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Abstract
Despite significant progress in understanding
and improving faithfulness in abstractive sum-
marization, the question of how decoding strate-
gies affect faithfulness is less studied. We
present a systematic study of the effect of gen-
eration techniques such as beam search and
nucleus sampling on faithfulness in abstrac-
tive summarization. We find a consistent trend
where beam search with large beam sizes pro-
duces the most faithful summaries while nu-
cleus sampling generates the least faithful ones.
We propose two faithfulness-aware generation
methods to further improve faithfulness over
current generation techniques: (1) ranking can-
didates generated by beam search using auto-
matic faithfulness metrics and (2) incorporating
lookahead heuristics that produce a faithfulness
score on the future summary. We show that
both generation methods significantly improve
faithfulness across two datasets as evaluated
by four automatic faithfulness metrics and hu-
man evaluation. To reduce computational cost,
we demonstrate a simple distillation approach
that allows the model to generate faithful sum-
maries with just greedy decoding.1

1 Introduction

Recent developments in large pre-trained language
models have achieved remarkable performance
on abstractive summarization (Lewis et al., 2020;
Zhang et al., 2020a). However, such models often
suffer from the problem of hallucinations, where
the generated summary contains facts or entities
not present in the original document. Prior re-
search has analyzed and defined potential error
types and typology (Maynez et al., 2020; Pagnoni
et al., 2021; van der Poel et al., 2022), and devel-
oped methods to improve faithfulness, including

∗∗Work conducted during an internship at Amazon.
††Corresponding authors.

1Our code is publicly available at
https://github.com/amazon-science/
faithful-summarization-generation.

post-processing models (Chen et al., 2021b; Dong
et al., 2020; Liu and Liu, 2021; Ladhak et al., 2022)
and faithfulness-aware training (Goyal and Durrett,
2021; Nan et al., 2021; Cao and Wang, 2021; Wan
and Bansal, 2022; Zhang et al., 2022; Xiao and
Carenini, 2022).

One aspect that is less understood on faithfulness
of abstractive summarization is the effect of de-
coding strategies, which determine how the model
generates the output strings. Our primary objective
is to understand whether different types of explo-
ration of the search space, such as traversing and
maintaining multiple possible output hypotheses
with beam search or encouraging diversity with
nucleus sampling (Holtzman et al., 2020), have an
impact on faithfulness. To this end, we first conduct
a thorough analysis comparing the faithfulness of
popular decoding strategies, including greedy de-
coding, beam search, and nucleus sampling for two
popular summarization datasets XSum (Narayan
et al., 2018) and CNN/DM (Hermann et al., 2015).
Evaluating the generated summaries using four
faithfulness metrics, including BertScore (Zhang
et al., 2020b), FactCC (Kryscinski et al., 2020),
DAE (Goyal and Durrett, 2021), and QuestEval
(Scialom et al., 2021), and human evaluation, we
find a consistent trend that beam search provides
the most faithful summaries with its large explo-
ration of the search space, and the randomness
introduced by sampling hurts faithfulness.

To further improve faithfulness beyond the
common decoding strategies, we propose two
faithfulness-aware decoding methods. First, similar
to Falke et al. (2019), we make use of the multi-
ple candidates generated by beam search and pro-
pose a simple re-ranker, which selects the best sum-
mary according to a faithfulness metric. Instead
of using a specific metric, we rank and select the
summaries with a composite metric, a weighted
combination of popular faithfulness metrics. Next,
inspired by Lu et al. (2022), we propose a faithful-
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Figure 1: Illustration of our proposed decoding methods. 1a shows our ranker that re-ranks the candidates produced
by beam search according to faithfulness metrics. The first summary achieves a high score and would be used as the
final summary for beam search, but it is not faithful. Our ranker ensures that the more faithful summary is ranked
higher. 1b shows the lookahead heuristics that provide a faithfulness score given the full future summary. The
model assigns a higher score to the word "World" than "British". However, by looking ahead we know that the
completed summary following the most likely token will result in an unfaithful summary. Hence, the lookahead
heuristics will ensure selecting the token "British" so that the resulting summary will be faithful.

ness heuristic that looks into the future to generate
a full summary starting with the current tokens of
any partially generated summary so as to provide
a faithfulness score of the future summary during
generation. The added heuristic ensures that the
selected tokens will lead to a more faithful path
in the search space. Compared to the baseline de-
coding strategies we analyzed, the two proposed
methods significantly improve faithfulness as eval-
uated by four automatic faithfulness metrics and
further confirmed by human evaluation.

Finally, to overcome the computational and run-
time overhead of our proposed decoding methods,
we explore distillation to transfer the knowledge
of generating faithful summaries from a teacher
model to a student model. Specifically, we use
the faithfulness-aware decoding strategies as the
teacher model to generate reference summaries.
Then, we train student models, which have not
been fine-tuned on the original task, to imitate the
more faithful generation techniques using an ad-
ditional cross-entropy loss between the generated
summaries by the student and teacher models. Re-
sults indicate that the student model is able to gen-
erate summaries of similar faithfulness to that of
the full teacher model while reducing the decod-
ing time (seconds per example) up to 1/6 of what
the teacher model takes. This process can be per-
formed iteratively by using the student model as the
teacher for the next iteration (See Figure 2). With
each iteration, the new student model is able to
generate more faithful summaries, and outperform
the original teacher model with just two iterations.

To summarize, our contributions are:

1. An analysis of the effect of popular decod-
ing strategies, including greedy, beam, and
nucleus sampling, on the faithfulness of ab-
stractive summarization.

2. Two faithfulness-aware generation methods,
ranking and lookahead, that improve faithful-
ness over existing decoding strategies.

3. A simple distillation approach that allows a
student model to generate faithful summaries
with just greedy decoding.

2 Faithfulness Behavior of Popular
Decoding Strategies

We first describe our experiment investigating the
effect of popular decoding strategies on faithful-
ness. We wish to primarily investigate whether
better exploration of the search space, such as the
candidate expansion with beam search, can im-
prove faithfulness, and how randomness introduced
through sampling impacts faithfulness. These in-
vestigations in turn motivate our more advanced,
faithfulness-aware decoding strategies in Section 3.

Decoding Strategies (Greedy, Beam, and Nu-
cleus Sampling). For generation, we assume the
common left-to-right, auto-regressive setting where
the model generates a summary y with n tokens
given the input document x:

P (y|x) =
n∏

t=1

p(yt|y1:t−1, x)
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The summary tokens are selected with probability
according to the decoding strategies. We explore
three common decoding strategies: greedy, beam
search, and nucleus sampling (Holtzman et al.,
2020). Greedy search selects the next token by the
most probable token yt = argmaxy p(y|y1:t−1, x).
Beam search extends greedy search by keeping
top-k hypothesis at each time step, where k is the
number of beams. Another approach to decoding is
to use sampling, where we consider nucleus sam-
pling. Holtzman et al. (2020) surprisingly find that
methods that optimize probability, such as beam
search, may lead to text degeneration, and thus pro-
pose nucleus sampling, a method that randomly
selects from top tokens whose cumulative probabil-
ity satisfies the threshold p. A small p means less
randomness and becomes greedy search, while a
large p allows for a more diverse output.

