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Abstract
In this work, we focus on low-resource depen-
dency parsing for multiple languages. Several
strategies are tailored to enhance performance
in low-resource scenarios. While these are
well-known to the community, it is not triv-
ial to select the best-performing combination
of these strategies for a low-resource language
that we are interested in, and not much atten-
tion has been given to measuring the efficacy
of these strategies. We experiment with 5 low-
resource strategies for our ensembled approach
on 7 Universal Dependency (UD) low-resource
languages. Our exhaustive experimentation on
these languages supports the effective improve-
ments for languages not covered in pretrained
models. We show a successful application of
the ensembled system on a truly low-resource
language Sanskrit.1

1 Introduction

Recently, the supervised learning paradigm has
dramatically increased the state-of-the-art perfor-
mance for the dependency parsing task for resource-
rich languages (Chen and Manning, 2014; Dyer
et al., 2015; Kiperwasser and Goldberg, 2016;
Dozat and Manning, 2017; Kulmizev et al., 2019).
However, only a handful of resource-rich languages
are able to take advantage, and many low-resource
languages are far from these benefits (Joshi et al.,
2020; More et al., 2019a; Zeman et al., 2018).

In literature, several strategies have been pro-
posed to enhance performance in low-resource sce-
narios, such as data augmentation (Şahin and Steed-
man, 2018; Gulordava et al., 2018), cross/mono-
lingual pretraining (Conneau et al., 2020; Peters
et al., 2018; Kondratyuk and Straka, 2019), sequen-
tial transfer learning (Ruder et al., 2019), multi-
task learning (Nguyen and Verspoor, 2018), cross-
lingual transfer (Das and Sarkar, 2020) and self-
training (Rotman and Reichart, 2019; Clark et al.,

1The code and data are available at: https://github.
com/Jivnesh/SanDP.

2018). However, not much attention has been
given to measuring the efficacy of the existing low-
resource strategies well-known to the community
for low-resource dependency parsing (Vania et al.,
2019). This is essential to assess their utility for
low-resource languages (Hedderich et al., 2021)
before inventing novel ways to tackle data sparsity.

In this work, we systematically explore 5 prag-
matic strategies for low-resource settings on 7 lan-
guages. We experiment with low-resource strate-
gies such as data augmentation, sequential trans-
fer learning, cross/mono-lingual pretraining, multi-
task learning and self-training. We investigate: (1)
How is the trend in performance of each strategy
across various languages? Whether the choice of
best performing variant of each strategy is language
dependent? (2) We integrate the best performing
variant of each strategy and call the resulting sys-
tem as the ensembled system. Do all the strate-
gies contribute towards performance gain in the
ensembled system? How well does this ensemble
approach generalize across multiple low-resource
languages? (3) How far can we push a purely data-
driven ensemble system using the best-performing
low-resource strategies? Can this simple ensem-
ble approach outperform the state-of-the-art of a
low-resource language? We argue that while it may
sound like a simple application of techniques well
known to the community; it is non-trivial to se-
lect the best performing combination for a target
low-resource language.

Our exhaustive experimentation empirically es-
tablishes the effective generalization ability of
the ensembled system on 7 languages and shows
average absolute gains of 5.2/6.2 points Unla-
belled/Labelled Attachment Score (UAS/LAS)
over strong baseline (Dozat et al., 2017). Notably,
our ensembled system shows substantial improve-
ments for the languages not covered in pretrained
models. Finally, we show a successful application
of the ensembled system on a truly low-resource
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language Sanskrit. We find that the ensembled
system outperforms the state-of-the-art system (Kr-
ishna et al., 2020a) for Sanskrit by 1.2 points abso-
lute gain in terms of UAS and shows comparable
performance in terms of LAS (§ 3).

2 Investigation of Strategies Tailored for
Low-resource Settings

We explore 5 strategies specially tailored for low-
resource settings on 7 languages, and integrate the
best performing strategy of each category in our
ensembled system (Table 1). We utilize Dozat and
Manning (2017) as a base system for all the experi-
ments, henceforth referred to as BiAFF.

