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Abstract

The best methods for knowledge graph comple-
tion use a ‘dual-encoding’ framework, a form
of neural model with a bottleneck that facili-
tates fast approximate search over a vast col-
lection of candidates. These approaches are
trained using contrastive learning to differenti-
ate between known positive examples and sam-
pled negative instances. The mechanism for
sampling negatives to date has been very sim-
ple, driven by pragmatic engineering consider-
ations (e.g., using mismatched instances from
the same batch). We propose several novel
means of finding more informative negatives,
based on searching for candidates with high lex-
ical overlaps, from the dual-encoder model and
according to knowledge graph structures. Ex-
perimental results on four benchmarks show
that our best single model improves consis-
tently over previous methods and obtains new
state-of-the-art performance, including the chal-
lenging large-scale Wikidata5M dataset. Comb-
ing different strategies through model ensem-
bling results in a further performance boost.

1 Introduction

A Knowledge Graph (KG) is a structured form of
human knowledge consisting of entities, facts, rela-
tionships between any pair of entities, and semantic
descriptions of entities. As important structures
that store millions of data records that represent a
part of human knowledge, KGs have been proven
to bring substantial benefits to a wide range of
applications, including commonsense question an-
swering (Yasunaga et al., 2021) and reasoning (Ren
and Leskovec, 2020). Knowledge Graph Comple-
tion (KGC) supports the automatic construction or
completion of a KG by finding the missing entity
or link in incomplete triples.

Graph embedding and textual embedding meth-
ods are two mainstream techniques for KGC prob-
lems. The former typically map entities and rela-
tions into fixed dense vectors and maximises the

probability of valid triples using specially-designed
scoring functions (Bordes et al., 2013; Sun et al.,
2019); while the latter additionally uses avail-
able textual descriptions associated with entities to
gather more information (Wang et al., 2021b). Sur-
prisingly, textual embedding methods lag behind
graph embedding methods, perhaps due to their
extra computational overheads in encoding textual
inputs and, thus, inefficiency in incorporating a
sufficient number of negatives (i.e., incorrect KG
triples) to learn discriminative KG embeddings.

Recently, Wang et al. (2022) found that the key
to making textual embedding methods outperform
their graph embedding counterparts is to adopt a
dual-encoder structure and train using contrastive
learning to differentiate between positive train-
ing instances and randomly sampled negative in-
stances (Karpukhin et al., 2020). Although their
technique outperformed various graph embedding
methods, achieving a new state-of-the-art, their
means of negative sampling is not optimal: this
in-batch negative method has been shown to be in-
efficient in training dual encoders (Lu et al., 2021).
Instead, as they are highly similar to positives in
terms of topics and lexicons, the use of so-called
‘hard’ negatives have been shown to result in bet-
ter models in information retrieval (Xiong et al.,
2021) through providing a more informative train-
ing signal and faster convergence. However, their
effectiveness has not yet been established for KGC.

Therefore, to fill this gap, in this work, we aim
to systematically investigate the effects of various
hard negative sampling strategies for dual-encoder-
based KGC. Specifically, we construct negative
samples using three different ways. Our approach
first evaluates the utility of negatives that share high
lexical similarity with the head entity or the correct
tail entity in terms of entity names and text descrip-
tions. Based on the knowledge graph structures,
we alternatively search negatives from the head
or tail entity’s local neighbourhood, hypothesising
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that the neighbourhoods of a certain entity that are
not directly connected to it are highly related, but
not so related to be false negatives (i.e., positives).
Lastly, we investigate sampling so-called ‘hard neg-
atives’ from top-k predictions generated by a base-
line dual-encoder KGC model, as negatives that
receive high scores are believed to be important
and difficult to distinguish. In addition, in order
to reduce possible false negatives, we also experi-
mented with two variant neural negative sampling
strategies according to heuristics. In summary, our
contributions are:1

1. To the best of our knowledge, we are the first
to systematically investigate the impacts of
different types of negative sampling strategies
for dual-encoder-based KGC.

2. We explore how best to combine the benefits
of different negative sampling strategies to
obtain further performance gains.

3. We compare our proposed negative searching
methods on four benchmark datasets of differ-
ent scales. Experimental results demonstrate
that our best model significantly outperforms
baselines, establishing a new state-of-the-art
on all datasets, while ensembling leads to fur-
ther performance gains.

2 Background

2.1 Task Formulation
In this paper, we deal with the task of predicting
missing entities in knowledge graph completion.
Formally, given a knowledge graph G which has
a set of entities E and predefined relations R, the
tail entity retrieval task (h, r, ?) requires retrieving
a list of entities {t1, t2, . . . , tk} from the entity set
E , ranked by their relevance to this head-relation
pair (h, r).

2.2 Dual Encoder for KGC
Following the current state-of-the-art approach to
KGC (Wang et al., 2022), we use a dual encoder
framework.

Figure 1 shows the architecture. In this approach,
a pair of encoders Ehr and Et, which are usu-
ally initialised by pretrained language models (e.g.,
BERT (Devlin et al., 2019)), are used to map the
head entity and relation (h, r) and tail entity t into
dense vectors, respectively. More specifically, to
encode the tuple (h, r), we first concatenate the

1Source code is available at https://github.com/
Fantabulous-J/Improved-Negative-Search-for-KGC.
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Figure 1: The Dual-Encoder Model for Knowledge
Graph Completion, which learns to discriminate posi-
tive tail entities from negative ones.

text description of head entity h and relation r
as: [CLS] h: entity description [SEP] r [SEP] and
feed the sequence into a BERT encoder Ehr. Sim-
ilarly, we use another encoder Et to encode the
tail entity t and its description, using an analogous
input method. Mean pooling is used to obtain fix-
sized embeddings, which are then l2-normalised.
The relevance score between (h, r) and t is cal-
culated as the inner dot product of the two l2-
normalised vectors:

s(h, r, t) =
Ehr(h; r) · Et(t)

||Ehr(h; r)|| · ||Et(t)||
(1)

The dual encoders are normally trained to max-
imise the similarity scores of all positive triples
(h, r, t). Here, we use the InfoNCE loss, follow-
ing Wang et al. (2022):

Lhr→t = − log
s(h, r, t)∑

t′∈E s(h, r, t
′)

(2)

where the denominator sums over all N = |E|
entities in the KG.