3 Faithfulness-Aware Decoding Strategies

We hypothesize (and later test and confirm whether
it is true in Section 6.1 and Appendix E) that cur-
rent decoding methods, such as beam search which
explores a large space, may not explore the paths
that focus on faithfulness directly and effectively.
Hence, we propose two faithfulness-aware meth-
ods that can be applied on top of the base decoding
strategies to modify how the space is explored from
two different perspectives: (1) Ranking makes use
of the large exploration of beam search and picks
the explored path that is most faithful; (2) Looka-
head directly guides the search process by adding
faithfulness heuristics when selecting the next to-
ken starting from the initial decoding process.

3.1 Ranking with Faithfulness Metrics

Since beam search already explores many different
suitable candidates during the decoding process,
we hypothesize that more faithful summaries exist
in the list of possible candidates, even if the model
score is not directly optimized towards faithfulness
(we show that this is true later in Section 6.1). Thus,
we propose to rerank the generated candidates from
beam search according to faithfulness metrics.

The process is illustrated in Figure 1a. Assum-
ing a beam search with beam size k, we have k
summaries generated by the decoding method. We
compute a faithfulness metric (details of the metrics
are presented in Section 5.2) over all summaries
and select the summary that achieves the highest
faithfulness score. In the example, the more faithful

summary that was originally ranked low according
to model score is now ranked as the top summary
according to faithfulness.

Re-ranking candidates for abstractive summa-
rization have been studied primarily from the in-
formativeness perspective (Ravaut et al., 2022a,b),
and our focus is on improving faithfulness. Our
idea is most similar to Falke et al. (2019), where
the authors use NLI models to re-rank. However,
the results indicate that the NLI performance does
not translate to improvement in faithfulness; their
best-ranking model actually increases the number
of unfaithful summaries at the top summary af-
ter re-ranking by 3%. The authors attribute it to
domain shift and NLI models relying on simple
heuristics like lexical matching. We thus explore
using faithfulness metrics directly for ranking.

Composite Metric. While it is possible to use
one of the faithfulness metrics to rank the candi-
dates, it often leads to over-fitting for one particular
metric (each metric can have its own domain biases
and idiosyncrasies) and hurts the overall faithful-
ness scores evaluated by other metrics. We instead
tune a composite metric that aggregates the vote of
several popular metrics (See Section 5.4). We use
linear regression to provide weights for each metric
and tune on human judgments of faithfulness. We
refer the readers to Appendix D and Appendix E
for details and ablations for the composite metric.

3.2 Lookahead

Lu et al. (2022) use lookahead to provide a fu-
ture constraint satisfaction estimate and show its
effectiveness in several constrained generation
tasks (commonsense generation, constrained ma-
chine translation, table-to-text generation, and con-
strained question generation). We extend this idea
to improve faithfulness of abstractive summariza-
tion. Instead of relying on explicit constraints that
are available for the constrained generation tasks,
we use reference-free faithfulness metrics on the
full future summaries as an estimate. Unlike re-
ranking which is constrained by the search space
explored by beam search, lookahead allows for ex-
ploration of a much larger number of candidates.

Figure 1b shows an example of the lookahead.
When selecting the next token, the usual decoding
scheme would select the word "World" that has the
highest probability. However, if we were to follow
this path, the resulting summary would introduce
hallucinations. Instead, we would like to guide the
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Figure 2: Illustration of the iterative distillation process.
We train a student model θ′ with summaries generated
by the teacher model θ, which uses faithfulness-aware
decoding methods. The resultant student model θ′ that
is trained on more faithful summaries can in turn be used
as θ to generate the training data for the next iteration.

model to select the less probable token "British,"
which will yield a faithful summary sentence.

Formally, each summary token is selected by:

f(yt) = logP (y1:t | x) + w ·max
Ly≤t

h(y1:t+l, x)

where logP (y1:t | x) is the model score, h(·) is a
reference-free faithfulness evaluation function that
assigns a score to the summary, w is the weight,
and l is the number of tokens to look into the future.

Here, Ly≤t is a set of possible generated sum-
maries that start with the summary tokens y1:t. The
number of summaries for L varies given the decod-
ing strategies we use to generate future summaries.
Greedy search and sampling produce a single ex-
pansion, and beam search produces k number of
summaries depending on the beam size. Although
the lookahead length l can be specified, we instead
generate the full summary, as current faithfulness
metrics expect full summaries as input and do not
work well on partial summaries (see Appendix E).

3.3 Combining Ranking and Lookahead

We can combine the two methods to fur-
ther improve faithfulness. We first use the
BEAM+LOOKAHEAD to generate faithful beam
candidates and then select the best candidates
with ranking. We refer to this method as
BEAM+LOOKAHEAD+RANKING.

4 Efficient Decoding via Distillation

One drawback of the proposed decoding methods is
the heavy computational cost during decoding. We
thus explore using distillation to transfer the knowl-
edge of faithfulness-aware decoding to a student

model that can generate summaries of similar faith-
fulness with just greedy decoding. We note here
that our distillation aims at improving the decoding
time rather than downsizing the model. Similar to
Kim and Rush (2016), we assume that we have a
teacher model and a student model. In our setting,
the teacher model does not necessarily need to be
a different model, but it needs to decode with more
faithfulness-aware methods. Typical distillation
methods use the teacher’s probability distribution
(Kim and Rush, 2016) as the target for the student
model to imitate. In our case, however, that distri-
bution is the same for all methods – the difference
lies in how the probability is used to generate the
next tokens. Thus, we propose a new decoding dis-
tillation loss. We use the teacher model to generate
summaries ygen as additional reference summaries,
and interpolate between the cross-entropy loss us-
ing the original reference summaries and the cross-
entropy loss where we consider ygen as reference
summaries. Formally, the training loss is:

Ldistill = LXE(y
′, y) + λLXE(y

′, ygen)

where LXE is the cross entropy, y′ is the generated
summary by the student model, and λ is a hyper-
parameter for the weight of the cross-entropy loss
on the generated summaries.

