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Abstract

Temporal concept drift refers to the problem of
data changing over time. In NLP, that would en-
tail that language (e.g. new expressions, mean-
ing shifts) and factual knowledge (e.g. new con-
cepts, updated facts) evolve over time. Focus-
ing on the latter, we benchmark 11 pretrained
masked language models (MLMs) on a series
of tests designed to evaluate the effect of tempo-
ral concept drift, as it is crucial that widely used
language models remain up-to-date with the
ever-evolving factual updates of the real world.
Specifically, we provide a holistic framework
that (1) dynamically creates temporal test sets
of any time granularity (e.g. month, quarter,
year) of factual data from Wikidata, (2) con-
structs fine-grained splits of tests (e.g. updated,
new, unchanged facts) to ensure comprehensive
analysis, and (3) evaluates MLMs in three dis-
tinct ways (single-token probing, multi-token
generation, MLM scoring). In contrast to prior
work, our framework aims to unveil how robust
an MLM is over time and thus to provide a
signal in case it has become outdated, by lever-
aging multiple views of evaluation.

1 Introduction

In the real world, what people talk about and how
they tend to speak and write changes constantly
over time. In Natural Language Processing (NLP),
this entails a challenging shift of the textual data
distribution that is commonly referred to as tempo-
ral concept drift. Prior work has identified that pre-
trained language models (PLMs) tend to become
outdated soon after new topics and concepts are
emerging (Lazaridou et al., 2021; Dhingra et al.,
2022; Agarwal and Nenkova, 2022; Luu et al.,
2022), limiting their capability to be robust to
newly generated data.

We consider the desiderata of language models’
robustness to temporal drift to be twofold. First,
LMs should be well adapted to the dynamic use

∗ Work done during an internship at AWS AI Labs.

Figure 1: Querying pretrained MLMs on their knowl-
edge about the Prime Minister of the United Kingdom.

of language, from the linguistic perspective. Lan-
guage changes over time, pronunciations evolve,
new words and expressions are borrowed or in-
vented, the meaning of old words drifts, and mor-
phology develops or decays (Blank, 1999; Traugott
and Dasher, 2001; Kulkarni et al., 2015). Second,
LMs should be aware of the ever-changing reality
of the world, from a factual perspective. Models’
factual knowledge should be up-to-date with new
facts and concepts (e.g. Covid-19) to be of use
continuously. In this work, we focus on the latter;
the temporal robustness of LMs to facts that change
over time.

In an ideal scenario, we would like to know ex-
actly when the factual knowledge of a model is
“expired” so that we could adapt it to the new (or
updated) set of facts. In reality, this is a challenging
task. A large body of work has focused on the part
of (continually) adapting an “outdated” model to
the new data distribution (Guu et al., 2020; Yo-
gatama et al., 2021; Sun et al., 2020; Biesialska
et al., 2020; Jang et al., 2022b; Jin et al., 2022;
Chakrabarty et al., 2022). This line of work is par-
allel to ours, as we focus on the crucial step before
adaptation, the evaluation of the model on tempo-
ral concept drift: How can we know if a language
model is outdated or not?

Let us consider the case where we desire a lan-
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guage model to be up-to-date with the Prime Min-
ister of the United Kingdom (Figure 1).1 A plausi-
ble way to evaluate this is to use the LAMA-probe
paradigm (Petroni et al., 2019) and query the LM
as a knowledge base (KB). This would mean that
we could form the query as “The surname of the
Prime Minister of the United Kingdom is
<mask>.”, give it as an input to a (masked) LM
and inspect the output token distribution for the
<mask> token. Figure 1 shows the top prediction
for a series of ROBERTA models.2 We first ob-
serve that the most widely used ROBERTA base
and large models are both outdated in terms of
factual knowledge, as they predict the names of
PMs that served from 2010 until 2019. Next, while
the last three models (2020-2022) answer correctly,
the 2019 model answers the (correct) first name of
the PM (Boris), not the surname (Johnson) which
is asked for.

This is a handy illustration of the many chal-
lenges in evaluating MLMs for temporal robust-
ness in the LMs-as-KBs framework. First, this
2019 model would be considered to have made a
mistake (as the prediction is different than the gold
label and the metric is accuracy), even though the
factual knowledge was correct (the name of the
PM of the UK). Second, notice that we designed
the query to ask for the surname (instead of the
name of the PM), as this results in a single mask.
The LAMA-probe and related frameworks do not
handle multi-token queries for MLMs (e.g., Boris
Johnson). Finally, we mark with a ? the answers
of the first two ROBERTA models, because even
though their answers are out-of-date for our cur-
rent evaluation (October 2022), their answers could
have been correct in an evaluation setting in the
time of the training data (2019). This illustrates
the obscurity of the temporal window in which the
model is expected to be correct, if the model is not
trained with a temporally-aware design (Lazaridou
et al., 2021; Dhingra et al., 2022; Loureiro et al.,
2022; Jang et al., 2022a).

In this work, we aim to address such limita-
tions and provide a holistic framework for dy-
namic benchmarking of masked language models
on temporal concept drift, with a focus on facts that
change over time. Following the propositions of

1The time of writing of this paper is September 2022.
2Except for the ROBERTA base and large models, we

also show the predictions of models trained with Twitter data
until 2019, 2020, 2021, and 2022, respectively (Loureiro
et al., 2022).