Since N is usually very large, the common prac-
tice is to use specific negative sampling strategies
to select a subset of negative samples to replace the
full normalisation term in Equation 2. In practice,
the selection of negative samples is crucial to the
performance of a trained model (Zhang and Stratos,
2021). So the critical question becomes how to
sample informative negatives which could generate
meaningful signals for training an effective model.
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3 Negative Sampling Strategies

3.1 In-Batch Negatives

This strategy treats as negatives the tail entities
of other samples in the same mini-batch, which
is a cheap way to obtain a large number of nega-
tives (Karpukhin et al., 2020). However, the down-
side of this approach is that the number of negatives
is limited to batch size, and it usually requires a
large batch size to work well, which is not always
feasible with limited computing resources.

3.2 Hard Negatives

‘Hard’ negatives are informative negatives, which
are difficult to distinguish as they share similar
characteristics with true positives (e.g., high lexi-
cal overlap or semantic similarity). They normally
receive larger similarity scores from the model,
which in turn results in larger loss gradients and
thus larger parameter updates in training. Selecting
negatives from them can effectively mitigate the
diminishing gradient norms when using uninfor-
mative negative instances (i.e., in-batch negatives),
thus providing more optimal training signals and
leading to faster convergence speed (Xiong et al.,
2021). In this paper, we systematically investigate
the effectiveness of different hard negative sam-
pling strategies for knowledge graph completion.
An illustrative example of the different types of
hard negatives is shown in Table 1.

Sparse Negatives Hard negatives were first
shown to be useful for improving the performance
of dense passage retrievers in question answering
(Karpukhin et al., 2020). Their approach, which
we call Sparse Negatives henceforth, samples hard
negatives from the top-k ranked list returned by a
sparse retrieval system such as BM25 (Robertson
and Zaragoza, 2009). We test the generality of this
method to our task of knowledge graph completion.
More specifically, given a KG triplet (h, r, t), we
either use the concatenation of the head entity h
and relation type r or the correct tail entity t2 to
query a sparse BM25 retriever to find top entities
which share similar entity names or similar tokens
in their entity descriptions.3

Structure-Aware Negative Entities in the local
neighbourhood of an entity in the KG are typically

2The concatenation of an entity’s name and text description
will be used.

3Whether the head h or the tail t is used to retrieve nega-
tives is based on the development set performance.

semantically related, and can serve as good candi-
dates (Ahrabian et al., 2020). For a triplet (h, r, t),
we sample hard negatives from the n-hop neigh-
bours of either the head entity h or the tail entity t,
following random edges.4

Neural Negative samples hard negatives from
the top-k predictions of a neural model (Xiong
et al., 2021; Glass et al., 2021), which has been
shown to boost the performance of neural retriev-
ers. In this paper, we use a simple method of sam-
pling static hard negatives from a fixed learned
KGC model, which we denote as Head-Relation
Negative:

Step 1: In-batch negatives are used to train a
dual-encoder KGC model.

Step 2: FAISS (Johnson et al., 2021) is used
to index all entities in the KG, using their dense
vector encoding, Et.

Step 3: Employ approximate search to find the
top-k retrieved entities using head-relation pair
(h, r) as the query, with encoding Ehr. Then any
positive tail entity to this query are removed based
on the training dataset and all other entities will be
kept as hard negatives.

Although sampled negatives are both difficult
and informative, the Neural Negative method may
end up including many false negatives. This is
because for a good KGC model, if the same head-
relation pair (h, r) appears in both training and test
graphs, the top-k predictions will likely include cor-
rect answers in the test set. 5 Therefore, we propose
another two variant negative sampling strategies to
limit false negatives while maintaining informative-
ness. In particular, Entity Similar Negative uses
either the head entity h or the tail entity t of a given
KG triplet (h, r, t) as the query to find the top-k
nearest entities in the embedding space of a fixed
learned KGC model. Replaced Head-Relation
Negative replaces the head h in (h, r, t) with an-
other entity h′ that is nearest to h in the embedding
space and uses (h′, r) as query to sample negatives
from the top-k predictions.

3.3 Other Negatives

Pre-batch negatives extend in-batch negatives by
using stale entity embeddings from previous n
batches, which can be considered a cheaper way

4We use n = 2, which we found to work well.
5This is more true to neural negatives than previous two

methods, as neural models are superior in capturing relation
semantics. See Table 1 for more intuitive examples.
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Head Entity land_reform_NN_1: a redistribution of agricultural land (especially by government action)
Relation hypernym
Tail Entity reform_NN_1: a change for the better as a result of correcting abuses; justice was for sale before the reform

of the law courts

Sparse 1. landing_NN_3: the act of coming down to the earth (or other surface); “the plane made a smooth landing”;
“his landing on his feet was catlike”
2. amphibious_landing_NN_1: a military action of coordinated land, sea, and air forces organized for an
invasion; “MacArthur staged a massive amphibious landing behind enemy lines”
3. enderby_land_NN_1: a region of Antarctica between Queen Maud Land and Wilkes Land; claimed by
Australia

Structure 1. event_planner_NN_1: someone who plans social events as a profession (usually for government or
corporate officials)
2. price-fixing_NN_1: control (by agreement among producers or by government) of the price of a
commodity in interstate commerce
3. lawlessness_NN_1: a state of lawlessness and disorder (usually resulting from a failure of government)

Neural 1. reform_NN_3: self-improvement in behavior or morals by abandoning some vice; “the family rejoiced in
the drunkard’s reform”
2. improvement_NN_1: a change for the better; progress in development
3. reform_NN_2: a campaign aimed to correct abuses or malpractices

Table 1: Examples of hard negatives using different types of sampling strategies, using the head entity and relation
as query for sparse and neural negatives but only the head entity for structure negatives (see top block). Sparse
negatives typically overlap with the head entity in surface form but ignore the relation, while structure negatives can
find entities with similar types. Neural retrievers can successfully find entities that are informative as hard negatives,
but the risk of including false negatives also increases. For instance, both improvement_NN_1 and reform_NN_2 are
feasible answers to the above query.

to expand negatives compared to memory bank ap-
proaches (He et al., 2020). Self-negatives regard
the head entity h in (h, r, ?) as the hard negative
to reduce the model’s reliance on spurious text
matches. We include these two kinds of negatives,
following Wang et al. (2022).