Iterative Distillation. While we use the student
model with just greedy decoding to improve decod-
ing speed, the student model can also benefit from
using our proposed faithfulness-aware decoding
methods. Thus, the student models can also serve
as a new teacher model to distill more faithfulness
knowledge to a new student model. The distillation
process thus becomes iterative, illustrated in Fig-
ure 2. We use the trained student model as a new
teacher model, where we decode with our proposed
faithfulness methods to create additional reference
summaries ygen for the next iteration.

5 Experiments

5.1 Datasets and Models
We perform experiments on two popular datasets
for abstractive summarization, XSum (Narayan
et al., 2018) and CNN/DM (Hermann et al., 2015).
More details on the datasets are described in Ap-
pendix A.1. We use the released checkpoint of
BART-large (406M) for the two datasets.2 The

2We use the checkpoint BART-LARGE-XSUM (https://
huggingface.co/facebook/bart-large-xsum)
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same experiment is done with PEGASUS (Zhang
et al., 2020a), which is presented in Appendix B.

5.2 Evaluation Metrics
We use the F1 measure of ROUGE-L (Lin, 2004,
RL), i.e., the overlap of the longest common sub-
sequence between a generated summary and refer-
ence summary, and the F1 measure of BERTScore
(Zhang et al., 2020b, BS) to evaluate summary
quality. In addition, we use BS-Fact, i.e., the
BERTScore precision of a summary with respect
to its source document rather than the reference
summary, FactCC (Kryscinski et al., 2020), DAE
(Goyal and Durrett, 2021), and QuestEval (Scialom
et al., 2021) for faithfulness evaluation. Details of
the metrics are presented in section A.

5.3 Human Evaluation Setup
We use Amazon Mechanical Turk (AMT) to ask
human annotators to judge the faithfulness and in-
formativeness of the summaries generated with dif-
ferent decoding.

Faithfulness. We ask workers to judge the faith-
fulness of a summary sentence using a 3-star rating
(1=major factual error, 2=minor factual error, 3=no
factual error. Three judgments per summary are
then aggregated using majority voting. We ran-
domly select 200 examples from both datasets and
use the summaries generated using greedy, sam-
pling, beam search, as well as the ranking and
lookahead strategies applied to beam search. We
report the percentage of summaries that are fully
factual (i.e. the percentage of summaries rated as
3-star) as the faithfulness score, and also report the
distribution of summaries rated as 1, 2, and 3 stars.
Details on qualification, payment and other aspects
of the evaluation can be found in Appendix A.4.

Informativeness. We also evaluate the generated
summaries in terms of informativeness. We con-
sider summary to be informative if its content is
important and relevant, but it does not necessarily
need to be long. We use best-worst-scaling (BWS)
for evaluating the informativeness of the generated
summaries, as this method is “a less labor-intensive
alternative to paired comparisons that has been
shown to produce more reliable results than rating
scales” (Kiritchenko and Mohammad, 2017). Ac-
cordingly, for each dataset, we select 200 random
articles with the corresponding summaries from

and BART-LARGE-CNN (https://huggingface.co/
facebook/bart-large-cnn).

five systems in random order. We ask three annota-
tors to select the most informative (“best”) and the
least informative (“worst”) among the five. A rating
per system is computed as the percentage of times
it is chosen as best minus the percentage of times
it is selected as worst. A value of 100 means that
the system has been unanimously picked as “best”,
whereas a value of -100 means that the system has
been unanimously picked as “worst”. Additional
details, as well as the screenshot of the annotation
interface, are in Appendix A.4.

5.4 Decoding Setting Details

We describe the settings of the basic decoding meth-
ods, our faithfulness-aware decoding methods and
distillation. More details are in Appendix A.3.

Basic Decoding Method. We compare the sum-
maries generated using greedy search, beam search
(k = 10), and nucleus sampling (p = 0.9). Ad-
ditional experiments with various beam sizes and
top-p values can be found in Appendix B.

Ranking and Composite Metric. We use beam
search (k = 10) and rank the candidates using the
composite metric introduced in Section 3.1. To
train the composite metric, we explore combining
FactCC, BS-Fact, DAE, and QuestEval. We use
FACTCOLLECT (Ribeiro et al., 2022), a large col-
lection of four faithfulness annotations to train a
linear regression on the human-labeled faithfulness
judgments. More details of the composite metric
and its robustness to another domain can be seen
in Appendix D.

Lookahead. We use BS-Fact as the faithfulness
metric for the lookahead as it correlates highly
with human judgment (Pagnoni et al., 2021) and is
quick to compute without the need for additional
pre-processing. We use greedy search to generate
future summaries and apply it to both greedy and
beam searches.

Distillation. We use the checkpoint of our two
proposed faithfulness-aware decoding methods as
the teacher model, and train the student model from
BART-LARGE.3 We follow the original fine-tuning
hyperparameters provided by the authors (Lewis
et al., 2020) and use λ = 1 for the weight of the
additional cross-entropy loss.

3https://huggingface.co/facebook/
bart-large
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Figure 3: Maximum possible score (Max) for each faithfulness metric and the faithfulness scores of the top candidate
(Top) at various beam sizes. As beam size increases, more faithful summaries exist in the list of candidates, but the
faithfulness of the top beam improves only slightly.

RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
Nucleus 27.64 87.90 91.76 54.05 21.61 56.43
Beam 29.99 88.03 94.20 84.23 3.30 60.03

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Nucleus 31.15 91.26 88.62 21.04 76.20 34.98
Beam 37.11 92.12 89.45 22.97 63.49 37.05

Table 1: Baseline results of popular decoding methods
measured by summarization quality metrics (Rouge-L
(RL) and BertScore (BS)) and faithfulness metrics. We
observe a general trend where beam search performs the
best and nucleus sampling performs the worst in terms
of faithfulness. Full result with different beam sizes and
top-p probability for nucleus sampling is in Table 7.

6 Results

6.1 Baseline Decoding Results

We show the analysis of common decoding strate-
gies in Table 1. Both datasets show a similar trend.
Beam search performs the best in terms of faithful-
ness except for FactCC on the XSum dataset. Com-
pared to greedy decoding, which is beam search
with k = 1, the candidate expansion with a larger
beam size provides better exploration for faithful-
ness. Nucleus sampling degrades faithfulness com-
pared with greedy search, showing that the intro-
duced randomness is not helpful for faithfulness.
This aligns with observations from Narayan et al.
(2022) and Chen et al. (2021a), which show that
nucleus sampling produces less relevant text for
data-to-text generation.

The results are surprisingly mixed for both
datasets in terms of summary quality, i.e., RL and
BS scores. Comparing beam search with greedy
decoding, we see improvement of both scores on
XSum but not for CNN/DM. Nucleus sampling, on
the other hand, is also worse than greedy search on

this aspect, suggesting that randomness may not be
suited for the task of abstractive summarization.

