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Abstract

Performance prediction for Natural Language
Processing (NLP) seeks to reduce the exper-
imental burden resulting from the myriad of
different evaluation scenarios, e.g., the combi-
nation of languages used in multilingual trans-
fer. In this work, we explore the framework of
Bayesian matrix factorisation for performance
prediction, as many experimental settings in
NLP can be naturally represented in matrix
format. Our approach outperforms the state-
of-the-art in several NLP benchmarks, includ-
ing machine translation and cross-lingual entity
linking. Furthermore, it also avoids hyperpa-
rameter tuning and is able to provide uncer-
tainty estimates over predictions.

1 Introduction

Natural language processing (NLP) is an empiri-
cal discipline, with progress driven by a myriad of
tasks, domains, computational models and datasets
(Xia et al., 2020). Models are often developed to be
applicable to a large number of languages. Given
that there are more than 7000 languages spoken
in the world (Haddow et al., 2022), evaluating the
model performance of each possible NLP scenario
leads to a combinatorial explosion and would re-
quire excessive time for training and testing, as
well as the significant costs of evaluation resource
creation. This is very time consuming and compu-
tationally expensive, especially for large models
and massively multilingual applications (Xia et al.,
2020; Sharir et al., 2020).

To illustrate, for neural machine translation (MT)
models, retraining and testing for each new lan-
guage pair is required (Fan et al., 2021), which
quickly increases the number of experiments (as
shown in Figure 1). In those scenarios, whether
the model is appropriate for the considered test
languages is not clear upfront. Similarly, for cross-
lingual transfer (TSF) tasks like parsing (Das and
Sarkar, 2020) or part-of-speech (POS) tagging
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Figure 1: Matrix representation showing a subset of the
performance scores for Wiki MT (Schwenk et al., 2021).
Black: Lowest performance scores. Light orange: High-
est performance scores. Grey: No performance score
available. The goal is to predict the performance of
language pairs depicted by grey cells.

(de Vries et al., 2022), the performance on all lan-
guages of interest is only known after training and
testing has been performed. This is particularly in-
teresting for the development of NLP technologies
for low-resource languages (de Vries et al., 2022).

In this paper we propose a method for per-
formance prediction which can solve the above
problems through automatically estimating perfor-
mance scores of machine learning models, thus
avoiding the need for excessive training and test cy-
cles, and data creation costs. The goal is to predict
the performance of a model solely based on past
experimental records – a task of great interest for
decision making in aforementioned high-cost appli-
cations. We propose to use Bayesian probabilistic
matrix factorization methods and incorporate con-
text features describing the language pairs of inter-
est. This is realisable because many performance
prediction problems in NLP can be modelled as a
matrix, as illustrated in Figure 1. The result will
inevitable be an incomplete matrix because some
data are missing, as they were either to costly to ob-
tain or no datasets were available (Xia et al., 2020;
Schwenk et al., 2021).
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Our key contribution is a Bayesian approach
for performance prediction, contrasting with prior
work which is exclusively frequentist. This con-
fers the following advantages: 1) it enables us to
quantify the uncertainty of our predictions by pro-
viding credible intervals (CIs); and 2) predictions
of performance scores can be provided in a more
principled way via a posterior distribution after
integrating over the model’s parameters and hyper-
parameters. We provide an extensive experimental
study of matrix factorization methods, including
our proposed Bayesian technique, applied to sev-
eral important benchmarks, and show several im-
provements over the state-of-the-art.

2 Problem Formulation and Methods

As demonstrated in Figure 1, the performance
scores for a suitable NLP task can be arranged
in a matrix with the rows displaying the source
languages and the columns showing the target
languages1. The matrix is the score matrix
R ∈ RNs×Nt and each cell (s, t) contains either
the performance score for a source-to-target lan-
guage relationship or is empty. The number of
considered source and target languages is denoted
by Ns and Nt, respectively.

