow.com

structed from WikiHow and find that our method
gives a consistent improvement on both automatic
and human evaluations in comparison to the base-
line, demonstrating the benefit of TCD for script
completion. Moreover, we find that concept acqui-
sition quality has a large impact on this task.

To summarize, we make the following contribu-
tions:

• We introduce TETRIS, the task of Goal-
Oriented Script Completion that asks a model
to complete the task based on a goal, and op-
tionally preference and history. The task poses
interesting new challenges and enables new
applications.

• We propose TASK CONCEPT DICTIONARY,
a novel task-specific knowledge base that
encodes knowledge about the associations
between goals and concepts and a method
composed of (1) extraction and integration
of the relevant concepts from TCD, and (2)
script learning-oriented contrastive learning
objective to enhance the correctness of model-
produced scripts.

• We experiment with the proposed methods on
the WikiHow dataset and show that our meth-
ods outperform the state-of-the-art baseline
models consistently, demonstrating the need
for task-specific knowledge and the benefit of
TCD for improving the performance of script
completion.

2 Task Formulation

We define a Goal-Oriented Script to include three
types of elements, Goal, Preference, and Step. A
Goal represents the task desired to be completed.
An optional Preference defines in what ways the
goal should be completed. A Step is one procedu-
ral event toward solving the task, conditioned on
a preference. In this work, given a goal G, a pref-
erence P , and a history of steps H already done,
we aim to generate the remaining steps that accom-
plish the goal in natural language. An example is
shown in Figure 1. For convenience, we use Gp to
denote the goal conditioned on P , and I to denote
the entire input (consisting of G, P , and H).

3 Task Concept Dictionary

As in virtually all NLP applications, a main tech-
nical challenge in solving the problem of script

3027

www.wikihow.com

Concept Generator

Method 2:
Generation

{water, minutes, suds, ...}

How to Wash Linen Shirts

Solution Constructor

How to Wash Linen Shirts

Retriever

{minutes, detergent, water, ...}

How to Wash Linen Shirts

(Washing Your Shirts by Hand)

Add 1 teaspoon (4.9 mL) of mild detegent

<acquired concepts from either method>

Soak the shirt

Rinse the shirt with clean water until all the suds are gone.

Hang up your shirt and let it air-dry for the best results.

Wash the shirt by swishing it around in the sudsy water.

As Training Data

Method 1:
Retrieval &

Aggregation

How to
Wash
Clothes

How to Use
Washing
Machine

{tub, minutes, detergent, water, suds...}

 {power, washing cycles,
 detergent, water, minutes...}

Intersection

As Database

(Washing Your Shirts by Hand)

Add 1 teaspoon (4.9 mL) of mild detegent

TCD

TYPE 1: CONCEPT REPLACEMENT

TYPE 3: PSEUDO TARGET

TYPE 2: PARAPHRASED INSERTION

-shirt->socks

-Insert "Add some detegent"
into the target

-Replace target with "Lift stubborn hair
from fabric. Roll the hook-and-loop fastener... "

Negative Sampling

Figure 2: Our goal-oriented script completion framework. The top part shows the methods for automatically
acquiring relevant concepts from the Task Concept Dictionary and negative sampling strategies. The bottom part
shows the solution constructor, which uses the acquired concepts as an informative prompt to complete the script.

completion is how to acquire the relevant knowl-
edge and leverage the knowledge to generate the
remaining steps in a script. In our case, a critical
question is: What kind of knowledge representation
is likely helpful for solving the script completion
problem? In our work, we make a hypothesis that
creating task-concept association would help the
model generalize better on script completion and
propose Task Concept Dictionary (TCD). In TCD,
each task key G from the collection of the keys DG

(e.g., “How to Modify the Navigation System of
an Acura”) is mapped to a set of relevant concepts
DG

C during its solution process. Each c ∈ DG
C can

be associated with DG in four types of roles of a
concept in that task: as preparation material needed
for achieving the task (like ingredients for recipe),
as attributes/aspects that need to be considered, as
intermediate entities generated during the process,
and others. In this work, we made a primal con-
struction of TCD (TCD.v0) as a proof of concept,
that is, the association types are not considered
between G and DG

C .

The design of TCD is motivated by the observa-
tion that humans can often form solutions through
brainstorming and mind-mapping with knowledge
about the tasks and relevant concepts involved in
the solution process. Analogously, TCD is meant
to encode such task-specific knowledge about as-
sociations between goals and concepts so as to
assist downstream script learning applications. As
will be shown in our experiment results, TCD is

indeed beneficial for improving performance for
script completion by supplying useful relevant con-
cepts to a baseline model.

In general, TCD can be constructed by using
any instructional content on the Web. In our ex-
periments, to construct TCD.v0, we first collect all
articles from WikiHow. We chose to use WikiHow
as the seed corpus for its richness in user preference
data. Each article consists of a goal, a list of pref-
erences, and solution steps under each preference.
Let Gpj

i be the goal from an article i conditioned
on the j-th preference, we then proceed to augment

the set DG with a key Gpj
i , and augment DGpj

i
C with

noun phrases (by using Spacy2 tagger for extrac-
tion) in the solution steps under preference j. We
create an association between goals and concepts
if they co-occur in the same article. We show the
statistics of TCD in Appendix A.1.