Language selection criteria: We choose low-
resource languages with less than 2,500 training
samples from 4 different typological families such
that each language belongs to a unique sub-family.
In order to accommodate a low-resource tailored
pretraining (Sandhan et al., 2021), we choose lan-
guages that have explicit morphological informa-
tion. Additionally, we divide the set of languages
into the languages covered/not-covered in the multi-
lingual language model’s pretraining: (1) Covered:
Arabic (ar), Greek (el), Hungarian (hu) (2) Not cov-
ered: Wolof (wo), Gothic (got), Coptic (cop) and
Sanskrit (san).
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Figure 1: Plot for number of training samples vs. UD
languages available in UD-2.6.

Figure 1 illustrates the number of training samples
available for all UD languages in UD-2.6. Hed-
derich et al. (2021) ask “How low is low-resource?”
and suggest that the threshold of low-resource is
task and language-dependent. The low-resource
settings can be seen as a continuum of resource
availability due to the absence of a hard thresh-
old. More efforts should focus on evaluating low-
resource strategies across multiple languages for

a fair comparison between these strategies. There-
fore, we select a threshold for the languages with
less than 2,500 training samples (Figure 1). We re-
strict ourselves to the setting where the target low-
resource language does not have a high-resource
related language that could possibly facilitate the
positive cross-lingual or zero-shot transfer (Vulić
et al., 2019; Pires et al., 2019; Søgaard et al., 2018;
de Lhoneux et al., 2018; Smith et al., 2018). Thus,
we do not consider low-resource languages with
only a test set available. Also, we do not consider
cross-lingual transfer (Duong et al., 2015; Ahmad
et al., 2019; Vania et al., 2019; Das and Sarkar,
2020) strategy in our study.

Dataset and metric: For each of these 7 low-
resource languages from Universal Dependencies
(UD-2.6) (de Marneffe et al., 2021), following Rot-
man and Reichart (2019), we use 500 data points
for training (allocating equal power to each lan-
guage for fair comparison) and the original dev/test
split as dev/test set. Additionally, 1000 morpholog-
ically tagged data points (without dependency an-
notations) are used for self-training and pretraining.
We use sentence level macro averaged UAS/LAS
metric for evaluation.

Hyper-parameters: For SeqTraL variants, we
use the exact same encoder as Ma et al. (2018)
with 2 Bi-LSTM layers and decoder with fully con-
nected layer followed by softmax layer. For the
ensembled system, we adopt BiAFF’s codebase
by Ma et al. (2018) with the hyper-parameters set-
ting as follows: the batch size as 16, training iter-
ations as 100, a dropout rate as 0.33, the number
of stacked Bi-LSTM layers as 2, learning rate as
0.002 and the remaining parameters as the same as
Ma et al. (2018). We release our codebase publicly
under creative-common licence.

Computing Infrastructure Used: We primar-
ily use RTX-2080, 12 GB GPU memory, 4352
GPU Cores computing infrastructure for our exper-
iments.

Sequential Transfer Learning (SeqTraL): Fol-
lowing Sandhan et al. (2021), we pretrain three
encoders (similar to BiAFF) on three sequence la-
belling auxiliary tasks and integrate them with the
BiAFF encoder using a gating mechanism. We
adapt these pretrained encoders with various opti-
mization schemes, proposed for reducing a catas-
trophic forgetting (French, 1999; McCloskey and
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el ar hu got cop wo san

Strategy Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

BiAFF 86.61 82.23 79.89 73.13 80.51 75.11 75.66 69.42 87.33 84.48 82.63 77.83 75.47 65.77

Cropping 85.98 81.76 79.42 73.03 77.46 71.62 75.72 68.25 86.05 82.95 80.38 75.39 73.82 63.46
Data aug. Rotation 86.39 82.19 79.22 72.79 77.33 71.16 76.19 68.89 86.27 83.27 80.66 76.05 75.58 65.14

Nonce 87.43 82.60 79.52 73.00 79.56 69.50 76.42 67.74 87.64 83.52 81.97 76.37 77.25 66.30