Search Space for Beam Search. Inspired by Xu
et al. (2022) who hinted at the potential of better
faithfulness with a large exploration of the search
space, we use beam search to explore whether
larger beam sizes (and hence larger exploration)
derive more faithful summaries. To this end, we
use all summaries generated by beam search and
select the beam that would result in the highest
possible score for each metric. We show the max-
imum score (Max) for the four faithfulness met-
rics and the faithfulness score of selecting the top
beam (Top) given different beam sizes in Figure 3.
We see a clear trend that increasing the beam size
improves all faithfulness scores. This confirms
our hypothesis that larger exploration of the search
space can provide additional faithfulness gain, and
thus showing the potential of our proposed decod-
ing strategies, especially our reranking strategy, to
output more faithful summaries. The faithfulness
scores of TOP only increase marginally compared
to the increase for Max, showing the importance
of having better faithfulness guidance, such as our
proposed faithfulness lookahead heuristics.

6.2 Faithfulness-Aware Decoding Results

We now show the impact of faithfulness-aware
methods compared with the traditional decoding
methods, which is shown in Table 2. We first
observe that applying ranking on top of beam
search improves faithfulness significantly over
beam search, as measured by all faithfulness met-
rics. Specifically, QuestEval reaches 62.57 (2.5
points improvement) and 40.10 (3.1 points im-
provement) on CNN/DM and XSum respectively.
DAE error rate reduces from 63.49 to 51.48 and
3.30 to 1.92, which is a relative improvement of
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Rouge-L BERTScore BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
Beam 29.99 88.03 94.20 84.23 3.30 60.03
BEAM+RANKING 30.08 88.12 94.31 90.27 1.92 62.57
GREEDY+LOOKAHEAD 30.75 88.35 93.90 71.54 5.70 60.13
BEAM+LOOKAHEAD 28.66 87.84 95.32 86.10 1.68 61.80
BEAM+LOOKAHEAD+RANKING 28.86 87.92 95.26 91.68 1.08 63.69

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Beam 37.11 92.12 89.45 22.97 63.49 37.05
BEAM+RANKING 36.42 92.10 89.79 40.11 51.48 40.10
GREEDY+LOOKAHEAD 36.25 92.11 89.71 24.21 60.46 37.17
BEAM+LOOKAHEAD 35.27 91.94 90.78 23.38 50.04 39.24
BEAM+LOOKAHEAD+RANKING 34.71 91.90 90.78 38.86 41.04 41.94

Table 2: Results for our proposed decoding strategies. Compared to the baseline methods (greedy and beam search),
both ranking and lookahead improve faithfulness. The combination of both methods further increases faithfulness.

18.92% (12.01 points) and 41.8% percent (1.38
points) on XSum and CNN/DM, respectively.

We observe similar improvement for lookahead
as well, where applying the lookahead improves
the faithfulness over the base decoding strategy
over all faithfulness metrics. Nevertheless, the base
decoding strategy is still the dominating factor, as
BEAM+LOOKAHEAD generates more faithful sum-
maries than GREEDY+LOOKAHEAD for all faith-
fulness metrics. GREEDY+LOOKAHEAD outper-
forms Beam on the XSum dataset, showing that
better guidance with future faithfulness heuristics
can improve faithfulness without large exploration.
Finally, the combination of lookahead and ranking
can further improve faithfulness as evaluated by
FactCC, DAE, and QuestEval.

In terms of ROUGE score, applying faithful de-
coding methods decreases RL. This tradeoff be-
tween faithfulness and ROUGE has been observed
in many prior works (Chen et al., 2021b; Kryscin-
ski et al., 2020; Wan and Bansal, 2022). One rea-
son for this phenomenon is that more than 70%
of the reference summaries contain hallucinations
(Maynez et al., 2020), so the more faithful sum-
maries that do not contain such hallucinations will
have lower ROUGE scores. To investigate this
problem, we perform a human evaluation study,
where we find that the summaries generated by
BEAM+LOOKAHEAD are considered to be most
informative. More details are in Appendix A.4.

6.3 Human Evaluation Results

Faithfulness. The observation on automatic faith-
fulness metrics aligns with the result of human eval-

uation in Table 3. For XSum, among the baseline
decoding methods, we see that sampling performs
the worst. Interestingly, greedy is more faithful
than beam search, but the difference is only 1.5
points. Our proposed decoding strategies generate
summaries that are judged more faithful compared
to that of the baseline decoding strategies. Specif-
ically, BEAM+LOOKAHEAD reaches 56.5, even
outperforming BEAM+RANKING by 5 points. We
also observe that our proposed methods are able to
significantly reduce the percentage of summaries
that are considered to contain major factual errors;
Compared to beam search, ranking reduces the per-
centage from 44.5 to 36.5, and lookahead further
reduces the percentage by 3 points. For CNN/DM,
we see the striking result that the summaries gener-
ated by our proposed methods achieve the highest
faithfulness, and among the two systems, there are
no major errors for BEAM+LOOKAHEAD.

Informativeness. The result is shown in Ta-
ble 4. The output of the BEAM+LOOKAHEAD

is clearly seen as the most informative among the
five methods. This result suggests that Rouge-L
and BERTScore may not be good indicators for
informativeness, as BEAM+LOOKAHEAD achieves
the lowest scores for the two automatic metrics on
both datasets.

6.4 Abstractiveness

Models can "trivially" become more faithful by
becoming more extractive (Dreyer et al., 2023),
and thus it is important to understand where the
gain in faithfulness stems from. We experiment
on XSum, as methods can achieve larger improve-
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XSum CNN/DM
1 2 3 1 2 3

Greedy 43.0 12.0 45.0 4.0 3.5 92.5
Sampling 55.0 13.0 32.0 8.0 10.5 81.5

Beam 44.5 12.0 43.5 0.0 2.0 98.0
BEAM+RANKING 36.5 14.0 49.5 0.5 1.0 98.5

BEAM+LOOKAHEAD 31.5 12.0 56.5 0.0 1.5 98.5

Table 3: Human evaluation results on faithfulness with
the 3-star rating system (1=major factual error, 2=mi-
nor factual error, 3=no factual error). Our proposed
faithfulness-aware methods are judged as the most faith-
ful (the percentage of summaries rated as 3), confirming
our observation with automatic faithfulness metrics.

ment in faithfulness and thus potentially more gain
through extensiveness. We experiment with the
200 examples used for human evaluation and cal-
culate MINT (Dreyer et al., 2023) for abstractive-
ness and plot this score against the human-labeled
faithfulness, similar to Ladhak et al. (2022). The
result is shown in Figure 4. Similar to the obser-
vation of Dreyer et al. (2023), more faithful mod-
els tend to be more extractive; however, the gain
in faithfulness is considerably larger than the de-
crease in abstractiveness. For example, comparing
BEAM+LOOKAHEAD with beam search, the rela-
tive increase in faithfulness (29.89%) is quadruple
the decrease (7.27%) in abstractiveness. Similar
experiments on CNN/DM are in Appendix F.