Kiela et al. (2021) and Søgaard et al. (2021) that ad-
vocate for a focus on dynamic (i.e., test sets should
not become saturated) and targeted (i.e., use of mul-
tiple, independent test sets for realistic performance
estimates) benchmarking respectively, and building
on prior work (Jiang et al., 2020b; Dhingra et al.,
2022; Jang et al., 2022a), we create a large open-
source test set that can be dynamically updated
over time, containing temporal fine-grained subsets
of examples that can be used to query masked lan-
guage models and evaluate their factual knowledge
over time.

Contributions (1) We release DYNAMICTEM-
PLAMA, an improved version of the static TEM-
PLAMA (Dhingra et al., 2022) test set consisting
of Wikidata relations, that is used to evaluate tem-
poral robustness of MLMs. We provide data and
code to dynamically keep DYNAMICTEMPLAMA
up-to-date over time.3 (2) We propose a novel eval-
uation framework to first create temporal splits of
test sets of any granularity (month, quarter, year)
and then to further create fine-grained splits of facts
that are unchanged, updated, new or deleted, aim-
ing to improve comprehensiveness (§3.1). (3) We
introduce three distinct evaluation views with mul-
tiple metrics (§3.3) to ensure comprehensive results
and provide analysis of benchmarking a large set
open-source temporal ROBERTA models (§3.2).

2 Related Work

Temporal Concept Drift Evaluation of the ro-
bustness of language models on temporal concept
drift has seen a rising interest in the recent years.
Previous work has focused on methods to continu-
ally adapt models over time (Hombaiah et al., 2021;
Rosin et al., 2022; Lazaridou et al., 2022). Another
area of research is evaluation of temporal robust-
ness which has been explored both in the upstream
LM pretraining task (Jiang et al., 2020b; Lazaridou
et al., 2021; Dhingra et al., 2022; Jang et al., 2022a;
Loureiro et al., 2022) and in downstream tasks such
as sentiment analysis (Lukes and Søgaard, 2018;
Agarwal and Nenkova, 2022), named entity recog-
nition (Rijhwani and Preotiuc-Pietro, 2020; Onoe
et al., 2022), question answering (Mavromatis et al.,
2021; Liška et al., 2022), and rumor detection (Mu
et al., 2023). It has also been studied for model ex-
planations (Zhao et al., 2022) and for text classifi-
cation in legal, biomedical (Chalkidis and Søgaard,

3
https://github.com/amazon-science/temporal-robustness
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2022), and social media (Röttger and Pierrehum-
bert, 2021) domains.

Luu et al. (2022) explore the setting of tempo-
ral misalignment (i.e., training and test data drawn
from different periods of time) for both upstream
and downstream tasks and find that temporal adap-
tation should not be seen as a substitute for finding
temporally aligned labeled data for fine-tuning.

The closest work to ours is TEMPLAMA (Dhin-
gra et al., 2022). However, we differ across four
axes: (i) TEMPLAMA is static, while we pro-
vide code to dynamically download facts in a fine-
grained fashion from any periods of time (not only
yearly), (ii) we evaluate the same models over time
focusing on the evaluation of robustness over time,
we do not explore the best adaptation technique
to address the problem, (iii) we do not fine-tune
the models to adapt them to the domain/format
of the test data, and (iv) we address benchmark-
ing of masked LMs (not auto-regressive) including
more evaluation techniques. Finally, similar to our
motivation, Jang et al. (2022a) recently explored
lifelong adaptation and evaluation of temporal con-
cept drift in LMs and introduced TEMPORALWIKI

for continual adaptation and TWIKI-PROBES for
evaluation. The major difference is that the au-
thors focus on providing corpora to adapt an LM
over time, while in our paper we focus on evaluat-
ing temporal robustness of LMs. DYNAMICTEM-
PLAMA is a holistic evaluation framework, while
“TWIKI-PROBES are not natural sentences; they are
factual phrases synthetically generated from a naive
concatenation of Subject, Relation, and Object”.

Language Models as Knowledge Bases The
cloze-style LM evaluation framework for factual
knowledge, LAMA Petroni et al. (2019), follows
the setting depicted in Figure 1. A knowledge base
relation is transformed into natural language text
with a manually created template and then passed
as an input to an LM. The framework is based on
treating the output distribution for the mask token
as the retrieved answers to the query (AlKhamissi
et al., 2022). The LAMA probe has since been exten-
sively used to evaluate factual knowledge in LMs
(Petroni et al., 2020; Talmor et al., 2020; Kassner
et al., 2021; Sung et al., 2021; Dhingra et al., 2022;
Fierro and Søgaard, 2022), while other works have
been exploring its limitations and ways to improve
it (Kassner and Schütze, 2020; Haviv et al., 2021;
Elazar et al., 2021; Zhong et al., 2021; Qin and
Eisner, 2021). A particular challenge in our exper-

imental setting, is the text compatibility between
the model (i.e., its pre-training data) and the format
of test examples, named as “language mismatch”
by Talmor et al. (2020). Dhingra et al. (2022) opts
to fine-tune the model under evaluation with part of
the test set to adapt it to the format of the task. We
argue that this process suffers from many caveats;
it is inefficient and impractical to fine-tune a model
whose capabilities are under evaluation, it risks
optimization stability and overfitting issues due to
the small training dataset, and enforces extra bi-
ases and errors, especially in the case of temporal
robustness evaluation.