4 Method

In this section, we discuss our design of the method
for TETRIS. The framework contains two parts,
concept acquisition from TCD and solution con-
struction. The first part uses TCD as an aid to ac-
quire concepts relevant to the current input. Specif-
ically, we introduce two different methods (Fig-
ure 2), one based on retrieval of closely related
tasks and aggregation on the associated concepts,
while the other involves training a concept gen-
erator on TCD. As shown in Section 5, both of

2https://spacy.io/

3028

https://spacy.io/

them have a positive impact on performance, yet
they also introduce different benefits. The concepts
fetched from TCD using either method form a con-
cept prompt, which is combined with the input I
(consisting of goal, preference, and history) as an
augmented input I∗. I∗ is then fed into an encoder-
decoder language model MEncDec to complete the
script. Below we describe the two methods for the
generation of relevant concepts using TCD.

4.1 Concept Retrieval & Aggregation

The intuition of the retrieval method comes from
observing how human refers to their past knowl-
edge or the web for similar instructional sources
(even though they might not address the need ex-
actly) to achieve the current goal. For instance, if
someone has experience in baking cheesecake and
chocolate cake, it would be a breeze for them to
make a strawberry cake by adapting the knowledge
from their past experience. Building on the intu-
ition, we propose to use retrieval as an interpretable
way to retrieve similar tasks from the set of keys
DG in TCD and use their associated concepts to
aid the downstream script completion task.
Retrieval. First we encode Gp (i.e., the preference-
conditioned goal in I) into a dense vector eg with
an encoder model. We similarly encode DG into
{ej}|D

G|
j=1 . A cosine similarity score sgj is com-

puted between eg and each ej. The top-K re-
lated tasks NK are then retrieved based on the
scores. We further obtain a set of concepts Ci
for i-th task NK . In our experiment, we use
SBERT (Reimers and Gurevych, 2019) (pretrained
for semantic search) as the encoder. We use
FAISS (Johnson et al., 2019), an efficient similarity
search library, to perform top-k search.
Aggregation. The retrieved neighborhood of con-
cepts, however, may sometimes introduce contex-
tual noise (e.g., the grape and chocolate-related
concepts are not useful in strawberry cake bak-
ing). To tackle this issue, we additionally perform
operations on the retrieved concepts using the set
intersection. The concept set for an input I is com-
puted as Cs =

⋂i=K
i=1 Ci. We finally map the set Cs

into a list C, neglecting ordering information.

4.2 Concept Generation

While the retrieval method allows an explicit con-
cept acquisition process, it is limited by the width
of TCD. For example, if one would like to complete
a task from a domain that is not covered well by

F&E F&B C&V
Train Samples 10600 2824 2214
Dev Samples 3449 873 741
Test Samples 3567 930 714
Articles 2201 802 481
Avg # Tokens/Step 8.66 7.25 9.31
Avg # Steps/Article 10.42 8.66 10.41

Table 1: Statistics summarizing the WikiHow-based
dataset for TETRIS, where F&E indicates Food and
Entertainment, F&B indicates Finance and Business,
and C&V indicates Cars and Other Vehicles

TCD, the retrieved neighbors can introduce more
noise than help. To address this limitation of the
retrieval method and enhance generalization, we
propose to use language modeling as an alternative
way of acquiring concepts. Specifically, inspired by
the work (Bosselut et al., 2019), in which a concept
is generated given an edge type, we propose to di-
rectly generate a set of concepts relevant to a given
task and preference. We directly train the model
on TCD, where the model is asked to generate the
set Dt

C given each key t. In the inference stage, by
feeding Gp into the trained concept generator, we
can then obtain a list of concepts C.

4.3 Solution Constructor

In this step we aim to encode both of the informa-
tion from C (using either of the above methods) and
I to generate the remaining steps that accomplish
the goal specified in I . The TCD has enabled us to
enrich the representation by augmenting I with C
and such an augmented representation can then be
fed into any baseline script completion method to
enable the baseline method to have (indirect) access
to the knowledge encoded in TCD, thus improving
accuracy of script completion.
Input Formation. An encoder-decoder model
Mg is used for generation. In our experiment,
we choose BART (Lewis et al., 2019) as the base
model for its impressive performance on other NLP
tasks (Liu et al., 2021; Lewis et al., 2020). Clearly,
the framework accommodates any other models as
well. Given the list of concepts C generated from
either Section 4.1 or 4.2, we form the input If to
the encoder as “<s>Goal (Preference) ### C ###
</s>Step1</s>Step2...Step|H|</s>”, where <s> is
a special token to represent the start of the sentence
and </s> is for separation.
Model Generation. The input is fed through the
standard tokenization, embedding mapping, and
transformer to produce encoder hidden states. In

3029

Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 86.76 -4.65 8.45 4.40 2.21 1.13 14.67 4.6
GPT2 86.75 -4.59 17.89 8.29 3.44 1.52 15.61 3.1

CRA-3 87.18 -4.41 22.59 10.95 4.86 2.10 18.07 4.9
CRA-1 86.74 -4.50 21.87 10.82 4.85 2.21 17.55 5.3

CG 86.86 -4.45 24.34 11.84 5.26 2.43 17.88 5.1
CG+SOCL 86.77 -4.47 26.18 13.15 6.18 3.07 18.11 5.7

CRA-2 87.21 -4.37 23.95 11.36 5.06 2.35 18.65 4.9
CRA-2+SOCL 87.19 -4.38 24.25 11.58 5.25 2.42 18.36 5.0

Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 87.87 -4.37 16.61 8.31 4.67 2.92 18.92 5.6
GPT2 88.06 -4.30 17.13 7.27 3.58 2.10 18.61 3.6