The performance of a model, measured by an
evaluation metric (e.g. BLEU, Papineni et al.
(2002)), depends on properties like the model ar-
chitecture M, training dataset D, languages L, the
training procedure P and the test dataset D′. The
score matrix R is then given by

R̂L,D = fθ([ΦL; ΦD]),

with fθ(·) being a function which denotes a linear
or non-linear relationship of its arguments and ΦX
represents the feature set of each characteristic X .
The dependency on test set features is omitted. We
assume that the distributions of training and test
datasets are the same, ignoring a possible domain
shift (following Xia et al. (2020)).

As the completion of an arbitrary matrix is ill-
posed, we reformulate fθ(·) as a low-rank matrix
approximation problem. In its simplest, noiseless
form, the matrix R can be reconstructed as (Koren
et al., 2009)

R ≈ WTH, (1)
1This is an assumption, appropriate for our considered

tasks. Without any loss of generality, this scenario can be
expanded to other NLP settings which can be reformulated as
a matrix, e.g. hyperparameter search for language models.
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Figure 2: The graphical model for our approach based
on Bayesian Probabilistic Matrix Factorisation with con-
text information.

using two lower rank matrices W ∈ RD×Ns and
H ∈ RD×Nt , with W and H being the latent ma-
trices for the source and target languages, respec-
tively. Due to the low-rank assumption, for the la-
tent dimensions it holds that D ≪ Ns, Nt. Hence,
each individual score rs,t of a source-target pair
can be calculated by rs,t ≈ wT

s ht, where each la-
tent source and target language vector is given by a
low-dimensional vector, wT

s ∈ RD, ht ∈ RD, re-
spectively (Cabral et al., 2013; Chen et al., 2018b).

The matrix factorisation (MF) approach de-
scribed above is inspired by research on recom-
mender systems, which use latent factor models
for preference predictions (Koren et al., 2009). In
those models, the low rank behavior is a widely
used assumption. We assume in our model that
the performance of a bilingual task is determined
by a small number of unobserved factors. Using a
linear factor model the performance for translating
from a source language is modeled by linearly com-
bining target language factor vectors using source
language specific coefficients.

2.1 Bayesian Probabilistic Matrix
Factorisation

Our approach is represented by the graphical model
shown in Figure 2. It illustrates a linear probabilis-
tic model, where the conditional distribution over
the observed ratings, assuming Gaussian observa-
tion noise, is given as

p(R|W,H, c, z, σ2) =

S∏

s=1

T∏

t=1

[N (rs,t|wT
s ht +

N∑

i=1

ciz
i
s,t, σ

2)]Is,t , (2)
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with Is,t being the indicator function that is 1 if a
source language s has a performance score for a tar-
get language j and 0 otherwise. N (µ, σ2) denotes
a Gaussian distribution with mean µ and variance
σ2. The mean of this likelihood function consists
of a latent factor model wT

s ht and is also addition-
ally regressed on the available context information
given by zis,t for i ∈ 1, ..., N available context
features (Chen et al., 2018b). The prior for the
regression coefficients ci of each context feature zi
is given by p(ci|σ2

c ) = N (ci|0, σ2
c ). Furthermore,

spherical Gaussian priors are placed for source and
target language latent feature vectors given by

p(W|σ2
w) =

S∏

s=1

N (ws|µw,Σw) (3)

p(H|σ2
h) =

T∏

t=1

N (ht|µh,Σh), (4)

with hyperparameters Θw = {µw,Σw} and
Θh = {µh,Σh}, where Σ is the covariance ma-
trix. In contrast to the original work (Salakhut-
dinov and Mnih, 2008) on which we base our ap-
proach, we choose to incorporate the Lewandowski-
Kurowicka-Joe (LKJ) prior (Lewandowski et al.,
2009) into the computation of samples for the co-
variance matrices. This method is better suited for
modern Bayesian computations, due to sampling
difficulties the inverse-Wishart prior causes and its
restrictive form (Team, 2018; Barnard et al., 2000).
A correlation matrix U, with elements uij =