3 Dynamic Benchmarking of Temporal
Concept Drift

In this section we describe in detail the steps to
(re)create DYNAMICTEMPLAMA, our dynami-
cally updated test set with facts from Wikidata
(§3.1). We then present the open-source temporal
ROBERTA models (TIMELMS) (Loureiro et al.,
2022) that we use for benchmarking (§3.2). Fi-
nally, we introduce the evaluation framework un-
der which we investigate how well the TimeLMs
perform in terms of temporal robustness (§3.3).

The research question that we try to address with
our work is: How can we measure temporal drift
robustness of PLMs with an evaluation framework
that is: unsupervised (no labeled downstream data),
efficient (quality test set of facts—no need to run in-
ference on a large corpus to compute perplexity for
every token), dynamic (test set easily generated per
request—can be used to dynamically evaluate new
concepts over time), general (option to create test
sets of any time granularity), and comprehensive
(battery of targeted test sets that evaluate different
LM capabilities and multiple views of evaluation).

3.1 DYNAMIC-TEMPLAMA

We base our implementation on the TEM-
PLAMA (Dhingra et al., 2022) code, while we
make several changes in terms of accessibility (i.e.
option to dynamically update the test set), flexi-
bility (i.e. option to adjust the granularity of the
temporal splits) and comprehensiveness (i.e. fine-
grained splits and multiple evaluation views). We
provide a high-level overview of the process to
create DYNAMICTEMPLAMA in Figure 2.

Data Collection We start the process by selecting
a set of relations collected from the Wikidata KB
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WIKIDATA ID RELATION TEMPLATE #FACTS #EXAMPLES POSSIBLE SPLIT(S)

P54 member of sports team <subject> plays for <object>. 3772 50558 DUPDATED

P69 educated at <subject> attended <object>. 232 2420 DUPDATED, DUNCHANGED

P6 head of government <object> is the head of the government of <subject>. 578 7815 DUPDATED

P279 subclass of <subject> is a subclass of <object>. 5 70 DNEW, DUPDATED

Table 1: Examples of relations and their corresponding templates that we include in DYNAMICTEMPLAMA.
#FACTS denote the unique number of facts for each relation, while #EXAMPLES denotes the total number of
example we have collected for each relation in the time range between 2019-Q1 and 2022-Q2. POSSIBLE SPLIT(S)
indicate the type of fine-grained split that each relation would potentially belong to.

(Figure 2a).4 Specifically, we use the 9 relations
used in the TEMPLAMA dataset, followed by 7
more that we also decided to collect. We collect
all relations from Wikidata in the span of 2019−
2022. We then manually craft a cloze style query,
i.e template, for each relation.Table 1 shows a few
examples of relations and templates, along with
dataset statistics.5 We explain the data collection
process in detail in Appendix A.1.

Temporal Splits In this stage, we have a very
large collection of facts for which we have tempo-
ral information (i.e., that the fact is true) in the time
range we investigate (2019 − 2022). In the TEM-
PLAMA dataset, the facts are divided yearly. How-
ever, we would ideally like to benchmark temporal
models of any time granularity. Specifically, since
we benchmark temporal models that are trained
quarterly (§3.2), a yearly split would not be useful
to evaluate temporal concept drift of the four mod-
els trained on each quarter of a year. Consequently,
we divide the large set of collected facts per quar-
ter (Figure 2b), while adding the functionality to
our implementation to split the facts in any time
granularity (monthly, quarterly, yearly).

Fine-grained Splits For a given time range, from
timestep t to t + 1 (e.g. 2019-Q1→2019-Q2), we
further create comprehensive test sets that contain
examples with unchanged, updated, new or deleted
facts, denoted by DUNCHANGED

t+1 ,DUPDATED
t+1 ,DNEW

t+1

and DDELETED
t+1 respectively (Figure 2c). We cre-

ate these splits to be able to measure different ca-
pabilities of the MLM in terms of robustness to
temporal concept drift. The motivation for this
stems from limitations of prior work (Dhingra et al.,
2022) to shed light into what kind of data each
temporal test set contains. For instance, we pose

4All possible relations from Wikidata can be found here
https://www.wikidata.org/wiki/Wikidata:List_of_properties.

5Details on all relations and templates of DYNAMICTEM-
PLAMA can be found in Tables 6 & 7 in the Appendix A.1.

(a) Data collection

(b) Temporal Splits

(c) Fine-grained Splits

Figure 2: The process for creating DYNAMICTEM-
PLAMA. We first collect data from Wikidata (a), we
then divide it to quarterly temporal splits (b) and finally
we create more targeted fine-grained sets (c).

questions like How many facts were updated from
timestep t → t + 1? How many facts remained
unchanged? What was the change? The object or
the subject? Are there new facts in timestep t+ 1
that were not present before? We argue that it is

2884

https://www.wikidata.org/wiki/Wikidata:List_of_properties.


essential to distinguish between these sub-tests, so
that each split can target specific capabilities of
the LM. First, we can use DUNCHANGED

t+1 to evaluate
knowledge preservation (i.e. how well a model
can preserve knowledge over time). Second, we
can use DUPDATED

t+1 ,DNEW
t+1 and DDELETED

t+1 to measure
adaptation (i.e. how well a model adapts to new
information/facts). Finally, we can measure over-
all temporal robustness by evaluating a temporal
model from timestep t on DUPDATED

t+1 and DNEW
t+1 in

timesteps for t ∈ [t+ 1, t+ 2, ...). We believe that
this framework is particularly useful for insightful
evaluation of methods that aim to adapt language
models over time (Guu et al., 2020; Yogatama et al.,
2021; Sun et al., 2020; Biesialska et al., 2020; Jang
et al., 2022b; Jin et al., 2022; Chakrabarty et al.,
2022).