CRA-3 88.37 -4.28 14.73 6.95 3.77 2.36 19.17 4.6
CRA-1 87.66 -4.37 17.68 8.57 4.63 2.87 18.95 5.4

CG 88.35 -4.17 22.87 10.97 6.09 3.94 20.88 5.4
CG+SOCL 88.44 -4.18 23.42 11.12 6.19 4.02 21.20 5.7

CRA-2 88.28 -4.26 18.78 9.00 4.94 3.18 19.73 5.2
CRA-2+SOCL 88.42 -4.20 20.48 10.04 5.80 3.96 20.89 6.3

Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 87.95 -3.88 28.39 14.88 7.76 4.30 21.99 7.3
GPT2 87.88 -3.94 22.73 11.06 5.43 2.91 19.95 5.7

CRA-3 88.05 -3.89 26.43 14.18 7.62 4.32 21.39 7.4
CRA-1 87.94 -3.85 29.09 15.07 7.76 4.18 22.05 7.4

CG 87.84 -3.90 29.69 15.70 8.27 4.60 21.96 7.4
CG+SOCL 87.92 -3.87 27.97 14.66 7.81 4.42 21.93 7.6

CRA-2 88.06 -3.85 28.48 14.71 7.64 4.17 21.89 7.3
CRA-2+SOCL 88.08 -3.85 29.40 15.54 8.21 4.58 22.41 7.5

Table 2: Automatic metrics for evaluating language generation performance on the test set of Vehicles (top), Finance
(middle), and Food (bottom). Our main models CRA-2 and CG outperform the baseline consistently, demonstrating
the effectiveness of our mechanism. We also include the performance of CRA-1 and CRA-3 to show that the
performance varies as the number of neighbors changes. Moreover, we show that our contrastive learning objective
(SOCL) almost always helps the model to have better performance.

the decoder end, the decoder hidden states (from
the previous token) additionally attend to encoder
hidden states to produce the next token. The model
computes generation probability by taking the dot
product between the decoder output and the tokens
embeddings from the vocabulary.

Lastly, we use negative log-likelihood loss dur-
ing training for each sample

LG = −
|S|∑

i=1

logP

(
si|s<i, T

)
(1)

where S denotes the tokens for the remaining
steps.

4.4 Script-Oriented Contrastive Learning
To further improve the accuracy of the generated
scripts, we design a contrastive learning framework
that addresses deficiencies discovered in the model
outputs from 4.1 and 4.2.
Negative Sampling In contrastive learning(Hu
et al., 2022), hard negative samples are constructed

to guide the model to better distinguish between
the incorrect samples and the desired outcome. To
construct such negatives, we gain insights from the
model output, from which we found that the model
elicits two typical types of erroneous behavior: (1)
repetition of steps from the history and (2) halluci-
nation of non-relevant actions/concepts for a given
task (e.g., sago appeared in the process of making
kimchi). Based on the observation, we propose
the following strategies: (1) CONCEPT REPLACE-
MENT, where we randomly replace the concepts in
the positive sample with concepts from other tasks
in TCD under the same category (e.g., Food cate-
gory in WikiHow), (2) PARAPHRASED INSERTION,
where we paraphrase history steps and insert them
into target steps, and (3) PSEUDO TARGETS, where
we construct pseudo target by sampling steps from
the same category and glue them into a sequence.

Contrastive Loss In computing the contrastive
loss, we generate negative targets from the strategy
above for each positive script target (composition

3030

discussed in the Appendix). To allow the model
to distinguish between correct and incorrect script
completions, we use the model’s hidden states to
compute a score to compute the correctness score
for each sample, which is then used to compute the
triplet loss (Schroff et al., 2015). More specifically,
for each training sample

LCL =
∑

k

max
(
0, ϕ+ c−k − c+

)
,

c+ = σ
(
AvgPool

(
W cH

+ + bc
))

c−k = σ
(
AvgPool

(
W cH

−
k + bc

))

Where H+ and H−
k indicate the decoder hid-

den states for the positive and k-th negative sample,
σ is the sigmoid function, AvgPool is the average
pooling function, W c and bc are learnable parame-
ters.

4.5 Training Objective
We jointly optimize the model on cross-entropy
loss from generation and triplet loss from con-
trastive learning

L = LG + βLCL

where β is hyper-parameter.

5 Experiments

5.1 Dataset
We collect data from Food & Entertaining (abbrevi-
ated as Food), Finance & Business (abbreviated as
Finance), and Cars & other Vehicles (abbreviated
as Vehicles) categories of WikiHow, which have
varying data scales and therefore allow compari-
son of models’ generalization ability. Each article
from WikiHow contains a goal, (optionally) sev-
eral preferences for completing the goal, and steps
under each direction. The details of the dataset are
shown in table 1. More processing details are in
Appendix A.1.

5.2 Implementation and Training Detail
Our model is implemented using Pytorch (Paszke
et al., 2019) and Huggingface Transformers (Wolf
et al., 2020) with BART-base as the base generator.
The reproducibility and hyperparameter details can
be found in Appendix A.2.

