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Abstract

Large pre-trained language models have
achieved impressive results on various style
classification tasks, but they often learn spuri-
ous domain-specific words to make predictions
(Hayati et al., 2021). While human explanation
highlights stylistic tokens as important features
for this task, we observe that model explana-
tions often do not align with them. To tackle
this issue, we introduce StyLEx, a model that
learns from human annotated explanations of
stylistic features and jointly learns to perform
the task and predict these features as model ex-
planations. Our experiments show that StyLEx
can provide human-like stylistic lexical expla-
nations without sacrificing the performance
of sentence-level style prediction on both in-
domain and out-of-domain datasets. Explana-
tions from StyLEx show significant improve-
ments in explanation metrics (sufficiency, plau-
sibility) and when evaluated with human an-
notations. They are also more understandable
by human judges compared to the widely-used
saliency-based explanation baseline.1

1 Introduction

People use style as a strategic choice for their per-
sonal or social goals in communications, making
style analysis a long-studied field in NLP (Hovy,
1987; Kabbara and Cheung, 2016; Kang and Hovy,
2021). While large language models have obtained
state-of-the-art results on many NLP tasks, they
have been shown to overfit to spurious correlations
in data across several datasets (Sen et al., 2021;
Schlangen, 2021; Bras et al., 2020). Hayati et al.
(2021) found a phenomenon in style classification
tasks where the model’s word-level explanation do
not align with human’s stylistic cues (stylistic cues
are words that signify the style of a text). For in-
stance, words such as “performances” and “wrench”

∗ currently at Google
1Code and data are publicly available at https://github.

com/minnesotanlp/stylex

    :        StyLEx        :  Integrated Gradient      : Both

all the performances are top notch  and once you 
get through the accents all or nothing becomes an 
emotional though still positive wrench of a sit

StyLEx… with top grade …
     0     1      1

positive
Sentiment:

.. top notch ..
Explanation:

  
Human

annotation

StyLEx 
context-aware 
stylistic lexica

Human-curated 
stylistic lexicon

dictionary
 

emotional
….

top
fantastic

awesome

positive
notch

lovelyFigure 1: StyLEx classifies the input sentence’s style
and provides lexical explanation. Compared to expla-
nations computed by the integrated gradient method
(Mudrakarta et al., 2018), StyLEx can find more accu-
rate stylistic words. Green highlight refers to human’s
annotated positive word, pink for StyLEx, blue for base-
line, and purple for both StyLEx and the baseline.

in Figure 1 are marked as important cues for senti-
ment by a saliency method. However, they are dif-
ferent from words that humans perceive as essential
features for predicting the style (“top,” “notch”).

Prior research in style have developed stylistic
lexicon dictionary to identify the style of a text,
such as sentiment or emotion, and in-turn incorpo-
rated them for style classification tasks (Moham-
mad and Turney, 2010; Hutto and Gilbert, 2014;
Tausczik and Pennebaker, 2010). While lexicon-
based matching methods (Taboada et al., 2011;
Eisenstein, 2017) provide interpretability for the
task, they lack coverage and do not incorporate the
context for prediction. On the other hand, current
large scale models like BERT (Devlin et al., 2019)
are effective at style classification. However, their
explanations often reveal that the model do not rely
on the stylistic words to make the prediction. In
this work, we hypothesize that leveraging stylis-
tic lexica along with the effectiveness of a large
scale model like BERT can not only predict style
but also provide meaningful explanations that align
with human style explanations.

Towards this, we introduce StyLEx, a style clas-
sification model that jointly learns to align human-
annotated stylistic cues as explanations and then
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predict the style of the overall sentence based on the
cues (Figure 1). StyLEx uses a semi-supervised ap-
proach to expand the stylistic words from a handful
number of human-annotated stylistics words. First,
we train StyLEx using existing small human stylis-
tic word annotation from Hayati et al. (2021). Then,
we obtain predicted stylistic words on the larger
benchmarking style datasets and retrain StyLEx on
this expanded data to predict both the sentence’s
style label and the stylistic lexical explanation.

In this study, we show that for both in-domain
and out-of-domain data, StyLEx not only shows
competitive classification performance with BERT-
based model, but also generate stylistic lexical
explanations that have higher alignment with hu-
man explanations. In terms of explanation qual-
ity, StyLEx surpasses the baseline method across
multiple explanation metrics. For the sufficiency
metric, we improve upon the baseline by 14.12%
on the average. For plausibility, StyLEx’s lexical
explanations correlate highly with human lexical
annotation ground truth with an average Pearson’s
r correlation score of 44% compared to the base-
line’s correlation score of 3.9%. Finally, we found
that 72.5% of StyLEx’s explanations are more pre-
ferred by human judges compared to the baseline.