Lookahead with Faithfulness and Abstractive-
ness. We further show that our lookahead method
can easily allow additional heuristics, such as
balancing both faithfulness and abstractiveness.
Specifically, we replace h(·) with combination of
BS-Fact and MINT:

h(y, x) = αBS-Fact(y, x) + (1− α)MINT(y, x)

We use α = 0.75 and the same hyper-parameters
as BEAM+LOOKAHEAD. We refer to this model as
BEAM+LOOKAHEAD+ABSTR and show the point
in Figure 4. Compared to BEAM+LOOKAHEAD,
this model can increase abstractiveness at a small
cost in faithfulness, demonstrating the flexibility
of our lookahead method to incorporate various
characteristics for summarization.

6.5 Distillation

We present the distillation result in Table 5. While
the student models are not able to outperform the
teacher models, they approach the performance of
the teacher models. The student models are also

XSum CNN/DM

Greedy 3.0 − 8.2
Sampling −20.5 −23.8

Beam 1.8 8.5
BEAM+RANKING 1.0 − 2.8

BEAM+LOOKAHEAD 17.7 31.0

Table 4: Human evaluation results on informative-
ness with best-worst-scaling (100=unanimous best,
−100=unanimous worst).
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Figure 4: Faithfulness and abstractiveness tradeoff re-
sults on 200 XSum examples used for human annota-
tion. BEAM+LOOKAHEAD+ABSTR is the model that is
trained with additional abstractiveness heuristics (See
Section 6.4 for more details).

able to generate more faithful summaries compared
to the greedy search baseline, which is only trained
using the cross-entropy loss LXE(y

′, y).
The main benefit of the student model comes

from the improved decoding speed. The ranking
time reduces from 0.77 seconds per example to
0.47, which is a 40% improvement. The largest
gain can be seen for lookahead, where the decoding
speed reduces from 3 seconds per example to 0.49,
only 1/6 of the time it was originally taking.

For example, the student model distilled from
BEAM+RANKING improves DAE by 6.6 points
and QuestEval by a point compared to the greedy
search baseline and only differs from the teacher
model by 2.5 points for DAE and 0.5 points for
QuestEval. When using a more faithful teacher
model, i.e. BEAM+LOOKAHEAD, the student
model is able to generate more faithful summaries,
as evaluated by BS-Fact, DAE, and QuestEval.

Iterative Distillation. Next, we show the re-
sult of distilling BEAM+RANKING iteratively on
XSum in Table 6. We see that with each itera-
tion, the model is able to improve faithfulness fur-
ther. When compared to the original teacher model,
BEAM+RANKING, the student model is able to out-
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RL BS BS-Fact FC DAE ↓ QE Speed

Greedy 36.16 92.03 89.28 23.53 65.35 36.51 0.39

BEAM+RANKING

Teacher 36.46 92.14 90.15 22.47 56.33 37.98 0.77
Student 36.59 92.07 89.80 23.52 58.78 37.46 0.47

BEAM+LOOKAHEAD

Teacher 35.91 92.06 90.51 22.44 52.50 38.72 3.00
Student 36.52 92.07 89.97 22.58 58.02 37.89 0.49

Table 5: Distillation results using our proposed
faithfulness-aware decoding methods as the teacher. We
abbreviate FactCC as FC and QuestEval as QE. Speed
is calculated by seconds per summary.

perform all faithfulness metrics with two iterations.
We stress that here all models only use greedy de-
coding, thus showing the potential of combining
decoding with training for more faithful models.

7 Related Work

Many of the related works of our proposed decod-
ing methods have been discussed in Section 3; here
we cover other related areas.

Decoding methods. A decoding method for text
generation explores an approximate search method
to select the best tokens to form a hypothesis.
Several works have critically analyzed different
decoding strategies for natural language genera-
tion, including beam search (Meister et al., 2020a;
Stahlberg and Byrne, 2019; Xu et al., 2022; Holtz-
man et al., 2020), best-first-search (Meister et al.,
2020b), and lattice (Xu et al., 2022). While these
works investigated the effectiveness of decoding
methods on generated outputs from the perspective
of diversity and repetitiveness, to our best knowl-
edge, none of the works have explicitly analyzed
their performance on faithfulness.

Distillation. Distillation aims at compressing the
knowledge from a larger model into a smaller
one. A conventional approach uses soft targets,
i.e. learning the logits of a teacher model rather
than final predictions (Buciluundefined et al., 2006;
Hinton et al., 2015; Kim and Rush, 2016). While
this method has shown to be very effective, it is
less applicable to our case where the underlying
distribution for the next probable tokens does not
necessarily change (for ranking, we do not mod-
ify the model scores at all) and thus not useful
to learn soft labels. Different from compressing
model size, our approach focuses on reducing the
computational cost during decoding. Our method

RL BS BS-Fact FactCC DAE ↓ QuestEval

Teacher 36.46 92.14 90.15 22.47 56.33 37.98
Iter. 1 36.59 92.07 89.80 23.52 58.78 37.46
Iter. 2 35.95 91.95 90.16 23.14 54.01 38.10
Iter. 3 35.09 91.73 90.48 22.77 50.66 38.86
Iter. 4 34.32 91.54 90.81 24.49 47.83 39.64
Iter. 5 33.60 91.34 91.11 25.52 45.85 40.39

Table 6: Iterative distillation results using
BEAM+RANKING as the teacher decoding method.
With two iterations, the student model is able to
outperform the original teacher model in terms of
faithfulness, and further iterations continuously improve
faithfulness.

is most similar to pseudo-labeling (Shleifer and
Rush, 2020), where we use generated summaries
as "hard" labels. We do not replace reference sum-
maries with our generated ones. Instead, we use
interpolation (Kim and Rush, 2016) to account for
both faithfulness and quality.

8 Conclusion

In this paper, we show a thorough analysis of the
effect of decoding strategies on faithfulness for
abstractive summarization. We present an analy-
sis of popular decoding strategies, as well as our
two newly proposed faithfulness-aware decoding
strategies, ranking and lookahead, that can further
improve faithfulness upon the base decoding meth-
ods. Finally, we show a simple (and optionally
iterative) distillation trick where the training of a
student model incorporates the summaries gener-
ated with more faithfulness-aware methods, and
the student model generates summaries of similar
faithfulness with minimal decoding time.

Future experiments could extend similar analysis
of faithfulness and factuality beyond summariza-
tion and develop a combination of heuristics that
also encompasses other aspects and styles.