3.4 Negatives for Training

During training, we use one of the hard negative
sampling strategies proposed in §3.2 together with
a combination of in-batch negatives, pre-batch neg-
atives, and self-negatives. Since extra hard nega-
tives are used, the total number of instances used
for loss calculation in Eq. 2 will be increased. For
fair comparison, we reduce the batch size to ensure
the total number of negatives used in training re-
mains identical to our baseline SimKGC method
(Wang et al., 2022). More details can be found in
Appendix B.

4 Model Ensembling

Since we propose multiple hard negative sampling
strategies in §3.2, we train several models, each
with different types of hard negatives. It is nat-
ural to combine these models to achieve further
performance improvements through model ensem-
bling. Inspired by Lu et al. (2021), we explore two
methods to ensemble results from multiple models.

Rank Fusion Reciprocal Rank Fusion
(RRF) (Cormack et al., 2009) is a simple
yet effective algorithm for merging ranking results
from multiple retrievers, and is a prevailing
technique in information retrieval. Its utility in
knowledge graph completion has not yet been
evaluated. The technique works by merging
the ranking positions from the various models.
Suppose we have a query (h, r) and each model
p ∈ P returns a ranking list {Rankpe |e ∈ E}, the
final ranking score is:

RRF (e) =
∑

p∈P

wp

Rankpe

Rankpe is the ranking position of an entity e re-
turned by a model p, ranging from [1, |E|]. wp is
the weight of a model p, which is tuned based on
the performance on the development set.

Embedding Fusion An alternative aggregation
method is to compute the weighted sum of ranking
scores from different models, i.e.,

∑P
p=1wpE

p
hrE

p
t .

This can be implemented cheaply using the models’
embeddings, which has the benefit of allowing for
efficient vector indexing and search. Specifically,
for each query (h, r), we obtain vectors from each
models’ encoder, which are then scaled by a model
specific weight (tuned manually) and concatenated.
Each entity e ∈ E , is also embedded by each model
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and the vectors concatenated. This allows the ag-
gregation method to be implemented as a simple
dot product:6

s(h, r, t) = [wPE
P
hr, . . . , w1E

1
hr]

T [EP
t , . . . , E

1
t ]

5 Experiments

5.1 Datasets
Our method is evaluated on WN18RR (Dettmers
et al., 2018), FB15k-237 (Toutanova and Chen,
2015), DBPedia500k (Shi and Weninger, 2017)
and Wikidata5M (Transductive Setting) (Wang
et al., 2021b) datasets, where the number of en-
tities ranges from 15K to 4.6M. More details about
dataset statistics are shown in Table 7.

Following previous work (Wang et al., 2022),
we focus on retrieving the missing entity of
triples (h, r, ?) and (?, r, t), effectively doubling
dataset sizes.7 The adopted evaluation metrics are
Mean Reciprocal Rank (MRR) and Hits@k(k ∈
{1, 3, 10}). More specifically, MRR is calculated
as MRR = 1

N

∑N
i=1

1
Ranki

, where Ranki is the
rank of the correct tail entity in the predicted out-
puts and N is the total number of triples in the test
set. Similarly, Hits@k is the proportion of correct
tails that appear in the top-k ranked candidates.

We follow Bordes et al. (2013) and Wang et al.
(2022) by conducting evaluations under filter set-
tings, where for a given incomplete triple (h, r, ?),
the prediction scores of all its correct answers8

except for the target to be predicted are removed.
Both tail entity prediction (h, r, ?) and head entity
prediction (?, r, t) are conducted, with their aver-
ages on all metrics reported.

5.2 Experimental Settings
We replicated the state-of-the-art SimKGC
model (Wang et al., 2022) using PyTorch (Paszke
et al., 2019) and Transformers (Wolf et al., 2020),
and treat it as the baseline in our experiments. The
uncased BERT base model is used for model ini-
tialisation.9

6For both fusion methods, the weights were tuned through
grid search. Empirically, we found that single model whose
performance is better was generally given a higher weight than
worse performing methods. See Table 8 and Appendix C.3 for
more details.

7For reversed triples, a special r−1 relation type is used.
For instance, we convert a triple (?, educated at, Cambridge
University) to (Cambridge University, reverse educated at,
?). We did not conflate the reversed relations with existing
relations, although this may be beneficial (e.g., hyponym ≡
reverse hypernym.)

8Triples that appear in training, validation and test sets.
9https://huggingface.co/bert-base-uncased

Most hyperparameters are adopted from Wang
et al. (2022), and newly introduced hyperparame-
ters are determined through grid search. We choose
the best model according to Hits@1 on the dev set,
which is then evaluated on the test set for all exper-
iments. More details are in Appendix A.

5.3 Overall Results

Tables 2 and 3 show the results of our models com-
pared with a range of high-performing graph em-
bedding and text embedding models over four KGC
datasets. We observe that the performance of our
replicated baseline is competitive with that of Wang
et al. (2022), achieving slightly better results on
FB15k-237 and Wikidata5M but slightly worse on
WN18RR. Moreover, our best single model either
matches or outperforms the state-of-the-art results
on all datasets for most metrics.

By looking into the models trained using dif-
ferent hard negative sampling strategies, the be-
haviours are quite different in each dataset. More
specifically, simply taking the n-hop neighbours
as structure-aware negatives results in signifi-
cant improvement on WN18RR but marginal in-
creases or even negative impacts on the other three
datasets. Similar effects are also observed for
sparse negatives. Our model achieves the best
results on FB15k237, DBPedia500k, and Wiki-
data5M when using replaced head-relation nega-
tives, which shows our heuristics are useful and
can indeed lead to better performance. Gains over
the baseline when using entity similar negatives
are also significant, but it lags behind the other two
types of neural negatives most of the time. Overall,
we can conclude that there is no single negative
sampling strategy that outperforms on all datasets.
We believe this is due in part to the distinct charac-
teristics of each dataset, which we explore in §6.1.