2 StyLEx: Style Classification with
Human Lexical Annotations

2.1 StyLEx Model Architecture
StyLEx is a joint model for word-level and
sentence-level style prediction. Unlike a multi-task
learning approach where tasks are independent of
each other, StyLEx exploits these stylistic word
scores obtained from human annotation and then
helps predict the sentence’s styles. As displayed
in Figure 2 (left), StyLEx involves three modules:
a transformer-based (Vaswani et al., 2017; Devlin
et al., 2019) encoder, a word-level style predictor
and a sentence-level style predictor. This work is
based on BERT although the encoder can be ap-
plied to any transformer architecture.

Given an input of token sequence x =
{x1, ..., xn} and its corresponding set of stylistic
word scores {s1, ..., sn}, we encode x using a pre-
trained transformer model. We extract the final
layer output as h = {h1, ...,hn} and feed h to the
word-level style prediction layer which is a neural
classifier that outputs stylistic word logits for each
word lwordi computed as follows:

lwordi = Wwordhi + bword

where i ∈ {1, .., n}, Wword is a matrix with the
size H × dlword

, and bword ∈ Rdlword is the bias
term. H is the size of the default hidden layer in
BERT which is 768 and dlword

denotes the number
of classes of each style (e.g., positive or negative
word in a sentiment classification task).

For the sentence-level style classification, we
first take both the encoded representation h and
stylistic word logits lword. We then apply max
pooling on the aggregation of h⊕ lword along the
sequence, resulting in vector v ∈ RH+dlword con-
sisting of important logits. Finally, we input v
into the sentence-level style classifier defined as
follows:
lsentence = softmax(Wsentencev + bsentence)

Psentence = argmax (lsentence)

where lsentence ∈ R2 denotes sentence-level style
logits, Wsentence is a matrix with the size (H +
dlword

) × 2, and Psentence is the index of the pre-
dicted sentence-level style.

During training, StyLEx’s objective is to max-
imize the probability of the sentence’s style and
stylistic word scores. The loss for both sentence-
level style predictor and word-level style predictor
is computed using binary cross entropy loss func-
tion. To jointly train the model, we optimize the
following loss:

L = Lstyle + α× Lword

where α is a regularization hyperparameter.

2.2 StyLEx Model Training
To train StyLEx, we need a dataset of stylistic
sentences along with their corresponding stylistic
words (§2.2.1). We use the HUMMINGBIRD dataset
(Hayati et al., 2021) that contains 500 sentences
with word-level style annotation for obtaining the
stylistic lexical explanation. Due to HUMMING-
BIRD’s small size, we first train StyLEx on HUM-
MINGBIRD and then predict pseudo stylistic words
on larger benchmark style datasets (> 6.8k sen-
tences in the training sets) for training the final
StyLEx model for both sentence classification and
lexical explanation.

2.2.1 Datasets
Following Hayati et al. (2021), we explore the same
set of eight styles used in the dataset: politeness,
sentiment, offensiveness and five emotions (anger,
disgust, fear, joy, and sadness) for style classifica-
tion tasks. We use three sets of publicly available
style datasets for our experiments as follows.
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Figure 2: (a) StyLEx model architecture (left). Our model has two new modules: a word-level style predictor and
a sentence-level style classifier. An aggregator appends the word-level style logit for each word to the hidden layer
representations of each word and takes the max pooling of this aggregation. (b) Model training (right). Human
labels come from HUMMINGBIRD (Hayati et al., 2021) for stylistic word scores and from ORIGINAL datasets from
sentence-level style classification. (1) We train a stylistic word-level prediction model on HUMMINGBIRD dataset in
order to (2) obtain pseudo-stylistic words of sentences in the ORIGINAL datasets. (3) Then we train another stylistic
word and sentence prediction model on this ORIGINAL sentences, now labeled with stylistic words.

HUMMINGBIRD is a multi-style dataset anno-
tated with human perception scores on its important
stylistic lexicons (Hayati et al., 2021). HUMMING-
BIRD contains 500 sentences based on eight style
datasets: politeness, sentiment, offensiveness, and
five emotions (anger, disgust, fear, joy, and sad-
ness). Three different crowd workers annotate each
word in a sentence with 1 if they perceive the word
as stylistic and 0 if not. The human perception
score for a word is the average score of these anno-
tators’ labels. This perception score is what we call
as stylistic word score and it is within the range [-1,
1]. We use HUMMINGBIRD for training StyLEx’s
word-level style predictor.