9 Limitations

While the decoding strategies with lookahead show
improvement in faithfulness, they require a heavy
computational overhead, especially when they are
coupled with beam search for the base decoding
strategy and for generating the future summary.
We provide one solution with our distillation to im-
prove decoding speed. Many of the computations,
including the generated future summaries and the
faithfulness scores on them, during this online pro-
cess, are also later disregarded, similar to how any
candidates are pruned during beam search. We
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believe an interesting direction might be to store
the already generated future summaries so that the
decoding may directly use the future summary if it
is considered a good summary candidate.

10 Ethical Impact

While our work aims to reduce potential malicious
or unintended harmful effects, our methods rely
on the use of faithfulness metrics. The inherent
problems and biases when using such metrics have
been under-studied. Our decoding strategies can
also be applied to be used for other metrics, even
those that could be optimized for malicious intents.
Another aspect to consider is the environmental
impact of our proposed methods, as they require
large computations. We hope that our distillation
can mitigate this problem and future work can work
towards more environmentally friendly approaches
while improving faithfulness for safer use of large
models.
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A Experiments Details.

A.1 Datasets

We evaluate on XSum and CNN/DM. We use
the dataset processed and provided by DATASETS

(Lhoest et al., 2021).4 Both datasets contain En-
glish news articles and the corresponding sum-
maries. XSum contains 204045, 11332, and 11334
examples for training, validation, and test set, re-
spectively, and CNN/DM contains 287113, 13368,
and 11490 for the splits.

A.2 Metrics

We use the official code and follow the instruc-
tions to set up and run all the metrics we used.
We use the ROUGE package from https:
//github.com/google-research/
google-research/tree/master/rouge.
We report all scores of our models from single runs.
For BS and BS-Fact, we use the default model for
English (ROBERTA-LARGE). For DAE, we use the
sentence error, which considers the sentence to
contain an error if one of its arcs is predicted to be
not factual.

A.3 Decoding Details

Basic Decoding Method Details. We use the offi-
cial generation code provided by TRANSFORMERS

4The link to the processed data is found in https://
huggingface.co/datasets/xsum and https://
huggingface.co/datasets/cnn_dailymail.
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Figure 5: Annotation instructions to annotate factual consistency on Mechanical Turk.

Figure 6: Annotation instructions to annotate informativeness on Mechanical Turk.

(Wolf et al., 2020). We use a single NVIDIA V100
GPU to generate the summaries. Greedy and sam-
pling experiments take around 2 hours and beam
search variants take 4 hours.

Ranking. We do not need to do additional com-
putation as we already have the outputs of beam
search and the metric scores.

Lookahead. To reduce computational overhead,
we only calculate and incorporate the lookahead
heuristics for the top 5 tokens according to the
model score at each time step. Experiments us-
ing beam search or sampling to generate a future
summary can be found in Appendix C. We show
additional ablations on the length of the future sum-
maries and how the exploration changes with the
heuristics in Appendix E. For tuning the w, the
weight for the heuristics, we search over the inter-
val from 5 to 55 with a step of 5, and evaluate the
generated summaries on the development set. We

use the average of all metric scores, including RL
and BS so that we do not over-optimize for faith-
fulness. We find 25 to be optimal for CNN/DM
and 55 for XSum. The time to run for XSum is 33
hours, and that for CNN/DM is around 70 hours.

Distillation Details. We use the example code
from TRANSFORMERS to train summarization mod-
els. We follow the authors’ hyper-parameters to
train BART-Large models. We use 8 V100 GPUs
and the training time is around 5 hours. To gen-
erate the summaries for the training data, The BS-
Fact Ranker takes around 3 hours to generate the
summaries when parallelized across the 8 GPUs.
Lookahead takes 10 hours to generate the training
data split across 8 GPUs.

A.4 Human Evaluation Details

Human Evaluation on Faithfulness. The
screenshot of the annotation can be seen in
Figure 5. We required annotators to pass a custom
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RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
Nucleus p = 0.1 30.93 88.39 93.15 69.58 8.17 59.13
Nucleus p = 0.3 30.77 88.37 93.12 69.43 8.40 59.01
Nucleus p = 0.5 30.39 88.31 92.95 66.67 10.05 58.81
Nucleus p = 0.7 29.43 88.20 92.56 60.88 12.64 58.11
Nucleus p = 0.9 27.64 87.90 91.76 54.05 21.61 56.43
Beam k = 2 30.78 88.29 93.62 76.00 5.80 59.72
Beam k = 4 30.44 88.17 93.95 81.19 4.11 59.97
Beam k = 6 30.30 88.12 94.07 82.94 3.76 60.07
Beam k = 8 30.10 88.07 94.15 83.50 3.39 60.06
Beam k = 10 29.99 88.03 94.20 84.23 3.30 60.03

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Nucleus p = 0.1 31.08 91.24 88.61 21.63 76.07 35.04
Nucleus p = 0.3 31.19 91.25 88.62 21.51 76.35 34.98
Nucleus p = 0.5 31.08 91.24 88.63 21.11 75.31 34.99
Nucleus p = 0.7 31.24 91.24 88.62 21.26 76.11 35.01
Nucleus p = 0.9 31.15 91.26 88.62 21.04 76.20 34.98
Beam k = 2 36.76 92.13 89.38 22.98 64.62 36.82
Beam k = 4 36.96 92.14 89.42 23.00 63.81 36.97
Beam k = 6 37.09 92.14 89.43 22.70 63.71 37.00
Beam k = 8 37.09 92.13 89.44 23.05 63.52 37.02
Beam k = 10 37.11 92.12 89.45 22.97 63.49 37.05

Table 7: Full results of beam search and nucleus sam-
pling for fine-tuned BART-LARGE models. The trend
can still be seen under different beam sizes and top-p
values, where increasing k improves faithfulness and
increasing p degrades it.

qualification test consisting of three summaries
with factual errors. To pass the test, the annotators
had to correctly describe the factual errors in words.
Workers also needed to have previously completed
100 or more tasks with an acceptance rate of 95%
or higher. We recruited workers from countries
whose main language is English. To prevent any
one worker from dominating the results, we set a
maximum of 100 HITs per worker per dataset. The
payment for judging each summary was $0.22 plus
a bonus of $0.03. Annotators who spent more than
10 seconds per HIT and maintained high accuracy
on HITs with known answers obtained the bonus.
Annotators spent a median amount of 57.5 seconds
per HIT, which amounts to a pay of $15.65 per
hour. Krippendorff alpha (Krippendorff, 1980) for
the CNN/DM factuality annotation is 0.63, and
Krippendorff alpha for the XSum annotation is
0.57.