σij

σiσj

and σ being the standard deviation, can be refor-
mulated into a covariance matrix Σ using the sepa-
ration strategy (Barnard et al., 2000) as

Σ = GUG, (5)

with G =
√

diag(Σ). The matrix U is sampled
from the LKJ prior given by

p(U|η0) = c · det(U)η0−1,

indicating a uniform distribution on correlation ma-
trices for η0 = 1, a normalization constant c and
det(·) denoting the determinant. As a prior for G
we choose the halfnormal distribution (Seyboldt,
2019), as it holds that σ > 0, which is given for
each element g ∈ G by

p(g|σ2
0) =

√
2

σ0
√
π

exp
(
− g2

2σ2
0

)
, g ≥ 0,

with unit variance σ2
0 . This is equivalent to plac-

ing an inverse-Gamma distribution on the preci-
sion. The covariance matrix Σ obtained according
to Equation (5) is used to parameterise the priors
given in Equations (3) and (4) and the Gaussian
prior of their means. More information can be
found in Salakhutdinov and Mnih (2008).

The predictive distribution is obtained by
marginalizing over the model’s parameters and hy-
perparameters. Since exact evaluation of this pre-
dictive distribution is analytically intractable, we
use approximate inference via Markov chain Monte
Carlo (MCMC) sampling, leading to an approxima-
tion of the predictive posterior as (Salakhutdinov
and Mnih, 2008):

p(R∗|R,Θ0) ≈
1

K

K∑

k=1

p(R∗|Wk,Hk), (6)

for Θ0 = {η0, σ2
0} and R∗ denoting the matrix

of predictions on the test set. The K samples are
generated by running a Markov chain. Its station-
ary distribution will be the posterior distribution
over the model parameters and hyperparameters
{W,H,Θw,Θh}.

2.2 Credible Intervals
One measure of uncertainty in Bayesian infer-
ence is the credible interval (CI) or more gener-
ally a credible set (Casella and Berger, 2021). A
100(1− β)% equal tail CI for a random variable
X is an interval [a, b] such that the probability that
X lies in the interval is 1− β, given as

P (X ∈ [a, b]) = 1− β.

In Bayesian inference, analyses are made consid-
ering the posterior distribution of the parameter
of interest. Hence, a CI provides us with upper
and lower bounds which define an interval with the
probability of interest around the mean of the pos-
terior distribution (Hespanhol et al., 2019; Rice and
Ye, 2022). It quantifies how precise the obtained
posterior, i.e. the posterior belief, is, with a nar-
rower interval around the point estimate indicating
more certainty in the predictions. Hence, using the
samples from Equation (6), an approximation of
the posterior predictive distributions for each lan-
guage pair can be obtained and used to construct
CIs in addition to the point estimates. This is useful
for performance prediction in NLP settings, as the
widths and bounds of the obtained CIs can guide
further decision-making regarding whether a model
is theoretically worth deploying.
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Task dim cells empty test feats

MTTSF 54× 54 2916 0 573 21
POSTSF 26× 60 1560 14 29 15
MTWiki 39× 39 1521 526 199 22
ParsingTSF 30× 30 900 0 174 15
ELTSF 9× 54 486 0 96 12
BLI 15× 15 225 95 26 6

Table 1: Matrix specifications for each task. Dim: Ma-
trix dimensions. Cells: Number of cells in each matrix.
Empty: Number of empty cells in the matrix, not being
cells on the diagonal. Test: Number of cells used in the
test set. Feats: Number of features.