3.2 Temporal Models

In contrast with prior work that uses private, in-
house models for temporal robustness evaluation
that are not accessible by the community (Lazari-
dou et al., 2021; Dhingra et al., 2022), we instead
benchmark a series of open-source temporal mod-
els. Despite our aim for transparency, energy effi-
ciency (Strubell et al., 2019) and reproducibility,
we also believe that the dynamic nature of the task
at hand requires accessibility to past, present and
future models, to ensure that the findings of eval-
uation studies in temporal concept drift are mean-
ingful, trustworthy and serve their purpose in eval-
uating models in a ever-evolving world. Under this
assumption, we believe that studies on temporal
robustness should ideally build on each other, so
that we can have a holistic view as to how these
models truly evolve over time.

To this end, we use the Diachronic Lan-
guage Models (TIMELMS) (Loureiro et al., 2022)
that are publicly available in the HuggingFace
hub (Wolf et al., 2019).6 TIMELMS are
ROBERTAmodels (Liu et al., 2019) trained quar-
terly on Twitter data. All models are initialised
from the original roberta-base model checkpoint
and are later trained using data from the previ-
ous quarters and the new temporal data from the
new time period. For instance, the first model
(2019-Q4) was trained with data sampled from
Twitter until December 2019, while the second
model (2020-Q1) was trained on the concatena-
tion of all the data used to train 2019-Q4 and

6
https://huggingface.co/cardiffnlp

temporally-aligned data sampled from the first quar-
ter of 2020. There are 11 TIMELMS in total, from
2019-Q4 until 2022-Q2.

Finally, we would like to draw attention to two
specific points. First, all TIMELMS are trained us-
ing the same ROBERTA (base) tokenizer and thus
have the same vocabulary. This is crucial when
evaluating models in a Cloze-style format, like the
LAMA-probe, in order to evaluate fair comparison
among the models. Second, Loureiro et al. (2022)
aim to continue training and releasing TIMELMS

every quarter, which is a very important and promis-
ing initiative to help with the dynamic evaluation
of LMs in temporal concept drift in the future.

3.3 Temporal Concept Drift Evaluation

Single-token probing Our first evaluation type
is single-token probing, which was introduced in
the seminal LAMA-probe work of Petroni et al.
(2019). The idea is simple and follows the fill-
in-the-blank format. Specifically, we convert each
relation using its template to natural language text
(see Figure 2(a)) replacing the <object> with the
mask token (i.e., <mask> for ROBERTA). Then,
as shown in Figure 1, we give the prompt as an
input to the MLM and obtain a probability distri-
bution over the vocabulary for the <mask> token.
We use the metrics from Petroni et al. (2019), that
are Accuracy, Mean Reciprocal Rank (MRR) and
Precision at k (P@k).7 Note that a crucial limita-
tion of this approach is that it considers only facts
with single-token objects. This results in trimming
down the test sets by 95%, while limiting the ac-
tual value of the test (as most facts and concepts
contain multiple words).

Multi-token generation We aim to address this
limitation and include multi-token objects to our
evaluation framework. It is important to note that
we are benchmarking masked language models in-
stead of autoregressive left-to-right language mod-
els like Dhingra et al. (2022). This is crucial be-
cause the latter, decoder-based family of models,
can be used off-the-shelf to generate multiple to-
kens. In contrast, MLMs are trained with 15% of
their inputs masked and optimized to predict only
the masked tokens. We therefore use the formula-
tion introduced by Wang and Cho (2019), that is
essentially a decoding-based strategy for MLMs
based on Gibbs sampling. Specifically, we consider

7P@k= 1, if the gold label is in the top-k predictions of the
model, therefore P@1 corresponds to Accuracy.
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the setting that we do not know a priori the correct
number of masks for each label. Instead, we enu-
merate from a single mask up to M masks, i.e.,
m = 1, ...,M . Following Jiang et al. (2020a), we
choose M = 5, as all our facts are in the English
language. When m > 1, we add m consecutive
masks to the input and we pass the input to the
model m times, when each time we sequentially
sample each mask from left to right. At each iter-
ation we replace the mask with the corresponding
token prediction of the previous iteration. This way,
we can extend the LAMA probe to include multi-
token labels in our test set. The setting is entirely
different than the single-token approach, as here
we have m predictions from the model with an in-
creasing number of tokens, while the correct label
can consist of any number of tokens in the range
of 1, ...,M . Another difference here is the evalua-
tion metrics. Because we converted the task to text
generation, we borrow generation metrics such as
ROUGE (Lin, 2004), while also including standard
metrics like F1-macro. Finally, we also include as
a metric BERT-score (Zhang* et al., 2020) as an
additional informative metric from the perspective
of contextual semantics. In effect, we evaluate fac-
tual knowledge over time of MLMs, where facts
include multiple correct answers and each answer
consists of multiple tokens. We consider a predic-
tion correct if the model correctly predicts any of
the acceptable answers.