BiAFF+mBERT 91.41 87.89 83.50 76.30 85.20 77.50 64.20 53.20 33.70 15.60 71.50 61.40 71.40 55.12
Pretraining BiAFF+XLM-R 93.61 90.85 86.04 79.55 89.05 83.80 - - - - - - 78.43 66.72

BiAFF+LCM 89.00 85.83 82.49 76.67 83.22 78.49 79.88 74.65 88.79 86.02 85.85 81.66 81.63 73.86

SelfTrain 86.78 82.25 80.86 74.45 80.62 75.09 76.96 70.15 87.95 85.33 83.83 78.80 77.53 66.59
Self-training CVT 80.53 77.37 76.21 71.87 75.21 70.01 69.43 63.59 79.32 74.21 73.21 69.50 69.21 56.21

DCST 88.26 84.09 82.21 75.78 82.85 77.65 79.52 72.91 88.85 85.53 85.51 80.71 78.55 69.10

SeqTraL-FE 88.43 85.43 81.86 76.60 82.97 78.46 80.15 75.24 88.08 85.57 85.61 81.77 81.20 73.70
SeqTraL-UF 88.50 85.36 82.52 76.79 83.83 79.24 80.79 75.65 88.87 86.30 85.78 81.54 81.51 73.65

SeqTraL SeqTraL-DL 89.06 85.88 82.57 76.66 83.36 78.57 80.29 74.89 88.78 86.14 86.25 81.85 81.17 73.10
SeqTraL-FT 88.80 85.47 82.66 76.83 83.79 78.95 80.13 75.11 88.86 86.31 86.03 81.64 81.84 73.94

MTL-Case 86.73 82.47 80.49 74.08 80.73 75.52 - - 86.45 83.82 82.86 77.46 76.15 65.36
Multi-tasking MTL-Label 86.13 81.55 79.86 72.72 80.07 73.92 75.52 69.30 87.44 84.62 83.08 77.94 76.02 65.20

MTL-Morph 86.30 82.23 80.02 73.55 80.49 74.70 77.33 71.05 87.00 84.22 83.25 78.75 76.71 66.69

BiAFF 86.61 82.23 79.89 73.13 80.51 75.11 75.66 69.42 87.33 84.48 82.63 77.83 75.47 65.77
+Pretraining 93.61 90.85 86.04 79.55 89.05 83.80 79.88 74.65 88.79 86.02 85.85 81.66 81.63 73.86

+MTL 89.99 86.49 82.47 76.24 84.35 79.74 80.33 75.15 88.42 85.94 85.91 81.56 81.30 73.49
Prop. system +SeqTraL 90.31 86.70 82.70 76.57 84.58 80.15 80.79 75.65 88.87 86.30 86.05 81.85 81.84 73.94

+Self-training 89.83 86.09 82.08 75.92 84.12 79.66 80.08 75.24 88.78 86.07 85.73 81.77 79.89 72.28
+Data. aug. 89.11 85.87 82.08 75.92 84.12 79.66 79.56 73.53 88.31 84.67 85.73 81.77 79.52 71.89

Evaluation BiAFF 87.10 83.06 80.92 75.02 80.31 74.16 77.73 70.72 88.50 85.32 80.92 75.02 79.33 67.92
on test set Prop. system 93.66 90.68 86.43 79.88 88.50 82.67 82.52 77.07 89.31 86.38 87.50 82.95 83.59 74.83

Table 1: Evaluation of low-resource strategies on 7 languages. Experiments are first performed on dev set to find
best performing combination of strategies for each language. The best results from strategies from each family are
bold and statistically significant compared to its peer baselines belonging to the same family as per t-test (p < 0.01).
The second last block shows ablations when the best variant from each family is added to the ensembled system. For
example, +Data. aug. refers to the system with the best variant from all 5 strategies. The best performing system as
per dev set is finally compared with BiAFF on the test set. XLM-R is not compatible with 3 languages and case
information of Gothic (got) language is missing; hence we do not report their results.