2.3 Non-Bayesian Matrix Factorisation
Methods

Probabilistic MF (PMF) has been shown to perform
well on sparse and imbalanced datasets (Mnih and
Salakhutdinov, 2007). The conditional distribu-
tion over the observed ratings, assuming Gaussian
observation noise given by Equation (2), without
considering additional context information. As in
Bayesian PMF (BPMF) spherical Gaussian priors
are placed on W and H following Equations (3)
and (4), assuming µw = µh = 0; Σw = σ2

wI and
Σh = σ2

hI. Learning the latent source and target
matrices is done via maximizing the log-posterior,
where all hyperparameters, being the observation
noise and prior variances, are fixed. This is equal to
the following optimization problem, where latent
factor representations are learned by finding the ma-
trices W and H which minimize the regularized
squared error, given by (Chen et al., 2018b)

W∗,H∗ = argmin
W,H

1

2

∑

(s,t)∈δ(R)

(rs,t −wT
s ht)

2

+βw

Ns∑

s=1

||ws||22 + βh

Nt∑

t=1

||ht||22, (7)

where || · ||22 is the squared l2 norm2. Additionally,
separate regularization parameters for W and H
are assumed, being βw and βh, respectively. In the
case of missing values, the optimization problem
is on the set of known ratings δ(R).

Additionally, the framework of MF offers the
option of biased MF, which provides a means of in-
corporating context. It incorporates model charac-

2Solving this optimization problem to obtain a point es-
timate is referred to as MF in our experiments. We use a
Bayesian approach for PMF and therefore apply MCMC sam-
pling, which is another alternative and can be easily extended
via hyperpriors to BPMF.

teristics of each source language, bs, and target lan-
guage bt and considers a global tendency µ which
is independent of source-target language interac-
tions. The biases account for the fact that certain
performance values might contain universal shifts
or exhibit systematic tendencies with respect to
certain source and target languages. Furthermore,
it is common that all performance predictions are
non-negative and in a certain range, i.e., the global
bias µ accounts for global effects. The predictions
are given by (Chen et al., 2018b)

r̂CTX
s,t = wT

sht +
N∑

i=1

ciz
i
s,t + µ+ bs + bt. (8)

During learning, the optimization problem in Equa-
tion (7) has to be adapted to r̂CTX

s,t accordingly, also
adding additional regularization terms for bs and bt.

The non-probabilistic approaches, but also PMF
need manual control of their hyperparameters,
which makes those approaches computationally ex-
pensive to develop compared to BPMF.

3 Experiments and Analysis

Following the evaluation setting of NLPerf (Xia
et al., 2020), we consider a set of tasks described
in the following, all of which allow a reformula-
tion into a matrix representation. The performance
scores are predicted for bilingual lexicon induction
(BLI); machine translation on aligned Wikipedia
data (WikiMT), and with cross-lingual transfer for
translation into English (MTTSF); cross lingual de-
pendency parsing (ParsingTSF); cross-lingual POS
tagging (POSTSF) and cross-lingual entity linking
(ELTSF). Despite also considering cross-lingual
transfer tasks, for reasons of simplicity and with-
out any loss of generality, we refer to each cell in
the matrix as a source-target language pair unless
otherwise stated. All tasks and their matrix proper-
ties are stated in Table 1. More information about
the models underlying each task can be found in
Appendix A.

To allow a fair comparison to the closest related
work NLPerf (Xia et al., 2020), we consider an
identical set of features for our predictions: Dataset
size, word/subword vocabulary size, average sen-
tence length, word/subword overlap, type-token ra-
tio, type-token ratio distance, single tag type, fused
tag type, average tag length per word, dependency
arcs matching WALS features and six distance fea-
tures from the URIEL Typological Database (Littell
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Task MTWiki ParsingTSF ELTSF POSTSF MTTSF BLI