5.3 Compared Methods
We compare our framework and methods with
the state-of-the-art text generation baselines

BART (Lewis et al., 2019) and GPT2 (Radford
et al., 2019), which don’t use any of our proposed
methods. The solution constructor in our frame-
work also uses BART. We use CRA-k to denote
top-k neighbors in 4.1 and set k to be 1,2, or 3 in
our experiment. We use CG to denote the concept
generator in 4.2. Since TCD.v0 is also based on
WikiHow as source data, we make some modifica-
tions to our methods in the experiment so that we
can test the scenarios where the new unseen task
cannot be exactly found in the knowledge base.
For concept generation, we exclude the evaluation
set related articles in the dataset from its training
data. For CRA-k, when we retrieve relevant tasks
from TCD for a given goal, we remove its own key
from TCD. SOCL indicates that script-oriented
contrastive learning is used during the training.

5.4 Automatic Evaluation

Evaluation Metrics We use both deep learning
and n-gram-based evaluation strategies. The met-
rics include BERTScore (Zhang et al., 2019),
BARTScore (Yuan et al., 2021), BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
and ROUGE (Lin, 2004). Note that BARTScore
computes the log-likelihood of producing the ref-
erence text given the generated text using a BART
model pretrained on ParaBank23. BERTScore com-
putes an embedding matching-based score.
Results The test set results are shown in Table 2.
We can see that the performance of our method
variants (both CRA and CG) is consistently better
than the baselines, empirically demonstrating the
effectiveness of both concept acquisition methods
and that the task-concept representation of the task-
specific knowledge is helpful for downstream script
learning. Moreover, while CG outperforms CRA-2
on all metrics in Finance, it is less clearly observed
in the others, showing that the level of effectiveness
also depends on the domain. The fact that CRA-2
is better than CRA-1 most of the time shows that
the set operation in Section 4.1 does improve the
retrieval quality for certain domains. Meanwhile,
CRA-3 consistently performs worse than CRA-2,
showing that setting k = 3 may have removed too
much useful information. With contrastive learn-
ing, the model almost always gains enhancement
in performance, showing the effectiveness of our
sampling strategies; an exception is shown in the
Food category for CG, where it shows positive im-

3https://github.com/neulab/BARTScore

3031

https://github.com/neulab/BARTScore

Name Correctness ↑ Fluency ↑ Average Rank ↓ Best ↑ Worst ↓

BART 1.72 2.57 3.57 4.13 72.73
CG 2.32 3.06 2.65 9.09 13.22
CRA-2 2.52 3.15 2.34 14.88 9.92

Gold-Concepts 3.40 3.55 1.44 71.90 4.13

Table 3: Human evaluation results for the WikiHow dataset on all three categories combined. Scripts completion
outputs (from automatic analysis) from each model are presented to human judges, who are asked to rate on
Correctness (i.e., at what level does the generated solve the problem) and Fluency of the output. We also report the
average rank and percentage of the time that each model output is chosen as best or worst, after asking each judge to
rank outputs from different methods for each input

pact only on half of the metrics, and this might
be caused by that the CG itself is effective enough
and contrastive learning introduces more noise than
help. We also show in Appendix that adding SOCL
alone is already effective. Lastly, we observe that
the Vehicle and Finance categories contain much
less training data than Food, yet the performance
improvement is more notable, demonstrating the
potential of the methods in low-resource settings.

5.5 Human Evaluation

Evaluation Metrics & Process As mentioned in
(Zhang, 2022), automatic metrics do not correlate
well with human judgments on script learning tasks
due to the diversity of potential solutions. As a com-
plement to automatic metrics, we also recruited five
volunteers (who are not authors) and conducted
the human evaluation. The volunteers were Mas-
ter/Ph.D. students with enough background knowl-
edge to rate output. We gave each candidate a quiz
composed of 20 random samples from the dataset
as filtering to see if the annotator can give scores
close to the authors’. We made sure that each anno-
tator understands the assigned data samples during
evaluation. In our evaluation process, we compared
the output generated by BART, CRA-2, and CG
with SOCL, and Gold-Concepts (a variant where
concepts come groundtruth in TCD). We presented
the input and the corresponding generated outputs
from each method to human judges and asked them
to rate the Correctness and Fluency of the output,
both on a scale from 0 to 4. Correctness (or use-
fulness) was defined as the level of confidence that
the generated steps successfully complete the spec-
ified goal and preference. We additionally asked
the judges to rank the outputs according to their
overall preference and their rating on Correctness
& Fluency; after this procedure, we reported the
average rank and the percentage of the time that
each model output is chosen as the best or worst.

Goal How to Store Peaches

Preference Keeping Peaches in the Fridge

History
Rinse the peaches to clean off any
dirt or debris. Dry the peaches with
clean paper towels or a clean hand towel.

BART <eos>

CG

[peach, paper bag, store peach,
container, term storage]
Store peaches in the fridge for up to
3 months.

CRA-2
[peach, freezer, container, half]
Store the peaches in an airtight container
in the freezer for up to 3 months.

Reference

Place whole, uncut peaches in the fridge
on their own or in a plastic bag. ...
Store sliced peaches in an airtight
container for 1-2 days.

Table 4: Example input and output from the Food cat-
egory. The noun phrases contained in square brackets
in CG and CRA-2 indicate the acquired concepts from
TCD. <eos> indicates an empty completion (i.e., the
history is believed to contain the complete script). With
fridge storage-related concepts, our models correctly
produce the storing step.

Results. 121 samples are randomly selected from
automatic analysis for human evaluation, where
40 come from the Vehicle category, 40 come from
Finance, and 41 from Food. We present the hu-
man evaluation results in Table 3. The results align
with automatic metrics roughly in general. The
Gold-Concept variant is usually the best since it
has access to ground-truth noun phrases from the
reference. CRA-2 often generates more helpful
solutions for users. The outputs from BART are
worse than others most of the time, confirming
the belief that using acquired task knowledge as
prompts can help the model to generate better solu-
tions on average. The Fluency level for all methods
is rated to be of acceptable quality most of the time,
likely due to the strong generalization capability of
the pretrained language model.