MLM scoring Finally, as a third lens of evalua-
tion we use the MLM scoring framework of Salazar
et al. (2020). Contrary to the previous approaches,
MLM scoring aims to measure the probability of
the correct answer (i.e., of the masks), instead of
generating the most probable answer. More specif-
ically, we evaluate MLMs out of the box via their
pseudo-log-likelihood scores (PLLs), which are
computed by masking tokens one by one. PLLs
have been widely used to measure the equivalence
of perplexity (of autoregressive language models)
for MLMs in unlabelled data (Lazaridou et al.,
2021). Still, computing PLLs for large corpora
is a very costly process in terms of time and re-
sources (Loureiro et al., 2022). Instead, we propose
to combine the LAMA and MLM scoring frame-
works to create an efficient and targeted evaluation
framework for temporal factual knowledge.

3.4 Dataset Analysis

We consider different subsets of the DYNAM-
ICTEMPLAMA test sets for the three different
evaluation settings (§3.3). For the multi-token and
MLM scoring settings, we keep the full dataset,
for single-token we first tokenize the labels and
keep only the test examples that have at least one
label with a single token. This results in a very ag-
gressive filtering of the dataset. Specifically, each
quarterly temporal split consists of 8500 test exam-
ples on average for the multi-token setting, but for
the single-token this results in only 450 examples,
marking a loss of 95% of the data.8 Additionally,
the distribution of the fine-grained splits is of great
interest, as it will shape the interpretation of the
results and the general challenges of the evaluation
framework. DUPDATED and DUNCHANGED (i.e., the
splits of the most interest) constitute around 96%
and 0.3%, respectively, of the total examples for
the single-token evaluation, and 95% and 1.8% for
the multi-token. This is arguably a very skewed
distribution, showing the importance of our work in
diving the temporal splits into further fine-grained
splits. This is essential, because we would have dif-
ferent expectations for a model trained on timestep
t while tested on data from both t and t − 1; for
unchanged facts it would be desirable to keep equal
performance in both sets (i.e., knowledge preserva-
tion §4.2), while for updated facts we would like
to see improved performance in timestep t (i.e.,
adaptation §4.3).

4 Results

4.1 Temporal robustness

We first evaluate temporal robustness of the 11
TIMELMS, defined as the overall performance over
time (§3.1). Figure 3 shows the average perfor-
mance in all temporal and fine-grained splits in
the time range from 2019-Q4 to 2022-Q2 for two
types of evaluation, single-token probing and multi-
token generation. For the former evaluation type,
(Fig. 3a), all models perform similarly for all met-
rics. However, when we evaluate multi-token gen-
eration the models gradually improve over time.
(Fig. 3b). This difference shows the importance of
considering multiple views and evaluations for the
same LM capability (i.e., temporal robustness).

We attribute the similar single-token perfor-
mance to the fact that these temporal datasets con-

8Table 5 in the Appendix shows all the statistics in detail.
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MODELS
TEMPORAL SPLITS

2019-Q2 2019-Q3 2019-Q4 2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4 2022-Q1 2022-Q2

2019-Q4 34.88 33.96 34.44 34.93 34.76 34.73 34.02 34.18 34.70 34.34 34.92 35.46 35.31

2020-Q1 24.47 24.01 24.45 24.67 24.59 24.44 23.98 23.94 24.25 23.96 24.20 24.5 24.42

2020-Q2 22.94 22.29 22.92 23.24 23.23 23.12 22.57 22.55 22.90 22.59 22.91 23.23 23.11

2020-Q3 22.39 21.87 22.22 22.60 22.52 22.42 21.99 22.00 22.29 21.92 22.18 22.42 22.30

2020-Q4 25.56 25.28 25.68 25.96 25.89 25.79 25.51 25.44 25.71 25.50 25.69 25.97 25.72

2021-Q1 25.76 25.28 25.91 26.18 26.14 26.18 25.75 25.63 25.99 25.77 26.01 26.32 26.02

2021-Q2 23.75 23.47 23.94 24.10 24.10 24.12 23.63 23.60 24.05 23.75 24.12 24.37 24.16

2021-Q3 22.95 22.61 23.00 23.14 23.12 23.16 22.84 22.77 23.00 22.82 23.03 23.30 23.06

2021-Q4 23.37 23.01 23.41 23.59 23.55 23.68 23.37 23.27 23.60 23.40 23.58 23.76 23.61

2022-Q1 24.25 23.83 24.42 24.56 24.57 24.68 24.40 24.26 24.52 24.35 24.51 24.71 24.58

2022-Q2 21.48 20.95 21.42 21.59 21.57 21.61 21.25 21.12 21.44 21.13 21.31 21.49 21.39

Table 2: MLM scoring (median pseudo-log-likelihood scores) averaged for each temporal split.

(a) Single-token (b) Multi-token

Figure 3: Overall performance over time (2019− 2022)
for both single and multi-token evaluation. X-axis cor-
responds to the TIMELMS and the Y -axis to different
metrics depending on the type of the evaluation.

tain almost exclusively unchanged facts (§3.4). It
is therefore a positive outcome to observe that
TIMELMS can preserve acquired knowledge (§4.2).
The findings for overall multi-token evaluation cor-
roborate the intuition that more recent models, that
are trained with temporal data of the entire range,
should perform better than “past” (e.g. 2020) mod-
els that have not seen “future” data (e.g. 2022)
during training. We also provide the overall results
with MLM scoring in Table 2. We also observe that
the last model performs best across all temporal
splits, showing the effectiveness of adaptation with
more recent unlabelled data (§3.2). Even though
we observe that this pattern holds for most tempo-
ral splits (i.e., scores improving for each column
↓), the 2020-Q4 and 2021-Q1 TIMELMS produce
worse PLL scores than their previous or later ver-
sions. This is more evident in the overall density

plot in Figure 5. This finding entails that either the
distribution shift in these quarters was a lot stronger
than the other temporal periods, or the training of
these particular models was not as successful as it
would have been expected.