NLPerf 2.49 6.23 7.44 7.44 1.42 8.78
MF D = 10 2.74± 0.08 3.43± 0.16 6.47± 0.26 6.81± 0.19 1.42± 0.02 11.24± 0.45
MF D = 20 2.73± 0.07 3.36± 0.08 6.33± 0.25 6.03± 0.10 1.40± 0.02 12.05± 0.72
MF CTX D = 10 2.19± 0.07 2.37± 0.04 5.45± 0.19 3.98± 0.07 1.42± 0.02 10.92± 0.66
MF CTX D = 20 2.15± 0.05 2.25± 0.05 5.33± 0.15 3.86± 0.07 1.19± 0.02 10.80± 0.61
PMF D = 10 2.88± 0.05 3.27± 0.02 11.19± 0.08 5.87± 0.03 1.44± 0.00 11.65± 0.37
PMF D = 20 2.92± 0.04 3.34± 0.00 11.25± 0.08 5.78± 0.05 1.43± 0.01 11.83± 0.41
BPMF D = 10 2.64± 0.03 3.77± 0.00 5.00± 0.06 23.03± 3.33 1.61± 0.03 9.23± 0.11
BPMF D = 20 2.63± 0.03 2.99± 0.04 5.00± 0.09 6.44± 0.13 1.65± 0.07 9.30± 0.05
BPMF D = 30 2.59± 0.06 2.96± 0.03 4.98± 0.05 6.21± 0.1 1.64± 0.03 9.07± 0.04
BPMF CTX D = 10 2.42± 0.00 3.69± 0.06 4.97± 0.05 17.56± 1.77 1.53± 0.02 9.18± 0.20
BPMF CTX D = 20 2.35± 0.11 2.92± 0.05 4.87± 0.02 6.17± 0.10 1.57± 0.04 9.20± 0.07
BPMF CTX D = 30 2.51± 0.02 2.96± 0.03 5.15± 0.19 6.02± 0.10 1.53± 0.02 9.22± 0.04

Table 2: RMSE ± standard deviation for various all tasks considered. D: Latent factor dimension. CTX: Approaches
incorporating context features.

et al., 2017). Further information regarding each
feature can be found in Xia et al. (2020).

All features were normalized using their corre-
sponding z-score. For each task, (except BLI), we
predict scores for a single model. This means that
there is exactly one underlying statistical or neural
model considered for each task. For BLI however,
our dataset consists of two metrics Vecmap and
Muse. The performance is obtained as in the equiv-
alent multi-model scenario in Xia et al. (2020), by
averaging over both metrics.

The NLPerf framework is based on gradient
boosting trees (Friedman, 2001) and implemented
with XGBoost (Chen and Guestrin, 2016). The
parameterisation of this predictor was kept as in
(Xia et al., 2020), assuming a squared error as the
objective function for the regression, a fixed learn-
ing rate of 0.1, a maximum tree depth of 10 and
the number of trees being 100. The default setting
was used for the regularization terms. We evaluate
the performance of our methods by using the root
mean squared error (RMSE).

Predictions for MF are obtained according to
Equation (8) but through omitting the context infor-
mation, whereas MF CTX makes use of the latter.
The conditional distribution over observed ratings
as given in Equation (2) is used to obtain predic-
tions for BPMF, and adapted accordingly for PMF.
All non-Bayesian models are trained using nested
5-fold cross validation and stochastic gradient de-
scent (SGD) over 2000 training iterations. Refer-
ring to Figure 1, note that during training of the
latent vectors ws and ht, all available scores in the
corresponding column s and row t are used. The
regularization parameters are chosen using a vali-

dation set. All non-probabilistic experiments are
averaged over 10 runs. Training of the probabilis-
tic models was performed using MCMC sampling
and the results are averaged over 2 runs, due to
MCMC time complexity.3 More information about
the execution times of each experiment is given in
Appendix B.

3.1 Random Train-Test Splits

We start by investigating the behaviour of all meth-
ods on a randomly chosen training and test split
containing a subset of language pairs. Note that
we create one split per task and keep it constant
across all methods to allow fair comparison of the
obtained results. An example for such a train-test
split is depicted in Figure 3 on the left for BLI.