Furthermore, by ensembling models trained us-
ing different types of negatives at inference time,
we can observe performance gains up to 1.3% MRR
and 1.8% H@1 over the best single model. For
model ensembling methods, we find that embed-
ding fusion is more beneficial when improving the
precision (MRR and H@1), while rank fusion is
helpful to boost the recall (H@3 and H@10), espe-
cially on DBPedia500k. Besides, both methods do
not help much on FB15k237 with only marginal
gains. However, both ensembling methods come at
the cost of increased inference latency with a fac-
tor of N , the number of ensembled models, which
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Method WN18RR FB15k-237 Wikidata5M

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Graph Embedding Approach

TransE (Bordes et al., 2013)∗ 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1 25.3 17.0 31.1 39.2
DisMult (Yang et al., 2014)∗ 44.4 41.2 47.0 50.4 28.1 19.9 30.1 44.6 - - - -
RotatE (Sun et al., 2019)∗ 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3 29.0 23.4 32.2 39.0
TuckER (Balazevic et al., 2019)∗ 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4 - - - -

Text Embedding Approach

KG-BERT (Yao et al., 2019)∗ 21.6 4.1 30.2 52.4 - - - 42.0 - - - -
MTL-KGC (Kim et al., 2020)∗ 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8 - - - -
StAR (Wang et al., 2021a)∗ 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2 - - - -
DKRL (Xie et al., 2016)∗ - - - - - - - - 16.0 12.0 18.1 22.9
KEPLER (Wang et al., 2021b)∗ - - - - - - - - 21.0 17.3 22.4 27.7

SimKGC (Wang et al., 2022)∗ 66.7 58.8 72.1 80.5 33.6 24.9 36.2 51.1 35.8 31.3 37.6 44.1

SimKGC replicated 65.0 55.6 71.5 81.4 33.8 25.3 36.5 51.2 36.8 32.5 38.3 44.7
+ Head-Relation 64.3 57.1 68.6 77.6 36.2 27.4 39.2 53.7 40.2 36.4 41.8 46.8
+ Entity Similar 66.4 59.5 70.1 79.1 35.4 26.9 38.4 52.3 39.3 35.5 40.9 46.0
+ Replaced Head-Relation 65.3 58.8 68.8 77.5 36.5 27.6 39.9 54.2 41.0 37.0 42.7 48.0
+ Sparse 66.7 59.3 71.3 79.3 34.6 25.9 37.5 52.2 36.7 32.3 38.4 44.5
+ Structure-Aware 67.8 60.9 72.5 80.0 33.1 24.4 35.7 50.7 38.0 33.4 39.7 46.2

Ensemble

Rank Fusion 68.9 61.9 72.9 81.7 36.6 27.6 40.1 54.3 41.7 37.6 43.5 48.7
Embedding Fusion 69.2 62.7 72.8 81.1 36.7 27.8 40.0 54.3 42.0 38.1 43.5 49.0

Table 2: Evaluation results on the test set of WN18RR, FB15k-237 and Wikidata5M (Transductive Setting) datasets.
∗ indicates results directly copied from Wang et al. (2022).

Method MRR H@1 H@3 H@10

TransE (Bordes et al., 2013)∗ 7.4 3.1 10.1 14.5
TransH (Wang et al., 2014)∗ 7.4 3.2 10.1 14.6
TransR (Lin et al., 2015)∗ 7.3 3.5 9.9 13.5
TransD (Ji et al., 2015)∗ 7.4 3.2 10.1 14.5

SimKGC replicated 25.7 18.9 27.6 39.5
+ Head-Relation 26.3 20.5 28.6 37.0
+ Entity Similar 26.3 20.7 28.4 36.5
+ Replaced Head-Relation 27.1 21.1 29.3 38.1
+ Sparse 24.9 18.4 26.7 37.6
+ Structure-Aware 25.6 18.8 27.5 39.4

Ensemble

Rank Fusion 28.3 21.6 30.6 41.7
Embedding Fusion 27.9 21.5 30.0 40.0

Table 3: Evaluation results on the DBPedia500k dataset.
∗ indicates the results obtained by running the open-
source OpenKE toolkit (Han et al., 2018).

hinders their utility for real-time deployment.

6 Analysis

6.1 Why the Effects Vary by Dataset

Next, we analyse why the benefits of different hard
negative sampling strategies vary from dataset to
dataset. We employ two measurements, namely
Difficulty and False Negative Rate, to draw the con-

nections to the performance on specific datasets.
Difficulty is measured by the average model score
between hard negatives and their corresponding
head-relation pairs. More specifically, for a given
KG triplet (hi, ri, ti) and its associated hard neg-
ative pool Ni = {tj |1 ≤ j ≤ k}, the difficulty is
computed as follows:

Di =
1

|Ni|
∑

tj∈Ni

s(hi, ri, tj)

where s(hi, ri, tj) is the score predicted by the
SimKGC replicated model.10 The overall difficulty
is the average over training, 1

|D|
∑|D|

i Di.
On the other hand, False Negative Rate is the pro-

portion of hard negatives which are correct answers
that appear in development and test graphs:11

FNR =
1

|D|

|D|∑

i

1

|Ni|
∑

tj∈Ni

I(< hi, ri, tj >∈ T )

where T is the development and test sets. I(∗) = 1
if the corresponding triple appears in the develop-
ment or test set; otherwise it is 0.

10The model is fixed to allow comparison of different nega-
tive sampling strategies.

11The real false negative rate will be higher than what we
measure due to the incomplete nature of knowledge graphs.
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Figure 2: The difficulty and false negative rates of hard
negatives extracted using different sampling strategies
on WN18RR and FB15k237 datasets. Colours of points
and numbers represent the Hit@1 score. The best results
are circled with round boxes.