Human Evaluation on Informativeness. The
screenshot of the annotation can be seen in Fig-
ure 6. To achieve good quality, we set up a qualifi-
cation task of three documents with their associated
summaries. A selected pool of workers who had
passed previous factuality qualification tests was
allowed to take this current qualification test. The
workers who passed the current qualification test
were allowed to participate in this evaluation. In

RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.20 87.65 89.71 53.00 15.44 56.70
Nucleus p = 0.1 30.20 87.65 89.71 52.99 15.44 56.68
Nucleus p = 0.3 30.15 87.64 89.71 52.96 15.72 56.68
Nucleus p = 0.5 29.88 87.61 89.62 51.48 17.25 56.43
Nucleus p = 0.7 28.86 87.47 89.36 46.44 20.97 55.92
Nucleus p = 0.9 30.15 87.23 88.88 38.82 28.53 54.78
Beam k = 2 30.67 87.72 90.28 57.75 11.40 57.24
Beam k = 4 30.82 87.71 90.61 62.36 9.50 57.42
Beam k = 6 30.67 87.66 90.75 64.18 8.72 57.43
Beam k = 8 30.68 87.65 90.82 64.96 8.66 57.43
Beam k = 10 30.66 87.65 90.87 65.32 8.23 57.46

XSum

Greedy 38.53 92.45 89.05 24.53 68.33 35.75
Nucleus p = 0.1 38.53 92.44 89.05 24.50 68.33 35.76
Nucleus p = 0.3 38.42 92.42 89.02 24.10 69.23 35.68
Nucleus p = 0.5 37.85 92.33 88.97 23.14 70.07 35.51
Nucleus p = 0.7 36.13 92.09 88.80 22.95 72.72 35.27
Nucleus p = 0.9 33.76 91.68 88.51 22.46 76.23 34.73
Beam k = 2 39.09 92.53 89.13 23.58 67.72 35.90
Beam k = 4 39.35 92.58 89.19 22.64 67.16 35.97
Beam k = 6 39.32 92.57 89.21 22.89 66.86 35.98
Beam k = 8 39.37 92.57 89.21 22.71 66.73 35.97
Beam k = 10 39.43 92.57 89.23 22.75 66.48 35.96

Table 8: Full results of beam search and nucleus sam-
pling for fine-tuned PEGASUS-LARGE models. We
observe a similar observation as Table 7, showing that
the faithfulness trend holds for different models.

addition, we added the same three documents with
known answers to the evaluation and observed that
workers had 100% accuracy on them. We set the
same maximum of 100 HITs per worker per dataset
as in the factuality evaluation. The pay was $0.40
plus $0.10 bonus per HIT. Annotators spent a me-
dian time of 112 seconds per HIT, amounting to a
pay of $16.07 per hour. For inter-annotator agree-
ment, Krippendorff alpha (Krippendorff, 1980) for
the CNN/DM annotation is 0.22, and Krippendorff
alpha for the XSum annotation is 0.32.

B Full Analysis

Table 7 shows the full result. We see the general
trend where increasing beam size improves faith-
fulness and increasing p for sampling is not helpful
for faithfulness.

We similarly run the experiment on PEGASUS,
a 568M model specifically trained for the task of ab-
stractive summarization, with its respective check-
points.5 The result is presented in Table 8.

C Lookahead Methods

We show the result of combining different decod-
ing strategies for the base decoding strategy as well

5We use the checkpoint from https://huggingface.
co/google/pegasus-cnn_dailymail and https:
//huggingface.co/google/pegasus-xsum.
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Rouge-L BERTScore BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 53.71
Beam k = 10 29.99 88.03 94.20 84.23 3.30 60.03
Greedy + Greedy Lookahead 30.88 88.38 93.57 71.54 6.42 59.70
Greedy + Sampling Lookahead 30.67 88.35 93.54 78.28 7.09 59.72
Greedy + Beam Lookahead 30.63 88.32 93.85 82.07 5.33 60.13
Beam + Greedy Lookahead 28.66 87.84 95.32 86.10 1.68 63.69

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
Beam k = 10 37.11 92.12 89.45 22.97 63.49 37.05
Greedy + Greedy Lookahead 36.25 92.11 89.71 24.21 60.46 37.17
Greedy + Sampling Lookahead 36.24 92.10 89.55 23.97 62.35 36.90
Greedy + Beam Lookahead 36.17 92.07 89.62 23.58 61.90 37.10
Beam + Greedy Lookahead 35.27 91.94 90.78 23.38 50.04 39.24

Table 9: Lookahead results with different decoding strategies for base decoding strategies and the lookahead
generation strategies.

All CNN/DM XSum
Pearson Spearman Pearson Spearman Pearson Spearman
ρ p r p ρ p r p ρ p r p

FactCC* .20 .00 .30 .00 .36 .00 .30 .00 .07 .07 .19 .00
DAE* .18 .00 .20 .00 .27 .00 .22 .00 .03 .38 .33 .00

BS-Fact* .30 .00 .25 .00 .38 .00 .31 .00 .20 .00 .09 .02
QuestEval .19 .00 .20 .00 .21 .00 .19 .00 .16 .00 .09 .00

Comp. Avg .34 .00 .32 .00 .30 .00 .33 .00 .30 .00 .32 .00
Comp. Tuned .37 .00 .34 .00 .42 .00 .36 .00 .31 .00 .19 .00

Table 10: Partial correlations of metrics on the Frank
test dataset. Composite achieves the highest correlations
on the combined and XSum dataset. * indicates results
copied from the original work.

as for lookahead in Table 9 shows the result. We ex-
periment with greedy and beam search as the base
decoding strategies. For greedy, we experiment
with all three decoding strategies for lookahead.
For beam search, we are unable to run it with sam-
pling or beam search due to the large computational
cost. Interestingly, using beam for lookahead does
not provide additional gains. We suspect that this
is because exploring the future with more beams
cannot guarantee that the base decoding strategy
is able to explore them, as it is limited to selecting
only the top tokens.

D Composite Metric

As described in Section 3.1, we train the com-
posite metric on FACTCOLLECT and tune it on
FRANK (Pagnoni et al., 2021). We use the test
set of Pagnoni et al. (2021) for evaluation and the
rest for tuning the composite metric. The resulting
weights for the metrics are 0.29, -0.29, 1.97, and
0.94 for the FactCC, DAE, BS-Fact, and QuestEval,
respectively, and the intercept is -1.91. We addi-
tionally compute partial correlations on FRANK,

RL BS BS-Fact FactCC DAE ↓ QuestEval

Greedy 26.36 89.09 88.93 89.57 75.34 38.39
Beam 27.52 87.56 89.41 87.20 60.21 39.44
BEAM+RANKING 27.60 87.62 89.64 91.11 47.01 41.91

Table 11: Results for ranking on the WikiHow dataset.

shown in Table 10. We see that the composite
is able to further increase the correlations in all
settings except for XSum’s Spearman correlation.
Ablations on the effect of ranking with a single
metric in Appendix E.