The RMSE and standard deviations of our pre-
dicted performances for all tasks are provided in
Table 2. For all single model tasks, the MF ap-
proaches consistently outperform the state-of-the-
art NLPerf (Xia et al., 2020). While general MF
already outperforms NLPerf in all but one setting,
using context information (MF CTX) leads to fur-
ther improvements in terms of RMSE – outper-
forming the SOTA with reductions in RMSE of up
to 64% (ParsingTSF). While the improvement is
significant for tasks like ELTSF, POSTSF and the
aforementioned ParsingTSF, we observe a smaller
but still noticeable reduction in RMSE for WikiMT

and MTTSF of around 13% and 16%, respectively.
Note however, that the RMSE scores cannot be
directly compared across tasks as the scales of all

3Code is available at https://github.com/vschram/
PP-via-Bayesian-MF-for-Multilingual-NLP under the
CCBY-SA 4.0 license
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Figure 3: Left: One train-test split of the available BLI data set in matrix format. Light grey: Unavailable data. Dark
grey: Test data. Black: Training data. Right: 95% Credible intervals (CI) for the predicted scores for the scenario
on the left. Orange: Predicted scores. Blue: Actual scores. Method BPMF, dimensionality of latent vectors: 10.

evaluation metrics differ.

While the Bayesian version BPMF CTX also out-
performs the NLPerf baseline in all but one single
model task, we observe particularly good results
for the task ELTSF, where BPMF CTX outperforms
all other methods and achieves new state-of-the-
art results with a relative reduction in RMSE of
35%. As introduced in Section 2, the non-Bayesian
PMF requires hyperparameter optimization and as
shown in Table 2 for all tasks but MTTSF, BPMF
outperforms PMF – potentially due to non-optimal
hyperparameter choices for PMF. This might also
be the cause for the PMF results in the ELTSF ex-
periments, while they converge to a solution, the
obtained model does not represent the underlying
data well. The outliers for POSTSF are caused by di-
vergences, which can be avoided by using a higher
number of latent dimensions. Further research is
required in those cases to understand how the mod-
els in those cases can be better adapted to the data
and is part of future work.

Observing all single model results obtained, we
conclude that if a dataset is given for which a matrix
can be constructed with a limited number of miss-
ing cells, MF approaches provide a strong alterna-
tive to gradient boosting trees. Results for all tasks
show that linear MF approaches with rather small
latent dimension sizes of 10 or 20 show often sig-
nificant performance improvements over NLPerf.

In contrast to the single model tasks, the BPMF

approaches achieve competitive performance in the
BLI two model scenario, but none of the MF ap-
proaches are able to outperform the SOTA. We
suspect this might be due to the matrix size and
available data, which is significantly smaller than
in all other tasks (Table 1). Furthermore, only 6
distance features are available for this setting, indi-
cating that additional features like dataset size and
vocabulary size (among others) that are available
for the other tasks might play a important role in
facilitating accurate performance prediction.

3.2 Uncertainty of the Predicted Scores
The Bayesian approaches offer the advantage of
providing a measure of uncertainty in terms of CIs.
An example showing the 95% CIs for all language-
pairs available in the test set is depicted in Figure 3.
Predicted performance scores for cells where only
limited training data in the corresponding rows and
columns is available show wide approximations
of the predictive posterior distribution in terms of
CIs, e.g. the language pairs “fr_uk” or “fr_hi”.
In contrast, those with more training data lead to
narrower CIs like for “be_es” or “en_be”.

Apart from having a direct measure of uncer-
tainty, one can use upper confidence bounds (UCB)
and lower confidence bounds (LCB) of the obtained
CIs to guide further decision-making (Auer, 2002).
Maximum UCBs can help to determine language-
pairs for which the underlying model could be
especially high-performing, justifying the cost to
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Figure 4: Credible intervals for the task: MTWiki. Orange: Predicted Score. Blue: Actual scores. Left: BPMF,
latent factor dimensionality: 10. Middle: BPMF, latent factor dimensionality: 20. Right: BPMF CTX, latent factor
dimensionality: 20. An increase in latent factor dimensionality and adding additional features leads to narrower CIs.
However, adding features to the language pair “hin_eng” causes a wider CI, indicating that the used features might
be unsuitable for this language-pair.