3032

Figure 3: The plot shows that the automatic perfor-
mance increases as the amount of ground-truth concepts
increases, showing that deriving the right task-specific
concepts can make the model generate better scripts.

5.6 Impact of Retrieval Quality
One question to be asked is how impactful it is to
derive a concept prompt close to the groundtruth
(i.e., concepts from TCD by using the current goal
as the search key). To answer the question, we ran-
domly draw concepts from the groundtruth at dif-
ferent thresholds and use each of them as a prompt
to train a baseline model. From our result shown
in Figure 3, we can see that the performance mono-
tonically increases as the number of concepts cov-
ering the ground-truth concepts increases, showing
the consistent benefit of using the concepts in the
right context; this also demonstrates the promising
direction of our methods and the significance of de-
veloping a concept deriver better at understanding
task context.

5.7 Qualitative Analysis
We present an example of generated outputs by
different methods in Table 4. Additional exam-
ples are available in Appendix A.3. We compare
BART, CG, and CRA-2. From the generated out-
put, we can see that BART ends the script imme-
diately, missing the step of storing, likely due to
the lack of access to knowledge about storage. On
the other hand, with the acquisition from TCD,
our methods can reach more contextual knowledge
for the current task. Specifically, both methods
are able to access storage-related concepts such as
term storage, container, and freezer. As a result,
the outputs match with the reference more closely.
While the alignment with the reference isn’t perfect
(e.g., peaches are additionally placed in a bag in
the reference), to most human judges, the script
completion clearly achieves the goal already; this

further demonstrates the difficulty of evaluating
script completion.

6 Related Work

Script Learning: Scripts (Schank and Abelson,
2013; Feigenbaum et al., 1981; Yang et al., 2021;
Zhang et al., 2020b,a) refers to the knowledge of
stereotypical event sequences which human is con-
stantly experiencing and repeating every day. One
branch of works in script learning focuses on distill-
ing narrative scripts from news or stories (Cham-
bers and Jurafsky, 2008; Jans et al., 2012; Lee and
Goldwasser, 2019), where the scripts are not goal-
oriented. One of the most recent tasks in narrative
script modeling is Multiple-Choice Narrative Cloze
Test (Granroth-Wilding and Clark, 2016), where
an event is removed from the chain and the model
is asked to predict which event from the choices
fills the blank. The other line of work, which is
more closely related to our work, centers around
procedural scripts, where a sequence of events hap-
pened often to achieve a goal. Recent work has
introduced the task of constructing the entire script
given a goal (Lyu et al., 2021) or choosing 1 out
of 4 candidates’ steps that most likely help achieve
a goal (Zhang et al., 2020c). In this work, we pro-
pose a more general script learning setup that con-
siders additionally the user preference and history,
improving the generalization of models in script
learning.

Our method is related to Retrieval-augmented
text generation (Li et al., 2022; Zhang et al., 2022;
Wu et al., 2021), a paradigm that aims to com-
bine deep learning models with retrieval methods
for text generation and has gained significant at-
tention in recent years. For example in (Rubin
et al., 2022), the author retrieves similar training
examples as prompt to the current input. In our
work, we are the first to introduce a framework that
retrieves concepts from the concept dictionary as
prompts for script learning. Apart from acquiring
concepts, we also introduce a way to cancel contex-
tual noise from neighbors by set intersections for
better prompt quality. Furthermore, our method is
related to contrastive learning (Wang et al., 2022;
Hu et al., 2022; An et al., 2022), a line of self-
supervised learning methods that improve repre-
sentation learning by compacting positive samples
while contrasting them with negative samples (Cao
and Wang, 2021). Previous methods used negative
sampling approaches such as replacing the words

3033

with synonyms and shuffling target sentences. In
our work, we introduced a new script-oriented con-
trastive learning objective to address script-specific
issues and enhance the quality of generated scripts.

7 Conclusion

In this work, we propose TETRIS, the new task of
Goal-Oriented Script Completion, which allows a
model to produce the remaining steps given a user-
specified goal, preference, and history of steps. We
also present TASK CONCEPT DICTIONARY (TCD),
a knowledge base representing task and concept
association, to enable knowledge-based methods
for the task. We introduce different methods to ac-
quire concepts as prompts for the downstream text
generator. We also introduce a contrastive learning
strategy for script learning. The methods present
consistently better performance on both automatic
and human evaluation, clearly demonstrating the
benefit of TCD for improving the performance of
script completion. The qualitative analysis further
shows that the task-specific knowledge can indeed
benefit goal-oriented script learning tasks by feed-
ing relevant knowledge about task completion. Fu-
ture work could explore how to improve the acqui-
sition quality from TCD and applications of TCD
on task-oriented dialog systems.

Limitations

While TCD paired with concept acquisition meth-
ods can aid downstream script learning tasks, it
doesn’t consider the inclusion of actions of each
step event, which can potentially benefit the script
learning tasks. A possible direction is to extend the
design of TCD and the concept prompt to include
the semantics of actions and their orders.

Meanwhile, the concepts extracted by our
method do not overlap with the ground-truth con-
cepts (i.e., the set of concepts that appear in the
reference) very well (e.g., <20% in Jaccard Index).
The gap in performance between our methods and
the Gold-Concept variant shows that improving the
concept derivation quality might be the next step.