ORIGINAL datasets are used by Hayati et al.
(2021) to curate HUMMINGBIRD.2 Since some
style labels in ORIGINAL may contain continuous
numbers rather than binary labels, we follow the
same setting of Hayati et al. (2021) which only uses
binary labels: polite or impolite, positive or nega-
tive, offensive or not offensive, anger or not anger,
and so on. The politeness dataset comes from
StackExchange and Wikipedia requests (Danescu
et al., 2013) (9.8k training instances). The senti-

2We will refer to these individual datasets as “ORIGINAL”

ment dataset is a collection of movie review texts
(Socher et al., 2013) (117k training instances). The
offensiveness dataset is from Twitter (Davidson
et al., 2017) (20k training instances). The emotions
dataset (Mohammad et al., 2018) is collected from
tweets (6.8k training instances). For all these ORIG-
INAL datasets, we use the default train/dev/split as
explained in their papers.

Out-of-Domain (OOD) datasets are used to
evaluate StyLEx’s performance on different do-
mains. For each style, we use data from differ-
ent sources or topics, but their style labels are in
HUMMINGBIRD and ORIGINAL datasets. For po-
liteness, we use the polite and impolite sentences
from the Enron email corpus (Klimt and Yang,
2004; Madaan et al., 2020). For sentiment, we test
StyLEx on 5-core reviews from Amazon review
dataset (Ni et al., 2019) for each product categories,
except for movie reviews. We exclude movie re-
views because it would be similar to the domain
of the ORIGINAL’s sentiment dataset. We convert
ratings of 4-5 to positive labels and ratings of 1-2 as
negative labels. For offensiveness, we use OffensE-
val (Zampieri et al., 2019) dataset for offensiveness.
For five emotions, we collect Reddit comments
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Style ORIGINAL (%) OOD (%)
BERT StyLEx BERT StyLEx

Politeness 67.96 65.84 71.45 74.18
Sentiment 96.52 96.59 86.70 86.99
Offensiveness 97.75 97.81 88.62 89.00
Anger 89.04 89.01 77.49 77.51
Disgust 86.50 86.90 74.06 74.63
Fear 95.66 95.63 78.42 78.48
Joy 88.02 88.12 75.20 74.26
Sadness 88.38 88.41 78.37 78.71

Table 1: For the sentence-level style classification task,
StyLEx does not sacrifice the task performance (F1-
scores) of the BERT model across all of the style tasks
across both ORIGINAL and OOD settings.

from GoEmotions corpus (Demszky et al., 2020).3

2.2.2 Training
The whole pipeline of StyLEx model training is
in Figure 2 (right). First, we train a stylistic word
score prediction model with the same StyLEx ar-
chitecture in Figure 2 (left). We do this since the
sentences in the benchmarking style datasets do not
have human annotations of stylistic word scores.
We then use a semi-supervised learning approach
called, pseudo-labeling (Lee et al., 2013; Rizve
et al., 2020), to label the stylistic words. Now
the sentences in ORIGINAL contain stylistic word
scores which are output by the stylistic word pre-
dictor. Finally, we use both HUMMINGBIRD and
ORIGINAL for training another model of StyLEx
which predicts sentence-level binary style labels
(polite and impolite, positive and negative etc.,)
and provides lexical explanation scores within the
range of [0, 1].4

3 Evaluation on Style Classification

3.1 Baseline
To assess StyLEx’s classification performance, we
compare it with a fine-tuned BERT-based classifier
as a baseline. The training data for the baseline is
also a combination of HUMMINGBIRD and ORIG-
INAL. For explanation evaluation, we compare
StyLEx’s explanation with the commonly-used ex-
planation method called integrated gradients (Mu-
drakarta et al., 2018; Sundararajan et al., 2017), im-
plemented in Captum5. Integrated gradient, which

3More details on the datasets are in Appendix A.1.
4Other implementation details are in Appendix A.2.
5https://captum.ai

can be viewed as an approximate method of esti-
mating Shapley values, is defined as follows. For
the input sequence of words x and a neural network
function F , an attribution score (the explanation)
for each word is defined as the gradient between
the input x and baseline x′ of the function F where
x′ is a zero scalar.

3.2 Results

In our experiment, we have eight StyLEx mod-
els for each style: politeness, sentiment, offen-
siveness, and five emotions. For each style, we
run StyLEx on the ORIGINAL test sets and OOD
datasets for five times with different seeds and re-
port the average of F1-scores in Table 1. For ORIG-
INAL datasets, StyLEx achieves higher F1 scores
compared to the fine-tuned BERT model on sen-
timent, offensiveness, disgust, joy, and sadness.
Overall, we observe that StyLEx does not sacrifice
task performance of the state-of-the-art classifiers
while predicting stylistic word scores. When tested
on the OOD test sets, StyLEx achieves higher F1
score against the fine-tuned BERT model for all
styles. Politeness has the greatest improvement
from 71.48% to 74.18% since we observe that the
ORIGINAL dataset of politeness contains many spu-
rious content words. When we use bigger language
models such as RoBERTa (Liu et al., 2019), XLNet
(Yang et al., 2019), and T5 (Raffel et al., 2020) for
StyLEx, StyLEx still has better results than the
baseline for five styles: sentiment, offensiveness,
anger, and disgust.