A model that is trained using hard negatives
with high difficulty and low false negative rate
is expected to achieve better performance. Fig-
ure 2 compares the difficulty and false negative
rates for hard negative sampling strategies over two
datasets. The most effective strategies are differ-
ent on the two datasets: for Wordnet (WN18RR)
the accuracy (Hit@1) is most sensitive to the false
negative rate (horizontal axis), while for Freebase
(FB15k237) it is most sensitive to difficulty (ver-
tical) – despite the false negative rates being con-
siderably higher on this dataset. We ascribe the
difference to the underlying dataset. Wordnet is a
sparsely-connected graph, and has relation types
that connect entities with hierarchical structures.
For instance, the hypernym and derivationally re-
lated form relations which satisfy the transitivity
property account for 74% of triples in the graph.
Including negatives with high difficulty for such
relations (i.e., false negatives on the hierarchy that
are not directly connected to a specific head entity)
will inevitably encourage the model to learn em-
beddings that destroy such structures. However,
the best-performing structure-aware negative sam-
pling methods only sample negatives from local
neighbourhoods, which we believe can effectively
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Figure 3: The comparison between the best single model
and the model trained using Head-Relation negatives
with and without oracle false negative removal.

reduce such side-effects. In contrast, Freebase is a
much more denser graph compared to Wordnet (8×
in terms of node degrees), with significantly fewer
entities but more diverse relations. Moreover, over
70% triples include relations that have high arity
(e.g., has part) and many-to-many mappings. Thus,
the chance of having false negatives within glob-
ally sampled hard negatives will be much higher
than that on Wordnet in nature. However, since
FB15k237 is a much more difficult task compared
to WN18RR, highly difficult negatives should be
used to encourage the model to learn embeddings
that can discriminate correct tails from very similar
ones, and the importance of false negatives are com-
paratively less important. We leave the systematic
analysis of different negative sampling methods
with respect to KG structures as future work.

6.2 Oracle Upper Bound

One natural following question is how much im-
provement we may achieve if we remove all
false negatives when using the most difficult head-
relation hard negatives to train a model. As shown
in Figure 3, the performance increases substantially
in terms of H@1 and H@10 across four datasets
when simply removing false negatives. This shows
that there is much room for improvement and de-
signing effective false negative elimination meth-
ods could potentially fill the performance gap and
result in better-performing models. Besides, our
best single model can obtain results that are close
to the upper bound on WN18RR and Wikidata5M,
but still lags behind on the other two datasets.
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Rel Category 1-TO-1 1-TO-M. M.-TO-1 M.-TO-M.

Size % 0.94 6.32 20.45 72.29

SimKGC
Forward 57.3 4.6 73.2 24.8

Backward 64.6 37.1 13.6 15.3
Avg. 60.9 20.8 43.4 20.1

Our model
Forward 60.9 4.3 75.8 28.9

Backward 67.7 40.8 10.5 17.4
Avg. 64.3 22.6 43.1 23.2

Table 4: Detailed results (H@1) on the FB15k-237 test
dataset, broken down by category of relationships and
prediction directions. Our model refers to the best single
model trained with replaced head-relation negatives.

6.3 Relation Category

To further understand the behaviour of our model,
we follow Bordes et al. (2013) by classifying triples
into different groups based on the category of rela-
tionships. Relationships are broken down into four
categories according to the cardinalities of their
head and tail arguments: one-to-one (1-TO-1), one-
to-many (1-TO-M.), many-to-one (M.-TO-1) and
many-to-many (M.-TO-M.). For a given relation r,
if the average number of heads h appearing in the
dataset for a tuple (r, t) is lower than 1.5, the head
argument will be labeled as 1 and M. otherwise.
The same is applied to the tail argument.

Table 4 shows the detailed results of four cate-
gories on the FB15k-237 dataset, together with the
forward and backward prediction results. Firstly,
we can find that both models perform the best on
triples with 1 on the tail side, while predicting the
M side is significantly more difficult. Secondly,
our method can beat the baseline on most rela-
tion categories. Thirdly, the substantial improve-
ment on 1-TO-1 relations (+3.4%) shows that our
model is making more precise decisions. Besides,
by looking into specific prediction directions, we
find that the performance mainly comes from pre-
dicting triples with 1 on the target side. When the
target side contains multiple answers, adding hard
negatives even hurts the performance, especially in
the backward direction of M.-TO-1. Further analy-
sis finds that its false negative rate is almost three
times the overall rate (15.9% vs 5.5%), and we be-
lieve it is the high false negative rate that misleads
the model and results in negative impacts on this
specific relation category.

6.4 Generalise to Unseen Entities

Textual embedding methods are known to gener-
alise better to unseen entities than graph embedding

WN18RR Model MRR H@1 H@3 H@10

Seen SimKGC 65.5 56.1 72.0 81.7
Our model 68.2 61.3 72.6 80.0

Unseen SimKGC 59.1 48.6 65.2 77.6
Our model 63.7 54.1 70.2 81.0

Wikidata5M Model MRR H@1 H@3 H@10

Seen SimKGC 36.6 32.3 38.1 44.5
Our model 40.7 36.7 42.4 47.7

Unseen SimKGC 43.4 38.4 45.3 51.6
Our model 49.7 45.6 51.9 57.2

Inductive SimKGC 42.5 37.8 43.9 51.6
Unseen Our model 47.4 43.3 49.3 55.1

Table 5: Results on test examples when only containing
seen and unseen entities, respectively. Our model refers
to the best single model in each dataset.

ones (Wang et al., 2021a). We conduct experiments
to testify whether their generalisation ability can
be further improved by using harder negatives. We
split test data based on whether the head or target
entity is unseen in training. 210 out of 3134 and
159 out of 5163 test triples include unseen enti-
ties on WN18RR and Wikidata5M, respectively.
Furthermore, we use another Inductive setting on
Wikidata5M, which has different data splits com-
pared to the Transductive setting. We extract 336
test triples from the whole graph of Induction set-
ting which include entities unseen to the Transduc-
tive setting’s training graph. The detailed results
are shown in Table 5. We observe our best model
achieves considerable improvements on three un-
seen entity settings across all metrics. Moreover,
the absolute improvements are significantly higher
than those on the seen entity setting, especially on
recall metrics (e.g., H@3 and H@10). This demon-
strates learning from hard negatives leads entity
embeddings that generalise better.

7 Related Work

Knowledge Graph Completion KGC has been
extensively studied for many years as a popular
research topic. Conventional KGC methods adopt
graph embedding methods to map entity and re-
lation into low-dimensional dense vectors and de-
sign various scoring functions to measure the plau-
sibility of KG triples, including TransE (Bordes
et al., 2013), DistMult (Yang et al., 2014), Com-
plEx (Trouillon et al., 2016) and RotatE (Sun et al.,
2019). Recent text embedding methods choose to
include additional text descriptions related to en-
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tities by making use of large pretrained language
models, including KG-BERT (Yao et al., 2019),
MTL-KGC (Kim et al., 2020) and StAR (Wang
et al., 2021a). In this work, we follow Wang
et al. (2022) by adopting the simple yet effective
text embedding-based method using powerful pre-
trained language models. The above graph-based
methods, which also rely on negatives to learn en-
tity and relation embeddings, are orthogonal to the
sampling strategies proposed in this work. We be-
lieve our techniques could lead to improvements
when applied to graphs, but we leave this for future
work.