Furthermore, because our dataset is constructed
from the English version of WikiHow, the benefits
of our methods shown in the experiments are only
empirically proved to work for English. We plan
to further test our methods in multiple languages.

Ethics Statement

The study aims to extend deep learning-based mod-
els on the ability to generalize scripts under differ-
ent user contexts. The script learning models in-
troduced in the work can potentially be helpful for
task-oriented dialog systems to suggest solutions
to users. The dataset on which we base our exper-
iments is constructed automatically from the pub-
licly available website WikiHow. Since the website
is primarily crowdsourced, the models trained on
the data might incur subjective bias. During the
human evaluation phase of the experiment, all in-
volved human judges participated voluntarily and
received decent payment.

Acknowledgements

We would like to thank the anonymous reviewers
for their constructive suggestions on our work and
thank the raters for their help on manual evaluation.
This research is based upon work supported in part
by U.S. DARPA KAIROS Program No. FA8750-
19-2-1004. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the of ficial
policies, either expressed or implied, of DARPA,
or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein.

References
Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong,

Xipeng Qiu, and Xuanjing Huang. 2022. Cont: Con-
trastive neural text generation.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction.

Shuyang Cao and Lu Wang. 2021. Cliff: Contrastive
learning for improving faithfulness and factuality in
abstractive summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 6633–6649, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

3034

http://arxiv.org/abs/2205.14690
http://arxiv.org/abs/2205.14690
http://arxiv.org/abs/1906.05317
http://arxiv.org/abs/1906.05317
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789–797, Columbus,
Ohio. Association for Computational Linguistics.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. Acm Sigkdd Ex-
plorations Newsletter, 19(2):25–35.

Christopher J Conti, Aparna S Varde, and Weitian
Wang. 2020. Robot action planning by common-
sense knowledge in human-robot collaborative tasks.
In 2020 IEEE International IOT, Electronics and
Mechatronics Conference (IEMTRONICS), pages 1–
7. IEEE.

Edward A Feigenbaum, Avron Barr, and Paul R Cohen.
1981. The handbook of artificial intelligence.

Mark Granroth-Wilding and Stephen Clark. 2016. What
happens next? event prediction using a compositional
neural network model. Proceedings of the AAAI
Conference on Artificial Intelligence, 30(1).

Ruocheng Guo, Lu Cheng, Jundong Li, P Richard Hahn,
and Huan Liu. 2020. A survey of learning causality
with data: Problems and methods. ACM Computing
Surveys (CSUR), 53(4):1–37.

Zhe Hu, Hou Pong Chan, Jiachen Liu, Xinyan Xiao,
Hua Wu, and Lifu Huang. 2022. Planet: Dynamic
content planning in autoregressive transformers for
long-form text generation. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2288–
2305, Dublin, Ireland. Association for Computational
Linguistics.

Bram Jans, Steven Bethard, Ivan Vulic, and Marie-
Francine Moens. 2012. Skip n-grams and ranking
functions for predicting script events. In Proceedings
of the 13th Conference of the European Chapter of
the Association for Computational Linguistics (EACL
2012), pages 336–344. ACL; East Stroudsburg, PA.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

I-Ta Lee and Dan Goldwasser. 2019. Multi-relational
script learning for discourse relations. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4214–4226, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and
Lemao Liu. 2022. A survey on retrieval-augmented
text generation.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019. On the variance of the adaptive learning rate
and beyond. arXiv preprint arXiv:1908.03265.

Ye Liu, Yao Wan, Lifang He, Hao Peng, and S Yu Philip.
2021. Kg-bart: Knowledge graph-augmented bart for
generative commonsense reasoning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 6418–6425.

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.
Goal-oriented script construction. arXiv preprint
arXiv:2107.13189.

MG Mohanan and Ambuja Salgoankar. 2018. A survey
of robotic motion planning in dynamic environments.
Robotics and Autonomous Systems, 100:171–185.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning.

3035

https://aclanthology.org/P08-1090
https://aclanthology.org/P08-1090
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.18653/v1/2022.acl-long.163
https://doi.org/10.18653/v1/2022.acl-long.163
https://doi.org/10.18653/v1/2022.acl-long.163
https://lirias.kuleuven.be/1572145
https://lirias.kuleuven.be/1572145
https://doi.org/10.18653/v1/P19-1413
https://doi.org/10.18653/v1/P19-1413
http://arxiv.org/abs/2202.01110
http://arxiv.org/abs/2202.01110
http://arxiv.org/abs/2112.08633
http://arxiv.org/abs/2112.08633

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proscript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138–2149, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Roger C Schank and Robert P Abelson. 2013. Scripts,
plans, goals, and understanding: An inquiry into
human knowledge structures. Psychology Press.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815–823.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022. Simkgc: Simple contrastive knowledge
graph completion with pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4281–4294, Dublin, Ireland.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zeqiu Wu, Michel Galley, Chris Brockett, Yizhe Zhang,
Xiang Gao, Chris Quirk, Rik Koncel-Kedziorski,
Jianfeng Gao, Hannaneh Hajishirzi, Mari Osten-
dorf, and Bill Dolan. 2021. A controllable model
of grounded response generation. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(16):14085–14093.

Yue Yang, Artemis Panagopoulou, Qing Lyu, Li Zhang,
Mark Yatskar, and Chris Callison-Burch. 2021. Vi-
sual goal-step inference using wikihow. arXiv
preprint arXiv:2104.05845.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems, 34:27263–27277.