From example sentences from the test sets in
Table 2, we can see how StyLEx helps task perfor-
mance. ORIG-1 and ORIG-2 sentences show how
StyLEx can capture stylistic words and correct the
sentence’s style label to disgust. For example, “in-
sult” and “injury” in ORIG-1 are initially labeled
by the integrated gradient method as unimportant
for identifying disgust, but StyLEx identifies the
words as stylistic cues. Similarly, for the word
“downfall” in ORIG-2, StyLEx finds it as offensive,
but the baseline does not. StyLEx also has a higher
stylistic word score for indicating “stogie” as an
offensive word.

As we look at the politeness classification results,
we find that most of the incorrect cases are when
StyLEx mislabels subtle impolite sentences as po-
lite. As we observe in Table 2 ORIG-3, StyLEx
finds the word “please” as a polite cue, but the
ground truth label of the sentence is impolite. We

2846

https://captum.ai


ID Model Sentence with Predicted Stylistic Word Scores Sentence Style
Incorrect Baseline Prediction → Correct StyLEx Prediction

ORIG-1
StyLEx ... because i’m gonna ’ add insult to injury Disgust
Baseline ... because i’m gonna ’ add insult to injury Not Disgust

ORIG-2 StyLEx ... yet you say i’m a stogie you’re your own downfall Offensive
Baseline ... yet you say i’m a stogie you’re your own downfall Not Offensive

Correct Baseline Prediction → Incorrect StyLEx Prediction

ORIG-3
StyLEx please put them all back are you on dsl Polite
Baseline please put them all back are you on dsl Impolite

ORIG-4
StyLEx

... can’t just be mean and do horrid things busy without
Not Fearpaying the price

Baseline
... can’t just be mean and do horrid things busy without

Fearpaying the price

Table 2: Error analysis on prediction-flipped sentences. Baseline refers to sentence-level style prediction result by
fine-tuned BERT model and highlights are stylistic words found by the integrated gradient method. Green highlights
on the words mean that the model predicts high positive word-level stylistic scores; red for the opposite label (e.g.,
impolite or negative). Sentence Style is a model’s sentence-level style prediction marks correct prediction and
denotes incorrect prediction.

then inspect its continuous score from the origi-
nal politeness dataset by Danescu et al. (2013). It
turns out that its politeness score is −0.38 in the
range of [-2, 2] as -2 being the most impolite sen-
tence. This shows that this sentence score is closer
to neutral than impolite. This finding also reflects
how HUMMINGBIRD dataset has been collected: as
mentioned in Hayati et al. (2021), words from the
offensive dataset (mostly swear words) are often
labeled as impolite by human annotators. Thus,
it may bias the annotators’ view that sentences
with impolite labels are not as bad as offensive sen-
tences, making them not mark offensive sentences
as impolite. Therefore, for such subtle impolite
sentences, human annotators in HUMMINGBIRD

may not label the sentence and words as impolite.
In contrast, StyLEx misclassifies anger sen-

tences as not anger and fear as not fear. As we look
at ORIG-4 in Table 2, StyLEx weakly finds fear
cues (“horrid”, “things”) but they do not help in
boosting the model to predict the sentence as fear.
We conjecture that this is because there are very
few training samples labeled with fear and fear has
quite low word-level inter-annotator agreement as
reported in Hayati et al. (2021).

4 Style Explanation Evaluation

We investigate StyLEx’s explanations if they are
sufficient, plausible, and understandable following
previous works (DeYoung et al., 2020; Jacovi and
Goldberg, 2020; Wiegreffe and Marasovic, 2021;

Rajagopal et al., 2021). Jacovi and Goldberg (2020)
define that a faithful interpretation represents a
model’s reasoning process. To evaluate whether
StyLEx’s explanations are faithful, we run a suffi-
ciency test that evaluates whether the model expla-
nations alone are highly relevant for predicting the
label (Jacovi et al., 2018). Meanwhile, we measure
plausibility to examine whether the explanation is
agreeable to humans (DeYoung et al., 2020). Fi-
nally, understandability measures if a user is able
to understand model explanations (Rajagopal et al.,
2021). For investigating sufficiency and plausi-
bility, we run automatic metrics. To assess un-
derstandability, we ask human judges to choose
the explanation that can be better understood by
a non-expert between StyLEx and the integrated
gradients (IG) method.

4.1 Sufficiency

Following Jain et al. (2020); Rajagopal et al.
(2021)’s sufficiency test, we fine-tune a BERT
model on the top-k words as explanation instead
of the whole sentence. We limit an explanation to
contain 30% words of the average sentence length
for each of the style datasets. These words are
ranked based on their importance score by the base-
line integrated gradient method and StyLEx for all
the positive stylistic words (polite words, positive
words, offensive words, angry words).