Dual Encoder for Contrastive Learning A Dual
Encoder, or Bi-Encoder, which adopts two en-
coders without weight sharing for feature encod-
ing, has been widely used in many tasks, including
image learning (He et al., 2020) and information
retrieval (Karpukhin et al., 2020). Typically, an im-
age with two different augmented views or query-
document pairs is encoded into vectors separately
by a dual encoder. The model learns to minimise
the distance between positive pairs and push neg-
ative pairs further apart in the embedding space.
Inspired by previous work, we decouple the en-
coding of (h, r) and t by dual encoder and use the
contrastive learning framework to learn effective
knowledge embeddings.

Hard Negatives for Contrastive Learning Hard
negatives have been identified to be extremely help-
ful in learning better representations, including im-
age learning (Robinson et al., 2021) and informa-
tion retrieval (Karpukhin et al., 2020). For example,
the DPR model (Karpukhin et al., 2020) mines hard
negatives using a sparse retriever BM25. Xiong
et al. (2021) proposed to sample hard negatives
from the model itself by theoretically and empiri-
cally verifying such negatives can result in larger
gradient norms and thus faster convergence speed.
Zhang and Stratos (2021) also found doing negative
sampling from the model being optimised leads to
better performance, as they argued that contrastive
learning is a biased estimator and sampling nega-
tives from the model itself can reduce such bias.
We follow this direction and propose various hard
negative search methods in this paper and show
that they can substantially improve KGC.

Negative Sampling Strategies for KGC Most
KGC works employ a simple negative sampling
strategy by corrupting the head entity h or tail
entity t of a correct KG triplet (h, r, t) with uni-

formly sampled random entities from the whole
knowledge graph (Yao et al., 2019). However,
such easy negatives are identified to provide lim-
ited training signal, since most of them produce
small scores and nearly zero gradients late in train-
ing (Sun et al., 2019). Therefore, various im-
proved negative sampling strategies have been pro-
posed. Self-adversarial negative sampling (Sun
et al., 2019) uses the distribution generated by the
model being optimised to weight sampled nega-
tives. GAN-based methods (Wang et al., 2018) are
also effective in extracting informative negatives
but suffer from inefficiency and high training costs.
NSCaching (Zhang et al., 2019) regards negative
triplets with large scores as important and main-
tains a cache of such triples from which negatives
are sampled. Ahrabian et al. (2020) takes the head
or tail entity’s n-hop neighbours as negatives and
evaluates their utility on graph embedding methods.
Our work also aims to explore the effects of im-
proved negative sampling strategies for KGC but
with different model architectures (dual-encoder vs
graph embeddings). Many of the above negative
sampling strategies are orthogonal to our work and
we believe they have the potential to be employed
within our method for further empirical gains.

8 Conclusion

In this paper, we successfully improve a powerful
dual-encoder-based KGC model by introducing var-
ious improved negative search methods and investi-
gating their combinatorial effects. Empirical results
on four benchmarks with different scales confirm
the superiority of our proposed methods, signifi-
cantly beating a wide range of competitive methods
and achieving state-of-the-art performance. For fu-
ture work, we are interested in eliminating false
negatives contained in sampled hard negatives. An
exciting future direction is to use a model to filter
out false negatives and potentially even identify
pseudo positives, for more accurate models.

Limitations

Although our method is efficient and introduces no
extra cost during inference time, it does incur the
additional training cost of retrieving different types
of hard negatives, which roughly doubles the time
for completing the whole training pipeline. The
model ensembling methods, especially the embed-
ding fusion one, need to build indexes for entity
embeddings and require extra cost for storage. De-
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spite these drawbacks, the training of our methods
has a fairly modest footprint by modern standards,
taking about 36 hours of a server with 4×A100
GPUs and 200G CPU RAM for the largest datasets,
Wikidata5M.

As an empirical study, we provide observations
under different design choices for sampling hard
negatives. We hope our findings can shed lights on
future work. A theoretical analysis about each pro-
posed negative sampling strategy with connection
to KG properties (e.g., sparsity) would certainly
strengthen our claims, but is out of scope of this
paper. In addition, the state-of-the-art dual-encoder-
based KGC model is used to verify the sampling
methods proposed in this work. One would expect
to test their generalisation to other underlying KGC
methods, e.g., graph embedding methods, which
we leave as future work.

Moreover, adapting the dual-encoder-based
KGC model and our proposed negative sampling
methods to multilingual KGs, e.g., for a KG with
concepts in different languages, or multi-modal set-
tings, for a KG with concepts in the form of images,
videos, or audios would further test the generali-
sation ability, which can be a promising research
direction for future work.

Acknowledgements

We thank the anonymous reviewers for their help-
ful feedback and suggestions. The first author
is supported by the Graduate Research Scholar-
ships funded by the University of Melbourne. This
research was undertaken using the LIEF HPC-
GPGPU Facility hosted at the University of Mel-
bourne. This Facility was established with the as-
sistance of LIEF Grant LE170100200.

References
Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L.

Hamilton, and Avishek Joey Bose. 2020. Structure
aware negative sampling in knowledge graphs. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6093–6101, Online. Association for Computa-
tional Linguistics.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Gordon V. Cormack, Charles L A Clarke, and Stefan
Buettcher. 2009. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In
Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’09, page 758–759, New
York, NY, USA. Association for Computing Machin-
ery.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, and Alfio Gliozzo. 2021. Robust re-
trieval augmented generation for zero-shot slot filling.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1939–1949, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu,
Maosong Sun, and Juanzi Li. 2018. OpenKE: An
open toolkit for knowledge embedding. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 139–144, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 687–696, Beijing, China. Asso-
ciation for Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Herve Jegou. 2021.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

1827

https://doi.org/10.18653/v1/2020.emnlp-main.492
https://doi.org/10.18653/v1/2020.emnlp-main.492
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.148
https://doi.org/10.18653/v1/2021.emnlp-main.148
https://doi.org/10.18653/v1/D18-2024
https://doi.org/10.18653/v1/D18-2024
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.1109/tbdata.2019.2921572


Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Bosung Kim, Taesuk Hong, Youngjoong Ko, and
Jungyun Seo. 2020. Multi-task learning for knowl-
edge graph completion with pre-trained language
models. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
1737–1743, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, page 2181–2187.
AAAI Press.