Li Zhang. 2022. Reasoning about procedures with natu-
ral language processing: A tutorial.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020a.
Intent detection with wikihow. arXiv preprint
arXiv:2009.05781.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020b.
Reasoning about goals, steps, and temporal ordering
with wikihow. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630–4639.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020c.
Reasoning about goals, steps, and temporal ordering
with wikihow. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630–4639.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris
Brockett, Michel Galley, Jianfeng Gao, and Bill
Dolan. 2022. Retgen: A joint framework for retrieval
and grounded text generation modeling.

A Appendix

A.1 Dataset & TCD

The dataset statistics are shown in Table 1. The raw
corpus comes from the 07/20/21 snapshot of Wiki-
How. We filter out unordered scripts by using both
the classification results from (Lyu et al., 2021) and
the WikiHow section type. We perform a 6:2:2 split
on the articles to create a train, development, and
test set. We create a history H in data samples for
TETRIS by randomly splitting a sequence of steps
under each preference into two halves. For TCD,
we have 206621 keys in total and 10.37 concepts
per key on average.

A.2 Implementation Details

We implement the models using the 4.8.2 version
of Huggingface Transformer library5(Wolf et al.,
2020). We use the Oct 1, 2021 commit version
of the BART-base model (139M parameters) from
Huggingface6. The contrastive learning variants
has 140M parameters. For SBERT in Section 4.1,
we use the all-mpnet-base-v2 checkpoint from sen-
tence transformer library 7. We use Huggingface
datasets8 for automatic evaluation metrics. The
BART Score comes from the author’s repository9

and we used the one trained on ParaBank2. The hy-
perparameters for the experiment (non-contrastive

5https://github.com/huggingface/transformers
6https://huggingface.co/facebook/bart-base/

commit/ea0107eec489da9597e9eefd095eb691fcc7b4f9
7https://www.sbert.net/
8https://github.com/huggingface/datasets
9https://github.com/neulab/BARTScore

3036

https://doi.org/10.18653/v1/2021.findings-emnlp.184
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://ojs.aaai.org/index.php/AAAI/article/view/17658
https://ojs.aaai.org/index.php/AAAI/article/view/17658
http://arxiv.org/abs/2205.07455
http://arxiv.org/abs/2205.07455
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://doi.org/10.18653/v1/2020.emnlp-main.374
http://arxiv.org/abs/2105.06597
http://arxiv.org/abs/2105.06597
https://github.com/huggingface/transformers
https://huggingface.co/facebook/bart-base/commit/ea0107eec489da9597e9eefd095eb691fcc7b4f9
https://huggingface.co/facebook/bart-base/commit/ea0107eec489da9597e9eefd095eb691fcc7b4f9
https://www.sbert.net/
https://github.com/huggingface/datasets
https://github.com/neulab/BARTScore

Method BERTScore BARTScore BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE 2

BART 87.87 -4.37 16.61 8.31 4.67 2.92 18.92 5.6
BART+SOCL 87.725 -4.349 19.478 9.441 5.216 3.236 19.198 5.73

Table 5: On the Finance dataset, our result shows that SOCL alone already brings consistent benefits to the
performance.

Table 6: Hyperparameters for non-contrastive learn-
ing (CL) models (some are introduced and changed for
CL experiment). The ones below the mid-line are gen-
eration related. Batch size is changed for contrastive
learning.

Name Value

seed 42
learning rate 3e-5
batch size 16
weight decay 5e-4
RAdam epsilon 1e-8
RAdam betas (0.9, 0.999)
scheduler linear
warmup ratio (for scheduler) 0.06
number of epochs 25
metric for early stop SacreBLEU4

patience (for early stop) 15
length penalty 1.2
max length 511
min length 2
beam search size 5

learning) are shown in Table 6 (applied to all mod-
els) and the ones not listed in the table are set to
be default values from the transformer library. We
use RAdam (Liu et al., 2019) as the optimizer. We
perform hyperparameter search on batch size from
{16, 32}, pretrained language model learning rate
from {2e-5, 3e-5, 4e-5}, downstream learning rate
for contrastive learning from {1e-3, 5e-4, 1e-4, 3e-
5}, negative sample composition from type A “1
sample from each of type 1 2, filling empty case
with type 3” and type BCD “2 samples from the
type combination (2 3/1 2/1 3), filling empty case
with empty string”, and the number of epochs from
{8, 15, 25} ({28, 32} for contrastive learning). For
contrastive learning experiment negative sampling,
we use type A for Vehicles and Food and type B
for Finance. We perform our experiments on 40
GB A100 and 32 GB V100 GPU. For contrastive
learning, we use batch size of 28 for Vehicles, 32
for Food, and 32 and 28 for CRA and CG respec-
tively in Finance. The downstream learning rates

are respectively 1e-3, 1e-3, 5e-4 for CRA-2+SOCL
and 3e-5, 1e-4, 1e-3 for CG+SOCL in the datasets
of Vehicles, Finance, and Food. We use 0.5 for the
margin in the triplet loss function and 0.3 for the β
in the training loss. The experiments can take up
to 10 hours.