In Table 3, we can see that explanations from
StyLEx show much higher predictive performance
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Style ORIGINAL OOD
IG StyLEx IG StyLEx

Politeness 43.92 63.08 52.89 8.19
Sentiment 87.18 89.39 64.93 77.52
Offensiveness 84.87 91.26 82.93 84.75
Anger 68.36 86.90 53.76 73.99
Disgust 82.54 85.91 71.36 75.76
Fear 87.82 96.10 35.85 65.26
Joy 45.54 83.16 55.49 72.71
Sadness 70.49 87.94 47.83 70.95

Table 3: The results for sufficiency test on the ORIGI-
NAL and OOD data show the F1 scores on top-k words.
IG stands for integrated gradient.

compared to explanations extracted by the in-
tegrated gradient method for all styles in both
datasets, ORIGINAL and OOD. This result sug-
gests that human-like stylistic words are much
more strongly predictive of a sentence’s style com-
pared to the gradient-based explanation methods
that often rely on content words as an explanation.
This indicates that StyLEx’s explanations are rel-
atively more faithful compared to the integrated
gradients based method.

4.2 Plausibility

We use two approaches to measure the agreement
between StyLEx’s lexical explanations and stylis-
tic words perceived by humans to assess the plau-
sibility of StyLEx’s explanations. In the first ap-
proach, we compare StyLEx’s stylistic words on
the HUMMINGBIRD test set and compare it with
the ground truth human perception scores in HUM-
MINGBIRD. Second, we compare StyLEx’s top-k
stylistic words with existing expert-curated stylistic
lexicon dictionaries. The domain of the existing
expert-curated stylistic lexicon dictionaries could
be different from the domain of the datasets in
our study which range from social media texts to
Wikipedia. However, it is still useful to compare
how much StyLEx and the baseline agree human
experts on identifying stylistic words.

Figure 3 shows a scatterplot of StyLEx vs. the
integrated gradient. X-axis represents the Pearson’s
r correlation score on the HUMMINGBIRD test
set. Y-axis is the percentage of overlapping words
between the important words found by StyLEx
and the baseline compared with the human-curated
style lexicon dictionary. We calculate the overlap-
ping word percentage as follows. We compute how

offensiveness offensiveness
fear

fear
politenesspoliteness

angerjoy
sadness
disgust

sentiment
sentiment

disgust
sadnessjoy

anger

Figure 3: Plausibility experiment result. There are two
points for each style in this plot. A blue circle point is for
the baseline IG method and a red star point for StyLEx.
X-axis is Pearson’s r correlation score for each style.
Y-axis is the percentage of stylistic sentences with style
words appearing in the existing style lexicon dictionary.

many of the top 30% of the stylistic words in the
ORIGINAL datasets found by StyLEx or baseline
appear in human-curated dictionaries for the emo-
tion/sentiment/offensive lexicons.

In Figure 3, the higher the Pearson’s correlation
score is (to the right), the better the explanation
words produced by the model (StyLEx or base-
line) are aligned with human perception ground
truth from HUMMINGBIRD. The dashed lines show
how much StyLEx’s generated stylistic words align
more with human annotations for stylistic words
from both HUMMINGBIRD and human-curated
stylistic lexicon dictionaries.

(1) Correlation with human perception. We in-
vestigate how similar StyLEx’s explanations are
with human perceptions. To do so, we compute
the Pearson’s correlation r between stylistic word
scores predicted by StyLEx and annotated by hu-
mans from HUMMINGBIRD annotations for each
word by concatenating all the predicted stylistic
word scores. Our correlation score is different from
Hayati et al. (2021) because we split the Humming-
bird dataset into a training set and test set even
though we use the same human perception scores
and the integrated gradient method. The corre-
lation score we reported in Figure 3 is from the
HUMMINGBIRD test set.

In Figure 3 (vertical trend), we can see that
StyLEx explanations correlate more with ground
truth human perception for all styles, as red stars
are stretched to the right. Sentiment and offen-
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Style Both StyLEx Integrated gradient

Positive good, fun, love associate, develop, instruct deserve, endure, football
Negative bad, horror, silly mess, chaos, disappoint maternal, banger, yell
Offensive bitch, bitches, pussy blind, racist, panties fairy, amateur, fisting
Anger angry, anger, awful frowning, scare, lose belt, campaigning, destroying*
Disgust awful, terrible, angry dismal, frowning, animosity congress, finally, sentence*
Fear fear, anxiety, nervous horrid, war, threaten rejects, mum, beating
Joy happy, love, good faith, sing, succeed deal, independence, football
Sadness depression, sadness, lost bad, offended, leave funeral, bloody, case*

Table 4: Three important words found by StyLEx ( ) and the integrated gradient method ( ) that appear in the
stylistic lexicon dictionary.* = words only appear one time in the test data.

siveness are styles that have the highest correla-
tion scores (60.53% and 64.09%) while fear is the
lowest (20.17%)). Explanations from integrated
gradient correlate very loosely with human per-
ception ground truth with sentiment as the highest
(11.89%) and joy negatively correlates with human
perceptions (-2.55%).