Jing Lu, Gustavo Hernandez Abrego, Ji Ma, Jianmo Ni,
and Yinfei Yang. 2021. Multi-stage training with im-
proved negative contrast for neural passage retrieval.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6091–6103, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. 2019. PyTorch: An Im-
perative Style, High-Performance Deep Learning Li-
brary. Curran Associates Inc., Red Hook, NY, USA.

Hongyu Ren and Jure Leskovec. 2020. Beta embed-
dings for multi-hop logical reasoning in knowledge
graphs. In Neural Information Processing Systems.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra,
and Stefanie Jegelka. 2021. Contrastive learning with
hard negative samples. In International Conference
on Learning Representations.

Baoxu Shi and Tim Weninger. 2017. Open-world knowl-
edge graph completion.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International
Conference on Learning Representations.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48,
ICML’16, page 2071–2080. JMLR.org.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021a. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of the Web Confer-
ence 2021, WWW ’21, page 1737–1748, New York,
NY, USA. Association for Computing Machinery.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022. SimKGC: Simple contrastive knowledge
graph completion with pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4281–4294, Dublin, Ireland.
Association for Computational Linguistics.

Peifeng Wang, Shuangyin Li, and Rong Pan. 2018. In-
corporating gan for negative sampling in knowledge
representation learning. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
and Thirtieth Innovative Applications of Artificial In-
telligence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021b.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans-
actions of the Association for Computational Linguis-
tics, 9:176–194.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 28(1).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of

1828

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.coling-main.153
https://doi.org/10.18653/v1/2020.coling-main.153
https://doi.org/10.18653/v1/2020.coling-main.153
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.emnlp-main.492
https://doi.org/10.18653/v1/2021.emnlp-main.492
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://openreview.net/forum?id=CR1XOQ0UTh-
https://openreview.net/forum?id=CR1XOQ0UTh-
http://arxiv.org/abs/1711.03438
http://arxiv.org/abs/1711.03438
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


knowledge graphs with entity descriptions. In Pro-
ceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, AAAI’16, page 2659–2665. AAAI
Press.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 535–546, Online.
Association for Computational Linguistics.

Wenzheng Zhang and Karl Stratos. 2021. Understand-
ing hard negatives in noise contrastive estimation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1090–1101, Online. Association for Computa-
tional Linguistics.

Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei
Chen. 2019. Nscaching: Simple and efficient nega-
tive sampling for knowledge graph embedding. 2019
IEEE 35th International Conference on Data Engi-
neering (ICDE).

1829

https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1909.03193
http://arxiv.org/abs/1909.03193
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.86
https://doi.org/10.18653/v1/2021.naacl-main.86
https://doi.org/10.1109/icde.2019.00061
https://doi.org/10.1109/icde.2019.00061


WN18RR FB15k-237

MRR H@1 MRR H@1

Best Single Model 67.8 60.9 36.5 27.6
Negative Combination 65.8 59.0 35.6 26.7

Table 6: Results when training a model by sampling
from the union of all types of negatives.

A Hyperparameters

The learning rates are set to 5×10−5 on WN18RR,
3 × 10−5 on Wikidata5M and 1 × 10−5 on the
remaining datasets. All models are trained using
Adam optimizer (Kingma and Ba, 2015) with a
warmup learning rate scheduler. The model is
trained for 50, 10, 5, and 1 epochs on WN18RR,
FB15k-237, DBPedia500k, and Wikidata5M. For
each hard negative sampling strategy, we generate
30 negatives for each training example.12 During
each training step, we uniformly sample a subset
of hard negatives from the pool for each training
example, and the best number is chosen from [1, 5].
For both rank fusion and embedding fusion meth-
ods, their weights are shared and are tuned based on
the performance on development sets. A summary
of training details and hyperparameters is shown in
Table 8.

B Number of Negatives for Training

For each training example in a mini-batch, we uni-
formly sample N negatives from its associated hard
negative pool. We also treat the hard negatives and
self-negatives of other examples in the same mini-
batch as in-batch negatives. Suppose the batch size
is B and pre-batches are M , the total number of
instances used for loss calculation in Eq. 2 will be
(N +M + 2)×B for each training example. By
contrast, the number of negatives used by SimKGC
is (M+2)×B. If we keep the same batch size, the
number of negatives used in our experiment will in-
crease by N×B, which would potentially weak our
claims as more negatives are used for contrastive
learning. To ensure fair comparison, we reduced
the batch size so that the number of negatives used
in our experiment is the same as Wang et al. (2022).
For example, if we take B = 768, N = 1,M = 1
on WN18RR, the number of negatives equals to
3072; while we take B = 1024 for SimKGC, the
number will also be 3072. Thus, our methods will

12Gold answers appearing in the training graph are removed
for each (h, r). (i.e., N = {tj |(h, r, tj) /∈ D}kj=1)

56

58

60

62

H@
1 58.8 58.9

60.9
59.5 59.3

60.4

WN18RR
Tail Query Head Query

Entity Similar Sparse Structure-Aware
22

24

26

28

H@
1

26.9
25.9

24.4

26.7

24.3 24.0

FB15k237

Figure 4: Results comparison when taking head or tail
entity as query.

not be affected by including more negatives. Simi-
lar settings apply to other datasets.

C Ablation Study

C.1 Negative Combination

Another possible way to benefit from all kinds of
hard negatives is to train a model on their com-
binations. We experiment with training a model
by uniformly sampling negatives from the union
of all types of hard negatives generated from §3.2.
As shown in Table 6, the model does not obtain
improved results and this can even hurt the per-
formance. We reason that although the combined
negatives can provide more diverse supervisions,
their false negative rates and difficulty also changes.
More specifically, the false negative rate and diffi-
culty on WN18RR change to 0.93% and 29.66%.
Although more difficult negatives are included, the
more important false negative rate is worse than the
best structure-aware one. By contrast, the false neg-
ative rate in FB15k237 after combination reduces
from Replaced Head Relation’s 5.45% to 4.24%,
but the more important difficulty also decreases
from 45.8% to 33.7%, thus leading to inferior re-
sults.