Since FACTCOLLECT only contains annotations
on XSum and CNN/DM, we analyze whether the
composite metric is robust for another dataset and
domain. We use WikiHow (Koupaee and Wang,
2018) and decode using PEGASUS6 with greedy
and beam decoding. The result of applying ranking
to the beam output can be seen in Table 11. We see
consistent gains in all faithfulness metrics when we
apply ranking, showing its robustness of improving
faithfulness in another domain.

E Ablations

We present several ablation studies for our pro-
posed faithfulness-aware decoding methods. More
ablation studies exploring how lookahead explores
the search space can be found in Appendix E.

Lookahead Length. We first present the result
of using the lookahead heuristics but with l =
0. This means that at each time step, we do
not use future heuristics but directly evaluate the

6We use the checkpoint PEGASUS-WIKIHOW (https:
//huggingface.co/google/pegasus-wikihow).
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Figure 7: Faithfulness score of the lookahead summaries at each time step. Adding lookahead as the heuristics
improves the search space to generate more faithful summaries.

RL BS BS-Fact FactCC DAE ↓ QuestEval

CNN/DM

Greedy 30.93 88.39 93.15 69.61 8.15 59.13
l = 0 30.71 88.34 93.13 70.41 8.19 58.65
l = full 30.75 88.35 93.90 71.54 5.70 60.13

XSum

Greedy 36.16 92.03 89.28 23.53 65.35 36.51
l = 0 35.73 92.00 89.39 23.43 64.06 36.55
l = full 36.25 92.11 89.71 24.21 60.46 37.17

Table 12: Lookahead ablation with different lengths.
l = 0 provides the faithfulness heuristic score only on
the partially generated summaries while l = full is our
lookahead model that evaluates on the full future sum-
mary. The faithfulness score calculated on the partial
summaries does not provide an effective estimate that
improves the faithfulness of the generated summary.

faithfulness of the already generated partial sum-
maries as the additional score. The result us-
ing GREEDY+LOOKAHEAD is shown in Table 12.
Compared to greedy decoding, adding the faithful-
ness score of the current partial summary shows
mixed results; the heuristic can only slightly im-
prove BS-Fact, DAE, and QuestEval for XSum.
However, we only see substantial gain when the
future is taken into account (i.e. l = full). This
shows the necessity of using the full summary to
achieve the full potential of current faithfulness
metrics.

Ranking with Faithfulness Metrics. Next, we
present the result for ranking with each respective
faithfulness metric. The result is shown in Table 13.
Generally, optimizing for one metric will lead to
improvement in other faithfulness metrics. While
optimizing each of the faithfulness metrics will
undoubtedly perform the best when we use that
metric for evaluation, the composite metric is able
to achieve a similarly good score for all faithfulness

Ranker RL BS BS-Fact FC DAE ↓ QE COMP

CNN/DM

First 29.99 88.03 94.20 84.23 3.30 60.03 74.68
BS-Fact 29.81 88.04 94.64 84.08 3.04 60.41 75.94
FC 29.98 88.04 94.20 90.75 3.00 60.06 76.75
DAE 30.00 88.03 94.20 84.28 1.92 60.04 75.11
QE 30.27 88.16 94.14 82.81 2.83 63.26 77.33
Comp. 30.08 88.12 94.31 90.27 1.92 62.57 79.51

XSum

Top 37.11 92.12 89.45 22.97 63.49 37.05 8.08
BS-Fact 36.46 92.14 90.15 22.10 56.33 37.98 12.15
FC 36.98 92.11 89.44 41.93 63.47 37.01 13.67
DAE 36.94 92.11 89.54 23.27 50.82 37.28 12.24
QE 36.36 92.06 89.61 23.07 60.35 41.17 13.20
Comp. 36.42 92.10 89.79 40.11 51.48 40.10 20.20

Table 13: Ranking results with different faithfulness
metrics. Top is the best summary from beam search,
and each subsequent rows represent the ranker using
the corresponding faithfulness metric. We abbreviate
FactCC as FC, QuestEval as QE, and Composite as
Comp.

metric that we are considering.

Evaluating the Search Space. We hypothesize
that by incorporating lookahead, we can improve
the search space even when a few tokens are gener-
ated. To better understand this, we greedily decode
the full summary at each time step given the pre-
fix similar to how lookahead works. We then use
BS-Fact and DAE to score all generated summaries
and analyze the faithfulness score at each time step.
Here, we focus on XSum and compare greedy and
GREEDY+LOOKAHEAD. The plots of faithfulness
scores using the current prefix to generate the full
summaries are shown in Figure 7, where we see
the benefit of having the lookahead heuristics. For
BS-Fact, we see a large gap between the two meth-
ods especially when t is between 5 and 50. Though
it may be less surprising as this is the faithfulness
metric that the lookahead heuristic optimizes on,
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Figure 8: Faithfulness and abstractiveness tradeoff re-
sults on the 200 CNN/DM examples used for human
annotation. While our proposed methods are less ab-
stractive, the gain in faithfulness is much larger than the
decrease in abstractiveness.
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Figure 9: Faithfulness and Abstractiveness tradeoff re-
sults on the full examples XSum test set. Faithfulness
is calculated by taking the average across all automatic
faithfulness metrics.

the heuristic can nevertheless prevent the score to
dip, which we see for greedy search between t = 5
to t = 40. This shows that it is able to lead the
model to a more faithful path to prevent straying
away from a less faithful path. When we evaluate
DAE, we show that optimizing on BS-Fact with
lookahead heuristic can consistently improve the
score for all lengths.

F Abstractiveness

We first show the same tradeoff result in CNN/DM
in Figure 8. BEAM+LOOKAHEAD+ABSTR does
achieve a slightly higher MINT score while also
improving faithfulness.

We also extend the analysis to the whole test
dataset and show the faithfulness score by taking
the average of all faithfulness metrics (Avg.). Since
DAE is an error rate, we subtract the score from
100 so that a higher score means it is more faithful.
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Figure 10: Faithfulness and Abstractiveness tradeoff
results on the full examples CNN/DM test set. Faith-
fulness is calculated by taking the average across all
automatic faithfulness metrics.

We do not use the composite metric as the ranking
directly optimizes for it.

We can see a similar trend with the average of
faithfulness metrics for both datasets in Figure 9
and Figure 10, where the gain in faithfulness out-
weighs the decrease in abstractiveness. The differ-
ence from the result using human faithfulness score
is that BEAM+RANKING achieves the highest av-
erage score since ranking with composite metric
optimizes the faithfulness metrics.
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