4.2 Knowledge preservation

We use the DUNCHANGED split to evaluate the capa-
bility of MLMs to preserve knowledge over time.
Figure 6 shows that for both single and multi-token
evaluation all TIMELMS demonstrate similar per-
formance over time, showing strong knowledge
preserving skills. Surprisingly, different metrics
show different patterns among the models for a sin-
gle split. While in general we should not compare
the performance of the single model over time (as
the test sets are different), the comparision is valid
in this case because the splits contain unchanged
facts, and hence most temporal test sets are almost
identical. All plots are shown in Figure 7 in the
Appendix.

4.3 Adaptation to emerging & evolving
concepts

Finally, we use the DNEW and DUPDATED splits for
evaluation of emerging and evolving concepts, re-
spectively. Here to ensure fair comparison, we
evaluate the TIMELMS for a specific time window;
for each model trained on timestep t, we keep the
test sets from t − 1, t and t + 1. We observe in
Figure 4 that in these cases the results vary among
the models. There is not a very clear pattern as
before, so case-by-case examination would be re-
quired. Still, a common pattern for the UPDATED

split is that the middle set tends to have the highest
performance (∧ shape). This means that models
manage to effectively adapt to the updated facts of
that timestep (t), but on the next timestep (t + 1)
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(a) UPDATED split. (b) NEW split.

Figure 4: Multi-token evaluation for evolving and emerging facts.

EXAMPLE INPUT GROUND TRUTH LABELS #TOKENS #ANSWERS SPLIT

1 Alex Morgan plays for _X_.
United States women’s national soccer team 7

2 2021-Q4
Orlando Pride 2

2 Cristiano Ronaldo plays for _X_.

Juventus F.C. 5 1 2021-Q2

Juventus F.C., Manchester United F.C. 5, 6 2 2021-Q3

Manchester United F.C. 6 1 2021-Q4

2 _X_ is the head of the government of Italy.

Giuseppe Conte 5 1 2020-Q4

Giuseppe Conte, Mario Draghi 5, 3 2 2021-Q1

Mario Draghi 3 1 2021-Q2

Table 3: Qualitative analysis of certain examples in DYNAMICTEMPLAMA.

Figure 5: Overall PLL distributions for TIMELMS.

they underpeform as they are unaware of the fac-
tual changes, thus requiring adaptation. We provide
all plots in the Appendix, including the DELETED

split, which is more difficult to interpret intuitively
(i.e., why are some facts deleted from Wikidata
after a certain point?).

5 Qualitative Analysis

Table 3 provides some examples from the DY-
NAMICTEMPLAMA test set that can help us
further interpret our results and inspect existing
challenges. We first observe that all examples
have multi-token labels (i.e., objects from the
Subject-relation-object format) and are in ef-

fect discarded in the single-token evaluation setup,
making the inclusion of multiple views essential
for this task.

More specifically, in 1, we observe that one la-
bel (United States women’s national soccer
team) has more than M = 5 tokens. It is therefore
excluded even from the multi-token the test set,
leaving MLM scoring to be the only method that
could evaluate it. Interestingly, we manually tested
the 2021-Q4 temporal model and found that it pro-
duces 1.6 and 307.3 average PLL scores for the
two options respectively, making the disregarded
label a far more confident prediction.

In the second and third example, we observe
how the correct answer for the query changes over
time, making the granularity of the evaluation (i.e.,
yearly, quarterly, monthly) an important factor in
the correct assessment of the model’s temporal fac-
tual knowledge. For instance, for the example 3,
we can carefully inspect how the predictions of
the models change for facts that change over time
(Table 4). However, even though PLL scores can
follow intuitive temporal patterns (i.e., the PLL
value can increase or decrease according to the
point in time that the fact has changed), compari-
son between scores is not always helpful (i.e., word
frequency can obscure factual knowledge) leaving
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Figure 6: Single and multi-token evaluation for the
UNCHANGED split.

TIMELMS Guiseppe Conte Mario Draghi

2020-Q4 3.8 33.3

2021-Q1 3.5 22.7

2021-Q2 3.5 25.7

2021-Q3 3.8 23.8

Table 4: PLL scores for Example 2 from Table 3.

room for improving the LAMA formulation.