(2) Comparison with stylistic lexicon dictionar-
ies. We then investigate how similar the stylistic
words found by StyLEx are to the stylistic words
curated by humans in the existing lexicon dictio-
nary. We use sentiment emotion lexicons from Mo-
hammad and Turney (2010) and offensive lexicons
from von Ahn’s research group (2021).6 Using the
same set up of sufficiency test, we select top-30%
stylistic words from each sentence in ORIGINAL

datasets with the positive style label. Then we
check if at least one of these words appear in the
existing lexicon dictionary and compute its average
across all training samples.

In Figure 3 (horizontal trend), we see that
StyLEx consistently has higher percentage of word
occurrences in the lexicon dictionary compared to
the integrated gradient method where fear has the
highest percentage difference (15.78% → 80.43%)
and offensiveness has the lowest percentage change
(87.67% → 89.99%). Averaging across all styles,
we find that 56.70% of the stylistic sentences with
StyLEx stylistic words appear in the existing style
lexicon dictionary while integrated gradient only
identifies 37.01% of those words.

The score is higher for offensiveness than for
sentiment or emotion. We observe that people use
more offensive words in social media, which is the
source for dataset collection. We also examine the

6We couldn’t find a publicly available politeness lexicon
dictionary.

0 20 40 60 80 100
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Sentiment

Offensive

Anger

Disgust

Fear

Joy

Sadness

All Styles

Human Evaluation Result

Integrated Gradient StyLEx

%

Figure 4: Human evaluation results. X-axis is the per-
centage of explanations preferred by human judges.

lower occurrence for emotions. From our analysis,
we found that the emotion lexicon dictionary con-
tains several colloquially rare words “aberration”
or “meritorious”, leading to a very low overlap with
the datasets that we used for the analysis.

We also take a closer look at how many and the
nature of important words are captured by StyLEx
and/or the integrated gradient method as shown
in Table 4. These word scores are obtained by
averaging their scores and then we sort them based
on these average scores. In general, we find that
StyLEx can find more diverse stylistic words as
defined in the existing lexicon dictionary for all
styles except for positive sentiment. Some emotion
words found by the integrated gradients only appear
rarely in the data (mostly only once).

4.3 Understandability

To investigate the quality of StyLEx’s explanation,
we ask human judges to evaluate StyLEx’s expla-
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nations compared to baseline explanations. Under-
standability asks whether human judges understand
our explanation better than the explanation com-
puted using integrated gradients. For this study,
we randomly select 20 stylistic sentences for each
of the eight styles, resulting in total 160 sentences.
These 20 sentences are constructed by 10 sentences
from ORIGINAL test set and 10 sentences from
OOD test set. We normalize the stylistic word
scores for sentence length across all sentences.

A human judge is shown two versions of the
same sentence with different anonymized high-
lights, as shown in Figure 1. We then ask three
different human judges to select (through Amazon
Mechanical Turk) the explanation that was more
understandable. Each worker annotated 20 sen-
tences of the same style. The order of explanations
is randomized to remove bias. We say that an expla-
nation by a method is preferred by human judges
when the majority choose that method. If the ma-
jority chooses a method for all the 20 sentences,
the X-axis score will be 100%. Results in Figure
4 show that across all styles (160 pairs of explana-
tions), StyLEx gives an overall gain of 27.5%.

5 Related Work

Styles in NLP Research on style in NLP has ad-
dressed various tasks including style classification
(Danescu et al., 2013; Socher et al., 2013), style
transfer (Rao and Tetreault, 2018; Li et al., 2018),
style and content disentanglement (John et al.,
2018; Zhu et al., 2021), and multiple style analysis
(Hayati et al., 2021; Kang and Hovy, 2021). This
work focuses on understanding stylistic variation
in style classification. Style classification models
often produce spurious features (Sen et al., 2021;
Schlangen, 2021; Bras et al., 2020), motivating
us to leverage stylistic variation from human per-
spectives to distinguish between stylistic words and
content words. Past work have used stylistic lexica
for classification (Taboada et al., 2011; Eisenstein,
2017), but in this work, we fine-tune the language
model to generate these lexica and use them to help
style prediction. Our work is most closely related
to Hayati et al. (2021), but they do not develop any
new models to use the human perception scores
as explanations. Moreover, while linguistics styles
can cover an author’s writing style or figurative lan-
guage, we limit our study to high-level style as used
in Kang and Hovy (2021); Hayati et al. (2021).