Cohen, 1989). SeqTraL-FE: We treat newly inte-
grated layers as Feature Extractors (FE) by freez-
ing them. SeqTraL-UF: Gradually Unfreeze (UF)
these new layers in the top to down order (Howard
and Ruder, 2018; Felbo et al., 2017). SeqTraL-
DL: The discriminative learning rate (DL) is used
for newly added layers (Howard and Ruder, 2018),
the learning rate is decreased from top-to-bottom
layers. SeqTraL-FT: The default learning rate is
used to fine-tune all newly added layers.

Cross/mono-lingual Pretraining: We experi-
ment with two multilingual pretrained models,
namely, the multilingual BERT (Devlin et al., 2019,
mBERT) based system (Kondratyuk and Straka,
2019) and the XLM-Roberta (Conneau et al., 2020,
XLM-R) based system (Nguyen et al., 2021). We
also consider supervised pretraining specially tai-
lored for low-resource dependency parsing (Sand-
han et al., 2021, LCM) which essentially combines
three sequence labelling auxiliary tasks. We pre-
train it on 1,000 morphologically tagged data points

without dependency annotations.

Self-training: Another line of modelling focuses
on self-training (Goldwasser et al., 2011; Clark
et al., 2018; Rybak and Wróblewska, 2018) to over-
come the bottleneck of task-specific labelled data.
Earlier attempts failed to prove effectiveness of
self-training for dependency parsing (Rush et al.,
2012). However, Clark et al. (2018, CVT) and Rot-
man and Reichart (2019, DCST), show successful
application, thus, we consider these two systems.
Also, we generate dependency data by applying a
pretrained BiAFF system on 1000 unlabelled data
points. We augment this predicted data with gold
data and retrain BiAFF in Self-Train setting.

Multi-task Learning: We simultaneously train
BiAFF and a sequence labelling based auxiliary
task in a multi-task setting (MTL). We experiment
with the following auxiliary tasks: prediction of the
morphological label (MTL-Morph), dependency
relation between a word and its head (MTL-Label)
and the case label (MTL-Case).
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Figure 2: The ensembled system for Sanskrit. Translation: “Oh Vācaspate! Come again with divine mind".

Data Augmentation: Şahin and Steedman
(2018) introduce Cropping: delete some parts of a
sentence to create multiple short meaningful sen-
tences, and Rotation: permute the siblings of head-
word restricted to a set of relations. Both operations
modify a set of words or configurational informa-
tion; however, they do not change the dependencies.
Nonce: Gulordava et al. (2018) propose to create
nonce sentences by substituting a few words which
share the same syntactic labels. For each variant,
we use additional 1,000 augmented data points.

Results on multilingual experiments: Table 1
first reports results of all 5 strategies on dev set
of 7 languages. Next, the second last block of Ta-
ble 1 (Prop. system) shows ablations on dev set
where the best variant from each family is gradu-
ally added into the ensembled system. For example,
+Data.aug. row refers to the system with the best
variant from all 5 strategies. Finally, the best per-
forming system as per dev set is compared with
BiAFF on the test set. We observe that (1) the
best performing variant from augmentation, Seq-
TraL and MTL families is language dependent. (2)
DCST variant of self-training wins over its peer
for all the languages. (3) XLM-R outperforms for
the languages which are covered in its pretraining
(except Sanskrit2) and LCM outperforms for the
rest of the languages which are truly low-resource.
(4) Notably, we find effective generalization ability
of the proposed approach on languages covered in
cross-lingual pretraining (only pretraining helps)
and for the rest of the languages (pretraining, MTL
and SeqTraL helps).

2Maybe due to limited coverage of corpus for Sanskrit.

3 Application on Sanskrit

Data: We use two standard benchmark datasets
available for Sanskrit. We use 1,700, 1,000 and
1,300 sentences (prose domain) from the Sanskrit
Treebank Corpus (Kulkarni et al., 2010, STBC)
as train, dev and test set, respectively. We also
evaluate on the Vedic Sanskrit Treebank (Hellwig
et al., 2020, VST) consisting of 1,500 , 1,024 and
1,473 sentences (poetry-prose mixed) as train, dev
and test data, respectively. For both data, the final
results on the test set are reported using systems
trained with combined gold train and dev set.