6 Conclusion & Future Work

We addressed MLMs’ robustness on temporal con-
cept drift and introduced DYNAMICTEMPLAMA:
a dataset for dynamic benchmarking of factual
knowledge in temporal, fine-grained splits, from
2019-Q4 to 2022-Q2 that contain facts over time.
We release our codebase to dynamically update
the current test set over time and the option to ex-
tend it with custom (i) templates, (ii) relations from
Wikidata, (iii) any period of time (years) and (iv)
granularity of time (month/quarter/year). We in-
clude multiple views of evaluation, showing that
it is essential in order to properly interpret the
results of our benchmarking study of 11 tempo-
ral ROBERTA models. We consider experimenta-
tion with improving MLM decoding and address-
ing “domain mismatch” as open areas of research
for future work. Our code can be found at https:
//github.com/amazon-science/temporal-robustness.
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Limitations

Lower bound estimate A very common is-
sue with the LAMA probe evaluation framework
(Petroni et al., 2019) is that it constitutes a lower
bound estimate for its performance on factual
knowledge retrieval. Specifically, if a model per-
forms well, one can infer that it has the tested rea-
soning skill. However, failure does not entail that
the reasoning skill is missing, as it is possible that
there is a problem with the lexical-syntactic con-
struction we picked (Talmor et al., 2020). Any
given prompt only provides a lower bound estimate
of the knowledge contained in an LM (Jiang et al.,
2020b).

Domain mismatch Despite the advantages of
zero-shot evaluation, performance of a model
might be adversely affected by mismatches be-
tween the language the pre-trained LM was trained
on and the language of the examples in our tasks
(Jiang et al., 2020b). It is quite possible that a fact
that the LM does know cannot be retrieved due
to the prompts not being effective queries for the
fact (Jiang et al., 2020b). Prior work proposes to
fine-tune the model with a small set of examples
taken from the test set (and removed of course)
in order to address the incompatibility problem or
‘language mismatch’ (Talmor et al., 2020; Dhingra
et al., 2022). We argue that this process suffers for
multiple limitations, such as that it not practical
for a fast evaluation of the capabilities of a PLM
at hand and it faces optimization stability issues
due to the small training dataset, inter alia. The
major limitation, however, is that such fine-tuning
enforces extra biases and errors, especially in the
case of temporal robustness evaluation.

MLM decoding (multi-token labels) In this
work we tried to address the problem of decoding
from masked language models, by incorporating
two distinct approaches to the evaluation frame-
work; multi-token generation with MLMs (Wang
and Cho, 2019) and MLM scoring (Salazar et al.,
2020). Still, we observe that both methods provide
results that are hard to interpret (§5), leaving the
problems of (i) decoding or generating multiple
tokens from MLMs and (ii) evaluation of factual
knowledge in LMs as open areas of research.

Manual Templates For LAMA-style probing
(Petroni et al., 2019), prior work creates the tem-
plates manually. This is a limitation both in terms
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of scale (i.e., generalization to many different kinds
of inputs) and consistency (i.e., how do models per-
form with minimal changes to their inputs?). LMs
do not reason in an abstract manner and are context-
dependent (Talmor et al., 2020). It is therefore
essential to address this problem and include func-
tionalities to incorporate a set of diverse templates
for each evaluation setup.

English Twitter MLMs Finally, our dataset, DY-
NAMICTEMPLAMA, following prior work (Dhin-
gra et al., 2022), collects and evaluates facts from
the Wikidata in the English language alone, and
benchmarks RoBERTa language models trained in
English Twitter data. We understand that this is
a limitation and further data collection and exper-
imentation in more languages would be strongly
encouraged.
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TEMPORAL SPLIT UNCHANGED UPDATED DELETED NEW TOTAL %UNCHANGED %UPDATED %LOST

2019-Q2 479|8523 1|165 7|124 9|121 496|8933 96.6|95.4% 0.2|1.8% 94.4%

2019-Q3 451|8154 3|248 36|430 5|205 495|9037 91.1|90.2% 0.6|2.7% 94.5%

2019-Q4 454|8271 0|151 3|140 12|120 469|8682 96.8|95.3% 0.0|1.7% 94.6%

2020-Q1 456|8243 3|296 9|126 15|273 483|8938 94.4|92.2% 0.6|3.3% 94.6%

2020-Q2 470|8451 0|92 2|95. 2|59 474|8697 99.2|97.2% 0.0|1.1% 94.5%

2020-Q3 446|8254 2|179 26|238 10|133 484|8804 92.1|93.8% 0.4|2.0% 94.5%

2020-Q4 452|8298 2|124 4|111 5|97 463|8630 97.6|96.2% 0.4|1.4% 94.6%

2021-Q1 453|8238 1|269 4|131 14|215 472|8853 96.0|93.1% 0.2|3.0% 94.7%

2021-Q2 460|8344 2|90 7|128 5|76 474|8638 97.0|96.6% 0.4|1.0% 94.5%

2021-Q3 445|8164 2|164 19|220 2|99 468|8647 95.1|94.4% 0.4|1.9% 94.6%

2021-Q4 443|8213 1|128 4|82 5|90 453|8513 97.8|96.5% 0.2|1.5% 94.7%

2022-Q1 442|8189 1|111 7|117 6|126 456|8543 96.9|95.9% 0.2|1.3% 94.7%

2022-Q2 446|8287 0|56 2|40 2|34 450|8417 99.1|98.5% 0.0|0.7% 94.7%

Table 5: Total number of examples for each temporal and fine-grained split in DYNAMICTEMPLAMA. We show
both the single-token and the multi-token datasets (up to M = 5 tokens). Cell scheme to be read single | multi.
%UNCHANGED and %UPDATED show the percentage of the total examples that are part of the UNCHANGED and
UPDATED set respectively. %LOST shows the percentage of examples we lose when we filter out the dataset for the
single-token evaluation setting.