Explainable NLP Heat maps generated from at-
tention values from the models (Bahdanau et al.,
2014) are widely used as an interpretability tool,
but these attention maps are often unfaithful and
unreliable (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019; Zhong et al., 2019; Pruthi et al., 2020).
Saliency maps computed via gradients offer an al-
ternative (Sundararajan et al., 2017; Smilkov et al.,
2017; Mudrakarta et al., 2018). Annotating ex-
planations as rationales (part of input) (Lei et al.,
2016) through expert annotations (Zaidan and Eis-
ner, 2008) is widely used to model explanations
in NLP when external annotations are available.
Another class of inherently interpretable models
aims to optimize model explanations without any
external annotations (Card et al., 2019; Croce et al.,
2019; Rajagopal et al., 2021). Our work is simi-
lar in spirit to the rationale approaches (Lei et al.,
2016) but focuses on understanding style attributes
in text and computationally modeling them based
on human annotation of the important words.

6 Conclusion

We proposed StyLEx, a style classification model
for learning stylistic variations through lexical ex-
planation. With only 500 sentences with word-
level style annotation, we find improvement in
both classification and explanation. Compared to
the commonly-used integrated gradient method,
StyLEx’s explanations are more accurate for model
prediction, more consistent with human-found
stylistic words from existing datasets and lexicon
dictionaries, and better understandable by human
judges, without sacrificing task performance on
both in-domain and out-of-domain datasets.

Future Work Our approach opens up future
work on human-centered lexical explanation for
correcting the spurious behavior of NLP models
and for better explaining linguistic styles. We plan
to investigate collecting more human lexical an-
notations to more accurately model stylistic vari-
ation, especially with larger pretrained language
models. Broader usage of StyLEx in providing
stylistic cues will be applicable to lexical style and
content disentanglement (Cheng et al., 2020; John
et al., 2019), counterfactual data augmentation for
style-related tasks (Sen et al., 2021), and stylistic
paraphrasing (Pavlick and Nenkova, 2015).

Limitations Our work has some limitations,
mostly stemming from the size and nature of the
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human-annotated data. The training data (500 sen-
tences) from HUMMINGBIRD is quite small to train
deep learning models. However, our work shows
that with just 500 sentences we could achieve a
huge improvement in interpretability as well as a
slight improvement in OOD performance, using
semi-supervised training. Moreover, there is spar-
sity of stylistic words in the sentences. We also
found that some stylistic words have various scores
of human perception; capturing such subtle stylistic
words is difficult. An interesting future work would
be to handle these problems of sparsity and subtlety.
We also notice that HUMMINGBIRD is annotated
by people residing in the United States. Thus, their
perception of styles may not reflect the perception
of those with different cultural backgrounds. Nev-
ertheless, StyLEx can be applied to any dataset
training with similar human lexical annotations,
and not limited to HUMMINGBIRD.

Ethical Considerations When collecting the ex-
planation evaluation from human judges, we in-
form them that the content may contain offensive
languages that could be upsetting.
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A Appendix

A.1 Sampling OOD Data and Data Statistics
• Politeness: We randomly sample 500 polite

sentences and 500 impolite sentences from the
Enron email corpus (Klimt and Yang, 2004;
Madaan et al., 2020) since the size of entire
corpus (>600k) is too large for inference.

• Sentiment: We test StyLEx on 5-core reviews
from Amazon review dataset (Ni et al., 2019).
For each category, we sample 100 positive
sentences and 100 negative sentences from
review categories, except for movie reviews
which would be similar to the domain of the
ORIGINAL dataset. We convert ratings of 4-5
to positive labels and ratings of 1-2 as negative
labels.

• Offensiveness: We use OffensEval (Zampieri
et al., 2019) dataset for offensiveness. We
select all offensive tweets (3,002 instances)
and all non-offensive tweets (2,991 instances)
since OffensEval dataset is already nearly bal-
anced.

• Emotions: For five emotions, we collect sam-
ples from GoEmotions corpus (Demszky et al.,
2020) that contains Reddit comments labeled
with 27 emotions, but we only select the five
relevant emotions. For each emotion, we use
all data for the positive emotion (e.g., joy)
and undersample the negative emotion (e.g.,
not joy) data to equal the number of positive
emotion samples.

The three dataset statistics are summarized in
Table 6.