A.3 Additional Model Outputs and Analysis

We present examples in Table 7, 8, and 9, in addi-
tion to Section 5.7. From Table 7, we can see that
while BART ends the script immediately after find-
ing an agency, our methods are able to provide de-
tail on the interaction with the agency. This shows
that training with the acquired concepts as prompts
allows the model to gain more task-specific contex-
tual knowledge, which can be potentially shared in
the token embeddings of concepts. In Table 8, the
user preference in the example contains some ambi-
guity (i.e., it could mean making just the dough, or
the complete process of making the pasta). While
BART is missing the further processing on the
dough, CG and CRA-2 are able to not only in-
clude detailed and reasonable steps that process the
dough but also some information on what to do af-
ter the dough is being made, showing the usefulness
of incorporating task knowledge. The reason for
the improvement could be that the prompts of our
method (all including the word dough) allow the
model to be attentive to the processing of dough.
In Table 9, the methods without gold concepts all
believe the script has ended, which is a reasonable
output. Yet they would be low on automatic gen-
eration metrics because of not matching reference
well (which contains steps not necessarily needed
to complete the goal). This shows the difficulty
of automatically evaluating script generation since
there can be many ways to solve a task and can be
different in the amount of detail.

A.4 Discussions

While we show in the experiment that TCD can be
used in the script completion task in our work to
achieve better performance, it can also naturally
be applied to other domains such as task-oriented

3037

Goal How to Report Pet Store Neglect
Preference Reporting to Local Law Enforcement

History
Document the situation as extensively as possible
Check your state’s animal welfare law
Find out which agency is responsible for enforcing animal laws

BART Finished

CG

[dog]
Report the situation to local law enforcement
Follow up with any follow-up questions
Finished

CRA-2

[police, report, animal control, authority]
Contact local law enforcement agencies if necessary
Follow up with any follow-up questions
Finished

Gold-Concept

[situation, state, animal welfare law, agency, animal law,
documentation, record, report, law enforcement]
Gather documentation and record of the report to law enforcement
Follow up with your report if necessary
Finished

Reference

Gather your documentation and other records
File your report with law enforcement
Follow up on your report
Finished

Table 7: Example output among different methods (Finance and Business)

dialog, event causal identification, and causal infer-
ence. Furthermore, since the two different concept
acquisition methods in the paper contain different
advantages, it would be an interesting task to devise
a method that has both benefits of being explicit in
the acquisition process and being parametrized.

One natural question to ask is why we repre-
sent the KB as concept-based instead of directly
using paragraphs to record each goal. While How-
to websites contain human-curated solutions, the
way of annotation introduces canonicalization prob-
lems since different people might have 1. different
orders of completing the same task and 2. differ-
ent levels of detail in the expression; on the other
hand, using concepts representation helps alleviate
the problem since the core concepts (e.g., “but-
ter”, “temperature”, “time” in “Baking a Cake”)
almost always participates regardless of how they
are organized in each person’s memory. Further-
more, TCD introduces an interesting function of
automated self-enrichment. In hierarchically re-
lated goals, such as “how to bathe a dog” and “how
to bathe a cat”, we can use WordNet Hierarchy
and Concepts Intersection to automatically derive
new nodes. We leave the experimentation to future

work.
Another important problem to be tackled is that,

while human evaluation is more reliable than au-
tomatic evaluation, it is also much more costly.
As mentioned in (Zhang, 2022), automatic metrics
do not align with that of humans very well. One
promising direction is to create an automatic metric
that does not evaluate script generation methods
only based on matching with the reference (since
many equivalently valid references can exist).

3038

Goal How to Make Macaroni Pasta
Preference Making Pasta Dough at Home

History

Mix the dry ingredients
Create a hole or well in the dry ingredients
Add three large eggs
Whisk the eggs with a fork
Place the dough on a clean counter

BART
Bake the pasta
Serve the pasta while it is still warm
Finished

CG

[flour, salt, bowl, butter, milk, egg, flour mixture, dough, surface]
Roll the dough out into a rectangle
Cut the dough into 1/4 inch (0.64 cm) circles
Transfer the dough to a plate
Repeat the process with the rest of the dough
Cook the pasta
Place the pasta on a plate to warm up
Serve
Finished

CRA-2

[dough]
Roll the dough into a ball
Repeat the process with the rest of the dough
Transfer the dough to a baking sheet
Bake the pasta
Serve or refrigerate
Finished

Gold-Concept

[ingredient, hole, egg, fork, dough, counter, surface, bowl]
Place the dough on a floured surface
Transfer the dough to a serving bowl
Serve
Finished

Reference

Fold the dough
Look for a smooth surface
Place the dough in a clean bowl to rest
Finished

Table 8: Example output among different methods (Food and Entertaining category).

3039

Goal How to Track a Flight in Progress
Preference Via Online Websites

History

Gather the information about the flight:
Find a flight-tracking website to find out the information about your flight
Enter your flight information
Watch for plugins that you could need to add to your

browsers functionality to run the website
Watch a map come up on your screen showing the

route the plane has taken, as well as the current location
of the plane and the expected route ahead

BART Finished
CG [flyer, airline, website, flight, status, status update] Finished
CRA-2 [airline, flight, flight number] Finished

Gold-Concept

[information, flight, tracking website, flight information,
plugin, browser functionality, website, map, screen, route,
plane, location, auto, update feature, way, site, ability]
Use the auto-update feature on the way out of the site
Allow the site to continue running while you’re not using it
Check to see if the update feature is working properly

Reference
Figure out if the website you chose has an auto-update feature
Look for ways to zoom in on the plane, if this site allows that ability
Finished

Table 9: Example output among different methods (Cars & Vehicles category)

3040