Baselines: We use More et al. (2019b, YAP) and
Chang et al. (2016, L2S) from transition-based
dependency parsing family. Dozat and Manning
(2017, BiAFF) is a graph-based approach with
BiAFFINE attention mechanism. Krishna et al.
(2020a, MG-EBM) extends Krishna et al. (2020b,
Tree-EBM-F) using multi-graph formulation.
Systems marked with (*) are hybrid systems which
leverage linguistic rules from Pān. ini.

The ensembled system: Figure 2 shows the en-
sembled system for Sanskrit as per Table 1. It
consists of two steps, namely, pretraining (LCM

) and integration. As shown in Figure 2a, LCM
pretrains three encoders E(1)−(3) using three in-
dependent auxiliary tasks, namely, morphological
label prediction, case label prediction and relation
label prediction. Thereafter, as shown in Figure 2b,
these pretrained encoders are integrated with the
BiAFF encoder E(P ) using a gating mechanism as
employed in Sato et al. (2017). We use SeqTraL-
FT optimization scheme to update the weights
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of these four encoders. Next, MTL-Morph com-
ponent adds morphological tagging as an auxiliary
task to inject complementary signal in the model.
Finally, the combined representation of a pair of
words in passed to BiAFF to calculate probabil-
ity of arc score (S) and label (L).

STBC VST
System UAS LAS UAS LAS

YAP 75.31 66.02 70.37 56.09
L2S 81.97 74.14 72.44 62.76

Tree-EBM-F 82.65 79.28 - -
BiAFF 85.88 79.55 77.23 67.68
Ours 88.67 83.47 79.71 69.89

Tree-EBM-F* 85.32 83.93 - -
MG-EBM* 87.46 84.70 - -

Table 2: Results on test set for Sanskrit. Hybrid systems,
marked with (*) use extra-linguistic knowledge and are
not directly comparable with our system. Our results
are statistically significant compared to BiAFF as per
t-test (p < 0.01). Results are averaged over 3 runs.

Results: On STBC, the ensembled system out-
performs the state of the art purely data-driven
system (BiAFF) by 2.8/3.9 points (UAS/LAS) ab-
solute gain. Interestingly, it also supersedes the
performance of the hybrid state of the art system
(Krishna et al., 2020a, MG-EBM) by 1.2 points
(UAS) absolute gain and shows comparable per-
formance for LAS metric. We observe that perfor-
mance of transition-based systems (YAP/L2S) is
significantly low compared to graph-based coun-
terparts (BiAFF/Ours). We also obtain a similar
performance trend for VST data. The VST data is
a mixture of dependency labelled trees from both
poetry and prose domain. As a result, the overall
performance for VST is low compared to STBC
due to loss of configurational information.3

4 Conclusion and Discussion

We focused on low-resource dependency parsing
for multiple languages. We found that our ensem-
bled system can benefit the languages not covered
in pretrained models. While multi-lingual pretrain-
ing (mBERT and XLM-R) is helpful for the lan-
guages covered in pretrained models, LCM pre-
training (which simply uses an additional 1,000
morphologically tagged data points) is helpful for

3We do not evaluate Tree-EBM-F* and MG-EBM* on
VST data due to the unavailability of the codebase.

the remaining languages. Thus, these findings
would help community to pick strategies suitable
for their language of interest and come up with
robust parsing solutions. Specifically for Sanskrit,
our ensembled system superseded the performance
of the state-of-the-art hybrid system MG-EBM* by
1.2 points (UAS) absolute gain and showed compa-
rable performance in terms of LAS.

Limitations: We could not evaluate on complete
UD due to limited available compute resources
(single GPU), hence we selected 7 representative
languages for our experiments.

Ethics Statement: We do not foresee any eth-
ical concerns with the work presented in this
manuscript.
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