A Appendix

A.1 Data Collection for
DYNAMICTEMPLAMA

Following Dhingra et al. (2022), we identify all
facts in the Wikidata snapshot, which have either
a start or an end date after 2010 and whose sub-
jects and objects are both entities with Wikipedia
pages.1 Among these 482K facts, we identify sub-
ject and relation pairs which have multiple objects
at different times and select 16 relations with the
most such subjects. Then, for these relations we
manually write template cloze queries (i.e., tem-
plates) and populate them with the 1000 most fre-
quent subjects per relation. For each subject and
each relation we gather all the objects with their
associated time interval and construct a separate
query for each year in that interval. When intervals
for the object entities overlap, we add all of them
to the list of correct answers. The query and the
corresponding year form the input texts and the
temporal information t, while the object entity is
the target that we want to predict (i.e., gold label).
In contrast to Dhingra et al. (2022), we do extra
temporal divisions. Specifically, we get each yearly
split and divide it further in quarterly splits (§3.1,
Figure 2b), following the same algorithm.

A.2 Full Results
We provide the full results with all metrics for the
UNCHANGED split in Figure 7, and the UPDATED,
NEW and DELETED splits for multi-token genera-
tion in Figure 9.
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WIKIDATA
ID

RELATION TEMPLATE #FACTS #EXAMPLES POSSIBLE
SPLIT(S)

P54 member of sports
team

<subject> plays for <object>. 3772 50558 DUPDATED

P39 position held <subject> holds the position of
<object>.

2961 34835 DUPDATED

P108 employer <subject> works for <object>. 1544 20531 DUPDATED

P102 political party <subject> is a member of the <object>. 1068 14232 DUPDATED

P286 head coach <object> is the head coach of <subject>. 987 11935 DUPDATED

P69 educated at <subject> attended <object>. 232 2420 DUPDATED,
DUNCHANGED

P488 chairperson <object> is the chair of <subject>. 629 8468 DUPDATED

P6 head of government <object> is the head of the government
of <subject>.

578 7815 DUPDATED

P279 subclass of <subject> is a subclass of <object>. 5 70 DNEW,
DUPDATED

P127 owned by <subject> is owned by <object>. 394 5326 DUPDATED,
DUNCHANGED

P1001 legal term <subject> is a legal term in <object>. 37 423 DUNCHANGED

P106 profession <subject> is a <object> by profession. 83 1090 DUPDATED,
DNEW,
DUNCHANGED

P27 citizen <subject> is <object> citizen. 147 1983 DNEW,
DUNCHANGED

P176 produced by <subject> is produced by <object>. 24 276 DNEW,
DUNCHANGED

P138 named after <subject> is named after <object>. 73 1009 DNEW,
DUNCHANGED

P937 work location <subject> used to work in <object>. 38 507 DNEW,
DUNCHANGED

Table 6: The list of templates we used for each relation in the DYNAMICTEMPLAMA dataset.
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WIKIDATA
ID

RELATION INPUT LABELS SPLIT

P54 member of
sports team

Cristiano Ronaldo plays for
_X_.

Juventus F.C., Manchester
United F.C.

2021-Q3

P39 position held Martina Anderson holds the
position of _X_.

member of the European
Parliament

2019-Q4

P108 employer George van Kooten works for
_X_.

University of Cambridge 2022-Q2

P102 political
party

Elena Kountoura is a member
of the _X_.

Independent Greeks, SYRIZA 2019-Q2

P286 head coach _X_ is the head coach of New
York Red Bulls.

Gerhard Struber 2020-Q4

P69 educated at Sarafina Nance attended _X_. Tufts University, University
of California, Berkeley

2020-Q2

P488 chairperson _X_ is the chair of Lloyds
Banking Group.

Lord Blackwell 2022-Q2

P6 head of gov-
ernment

_X_ is the head of the
government of United Kingdom.

Theresa May, Boris Johnson 2019-Q3

P279 subclass of Mercedes-Benz A-Class is a
subclass of _X_.

compact car 2022-Q2

P127 owned by DeepMind is owned by _X_. Alphabet Inc. 2021-Q4

P1001 legal term Commonwealth of Independent
States Free Trade Area is a
legal term in _X_.

’Ukraine’, ’Russia’,
’Belarus’, ’Armenia’,
’Kazakhstan’, ’Moldova’,
’Kyrgyzstan’, ’Uzbekistan’,
’Tajikistan’

2022-Q2

P106 profession Penny James is a _X_ by
profession.

chief executive officer 2019-Q3

P27 citizen Yulia Putintseva is _X_
citizen.

Kazakhstan 2022-Q1

P176 produced by Land Rover Discovery series
is produced by _X_.

Jaguar Land Rover 2022-Q2

P138 named after Bayes Business School is
named after _X_.

Thomas Bayes 2021-Q3

P937 work loca-
tion

Eliza Vozemberg used to work
in _X_.

Strasbourg, City of Brussels 2022-Q2

Table 7: Examples of DYNAMICTEMPLAMA for each relation.
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(a) Single Token

(b) Multi-token

Figure 7: Single-token probing and multi-token generation for the UNCHANGED split.
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(a) UPDATED Split

(b) NEW Split

(c) DELETED Split

Figure 8: Multi-token generation results for various fine-grained splits.
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(a) UPDATED Split

(b) NEW Split

(c) DELETED Split

Figure 9: Multi-token generation results for various fine-grained splits. Here for each model trained on timestep t,
we keep the test sets from t− 1, t and t+ 1.
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