C.2 Head Entity vs Tail Entity as Query

We analyse the performance difference between
using head entity and tail entity as the query in the
sparse, structure-aware and entity similar negative
sampling strategies. Figure 4 shows that for similar
and sparse negatives, using tail entity as query gen-
erally leads to worse performance on WN18RR;
while in other cases, using the tail entity is more
beneficial. One reason behind this is that taking
the head entity as query would inevitably reduce
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Dataset #Ent #Rel Train Dev Test

WN18RR 40, 943 11 86, 835 3, 034 3, 134
FB15k-237 14, 541 237 272, 115 17, 535 20, 466
DBPedia500k 517, 475 654 3, 102, 677 10, 000 1, 155, 937
Wikidata5M 4, 594, 485 822 20, 614, 279 5, 163 5, 163

Table 7: Number of Entities, Relations and Triples in Train/Dev/Test splits of datasets used in our experiments.

Hyperparameters WN18RR FB15k-237 DBPedia500k Wikidata5M

Learning rate 5e-5 1e-5 1e-5 3e-5
LR Scheduler Linear Warmup Linear Warmup Linear Warmup Linear Warmup
Warmup steps 400 400 400 400
Epochs 50 10 5 1
Batch Size for SimKGC 1024 1024 1024 1024
Batch size 768 512 512 768
Gradient clipping 10.0 10.0 10.0 10.0
#Hard negatives 1 3 3 1
Fusion weights [0.1, 0.3, 0.3, 0.3, 1.2] [0.6, 0.2, 0.9, 0.05, 0.01] [1, 1, 1, 1, 1] [0.9, 0.6, 1.2, 0.3, 0.45]

Table 8: Hyperparameter settings for different datasets. Entries in fusion weights correspond to Head-Relation,
Entity Similar, Replaced Head-Relation, Sparse, and Structure-Aware sampling methods, respectively.

MRR H@1 H@3 H@10

Rank Uniform 68.7 61.7 72.7 81.6
Fusion Tuned 68.9 61.9 72.9 81.7

Embedding Uniform 68.9 62.5 72.5 80.8
Fusion Tuned 69.2 62.7 72.8 81.1

Table 9: Results comparison on WN18RR when using
uniform and manually-tuned weights for model ensem-
bling.

the difficulty but can avoid false negatives, a factor
that is more significant for WN18RR. By contrast,
the situation on FB15k237 is the other way around
where the difficulty is more crucial. Again, we can
confirm that there is no single design choice for
each sampling strategy that works the best across
datasets.

C.3 Uniform Weights for Ensembling

We show results when using uniform weights for
model ensembling in Table 9. We find that simply
using uniform weights has already boosted the per-
formance. By carefully tuning the weights of each
model through grid search, we can achieve further
gains on all metrics, although the benefits are mini-
mal. Making fusion weights learnable (Wang et al.,
2021a) may lead to further improvements, which
we leave as future work.

D Qualitative Analysis

Table 10 shows some examples of predictions from
the SimKGC baseline and our best method. For

the first example, both methods’ predictions are
wrong. However, our method ranks the correct
tail entity much higher than the SimKGC baseline.
Moreover, the top-1 prediction from our method
prosody_NN_1 is more reasonable as an answer
compared to articulation_NN_1. For the second
example, both methods fail according to the test
set annotations. Our method returns correct tail
entities based on our judgment. The same applies to
SimKGC for its top-2 predictions. This also shows
current automatic evaluation metrics cannot reflect
the performance of KGC models precisely. For the
third example, our method finds the correct answer
out of other very semantically similar entities.
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I. Both SimKGC and our model fail, but our predictions are more related

Head Entity accentuation_NN_1: the use or application of an accent; the relative prominence of syllables in a phrase
Relation hypernym
Tail Entity stress_NN_1: the relative prominence of a syllable or musical note (especially with regard to stress or pitch)

SimKGC 1. articulation_NN_1: the aspect of pronunciation that involves bringing articulatory organs together so as to
shape the sounds of speech

(Rank 180) 2. prosody_NN_1: the patterns of stress and intonation in a language
3. non-standard_speech_NN_1: speech that differs from the usual accepted, easily recognizable speech of native
adult members of a speech community

Ours 1. prosody_NN_1: as above 2. articulation_NN_1: as above
(Rank 108) 3. speech_pattern_NN_1: distinctive manner of oral expression; "he couldn’t suppress his contemptuous accent".

II. Both SimKGC and our model fail, but both models’ predictions are correct based on human judgement

Head Entity pea_family_NN_1: a large family of trees, shrubs, vines, and herbs bearing bean pods...
Relation member meronym
Tail Entity wild_pea_NN_1: any of various plants of the family Leguminosae that usually grow like vines.

SimKGC 1. genus_sesbania_NN_1: small genus of tropical and subtropical leguminous herbs or shrubs or trees
(Rank 7) 2. genus_centrosema_NN_1: a genus of chiefly tropical American vines of the family Leguminosae...

3. torchwood_family_NN_1: resinous or aromatic chiefly tropical shrubs or trees

Ours 1. genus_acacia_NN_1: large genus of shrubs and trees and some woody vines...
(Rank 4) 2. genus_sesbania_NN_1: as above

3. genus_dalbergia_NN_1: large genus of tropical trees having pinnate leaves and paniculate flowers...

III. Our model succeeds but SimKGC fails

Head Entity wive_VB_1: take (someone) as a wife
Relation hypernym
Tail Entity wed_VB_1: take in marriage

SimKGC 1. wifely_JJ_1: befitting or characteristic of a wife
(Rank 4) 2. shack_up_VB_1: share living quarters; people who are not married and live together as a couple

3. wive_VB_2: marry a woman, take a wife

Ours 1. wed_VB_1: as above
(Rank 1) 2. wifely_JJ_1: as above 3. shack_up_VB_1: as above

Table 10: Predictions of tail entities by the SimKGC baseline and our best model. The top-3 ranked outputs are
reported, and the ranks of the correct results are also included. Correct predictions are in bold, and underline means
predictions that do not exist in original KGs but are correct based on human judgment.
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