A.2 StyLEx Implementation Details
Throughout the experiment, we set dlword

= 2 for
politeness (polite, impolite) and sentiment (posi-
tive, negative) which have two style classes and
dlword

= 1 for the other styles. At the loss cal-
culation step, we set the regularization hyperpa-
rameter α to 0.05 which gives the best style and
perception prediction found searching the range
[0.01, 100]. For the pseudo-labeling approach,
we use the same architecture and hyperparameters
with StyLEx model. We first train StyLEx with
HUMMINGBIRD training set only to predict stylis-
tic word scores for 50 epochs. Then we select the
model with the best F1 score as a stylistic word
score prediction to provide stylistic word scores
for tokens in ORIGINAL training set. Then, we use
both human-annotated perception score from HUM-
MINGBIRD and predicted stylistic word scores from
ORIGINAL to train the sentence-level style predic-
tion as in Figure 2. For the sentence-level model,
we train the model for 5 epochs. For both stylis-
tic word prediction and sentence-level style clas-
sification, we use BERT-base-uncased pretrained
model. We set 0.1 dropout rate, 512 maximum
sequence length, AdamW optimizer of learning
rate 2e−5. For other hyper-parameters, we follow
the default setting from HuggingFace’s transformer
library (Wolf et al., 2020).

Our interface for human evaluation is shown as
in Figure 5. Table 7 shows results for other pre-
trained language models. We report word-level
style predictor performance tested on HUMMING-
BIRD test data in the form of Pearson’s r correlation
scores as follows in Table 5.

Style Word-level
Pearson’s r

Politeness 0.41
Sentiment 0.61
Offensiveness 0.37
Anger 0.45
Disgust 0.43
Fear 0.20
Joy 0.37
Sadness 0.41

Table 5: Pearson’s r scores from training the word-level
predicion model and testing it on HUMMINGBIRD.
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HUMMINGBIRD ORIGINAL OOD
Styles↓ Train Test Train Dev Test Test
Politeness 256 (38%) 64 (28%) 9,855 (55%) 530 (56%) 567 (57%) 1,000 (50%)
Sentiment 312 (30%) 79 (37%) 117,219 (55%) 825 (51%) 1,749 (50%) 5,200 (50%)
Offensiveness 400 (34%) 100 (32%) 20,680 (82%) 1,173 (82%) 1,159 (81%) 5,993 (50%)
Anger 400 (35%) 100 (34%) 6,838 (37%) 886 (36%) 3,259 (34%) 16,168 (50%)
Disgust 400 (43%) 100 (38%) 6,838 (38%) 886 (36%) 3,259 (34%) 10,602 (50%)
Fear 400 (17%) 100 (13%) 6,838 (18%) 886 (14%) 3,259 (15%) 6,394 (50%)
Joy 400 (24%) 100 (19%) 6,838 (36%) 886 (45%) 3,259 (44%) 15,966 (50%)
Sadness 400 (29%) 100 (17%) 6,838 (29%) 886 (30%) 3,259 (29%) 13,516 (50%)

Table 6: Dataset statistics in our experiments. Note that these datasets are preprocessed from existing datasets. For
HUMMINGBIRD (Hayati et al., 2021) and ORIGINAL datasets, the train, dev, and test sets have the same size for all
emotions. We do not report the training size of Out-of-Domain (OOD) datasets since we are not using them for
training. The label distributions for positive labels are in the parentheses.

Figure 5: Interface for human evaluation
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Model F1 Score
Polite. Sent. Offens. Anger Disgust Fear Joy Sad.

ORIG

BERT
Baseline 67.96 96.52 97.75 89.04 86.50 95.66 88.02 88.38
StyLEx 65.84 96.59 97.81 89.01 86.90 95.63 88.14 88.41

RoBERTa
Baseline 65.83 96.94 96.40 89.56 87.17 95.68 88.32 88.52
StyLEx 66.05 96.59 96.55 89.39 87.16 95.67 88.39 88.89

XLNet
Baseline 64.09 96.57 96.86 88.46 86.07 95.55 86.95 87.32
StyLEx 63.69 96.54 96.38 88.20 86.32 95.44 87.33 87.90

T5
Baseline 65.75 97.13 97.21 88.79 86.29 95.39 88.18 87.68
StyLEx 67.69 97.21 96.61 88.69 86.24 95.28 87.86 87.51

OOD

BERT
Baseline 71.45 86.70 88.62 77.49 74.06 78.42 75.20 78.37
StyLEx 74.18 86.99 88.98 77.51 74.63 78.48 74.26 78.71

RoBERTa
Baseline 72.08 90.41 87.48 77.01 74.56 79.95 74.63 80.24
StyLEx 69.27 89.90 89.63 77.86 75.07 78.66 74.18 79.09

XLNet
Baseline 68.84 88.25 88.33 76.24 74.77 78.48 74.03 78.78
StyLEx 67.28 89.65 88.56 76.41 74.71 78.92 74.09 78.28

T5
Baseline 70.76 91.72 88.14 75.74 73.83 79.58 73.76 78.37
StyLEx 68.14 91.73 88.05 75.48 73.33 80.23 73.70 77.61

Table 7: More classification results with several language models.
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