train and acquire the necessary datasets for such
language-pairs. The example given in Figure 3
on the right shows CIs for the BLI task. Using
the UCBs, the language-pairs “fr_ru”, “fr_uk” and
“en_sv” could potentially provide us with the high-
est achievable scores (between 65 and 75). In con-
trast, using the minimum UCBs, we can conclude
that only very low possible maximum scores for
the language pairs “ru_ko”, “be_es” and “be_gl”
can be achieved. Those will be between 15 and
20, therefore it is discouraged to train and test the
underlying models on those. Moreover, the deci-
sion whether a model is suited for a language-pair
can also be based on the maximum LCBs, indicat-
ing the potential that a performance score will be
higher or equal then the obtained bounds. For the
considered task, this is true for the language pairs
“fr_en”, “en_gl” and “en_sv”.

Furthermore, CIs provide important additional
insights that help to interpret design choices. Fig-
ure 4 shows the impact and importance that an
increase in latent factor dimensionality as well as

LOLO transfer LOLO target

NLPerf 8.08 10.62
MF 13.29± 0.01 11.86± 0.02
MF CTX 11.16± 0.02 6.78± 0.02
Bayes 13.09± 0.00 10.85± 0.00
Bayes CTX 13.04± 0.00 10.68± 0.00

Table 3: RMSE ± standard deviation for ParsingTSF. Ex-
periments leaving-one-language-out (LOLO). Dimen-
sionality of latent factors: 20.

the addition of additional features has on the per-
formance of the task MTWiki. The left figure shows
predictions and corresponding CIs using BPMF
for a latent vector dimension of 10. After increas-
ing the dimensionality to 20, the resulting CIs get
slightly narrower as shown in the middle figure.
Finally on the right, it can be observed that af-
ter adding CTX for language pairs like “eng_dan”
and “eng_hun”, the CIs get significantly narrower
and indicate increased certainty of the predictions.
However, the CI for “hin_eng” interestingly be-
comes wider, indicating that the additionally cho-
sen features for this language pair might be less
beneficial and even hurt performance prediction.
Further investigation of the feature set shows that
“hin_eng” exhibits the highest value of the feature
average sentence length of the source language,
leading to the conclusion that extreme feature val-
ues lead to more uncertainty in the predictions,
which is to be expected as the Bayesian model has
not encountered this feature value during training.

It is clear from Figures 3 and 4 that the credible
intervals are imperfect, not always including the
test results. This is to be expected 5% of the time
by chance, following the definition of the credible
interval. However, deviations can arise through
modelling biases. Consider the language pairs “fr-
en” and “sk-cs” in Figure 3. The scores for these
instances are not seen during training, and thus gen-
eralisation errors may occur. For the former, there
is lack of training data for a translation from French
to other languages. For the latter, although both
languages are closely related, there is not enough
training data support confident predictions. Further-
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more, BPMF does not use any additional features.
As visible from Figure 4 for the language pair “eng-
mar”, adding context features provides additional
information and greatly improves the accuracy of
the Bayesian credible interval.

NLPerf 8.78
LR 17.26
BPMF CTX D = 20 9.20± 0.07

Table 4: Contrasting the performance of predictors, be-
ing NLPerf, linear regression (LR) and BPMF CTX.

3.3 Leave-one-Language-out Scenarios

We further investigate the importance of additional
features for performance prediction in cold start
scenarios. In such settings, a new language occurs
in the test set which has not been encountered dur-
ing training. This is referred as leave-one-language-
out (LOLO). We conducted the experiment for
ParsingTSF as this includes a complete matrix with
the same target and transfer languages as rows and
columns. This provides us with the opportunity to
contrast the performance of the predictors regard-
ing having the same target and transfer languages.

The vectors of the latent factor models of MF
and MF CTX are initialized to small random values
during training. Thereby, the latent vector corre-
sponding to the missing language will not be fur-
ther changed as there is no training data available.
Note that MF leverages additionally the informa-
tion of additional bias as shown in Equation (8). In
the Bayesian setting, the latent vectors are sampled
according to the probabilistic model from the spec-
ified priors. Further training details are kept the
same as in Section 3.1.

The results are shown in Table 3. Our exper-
iments demonstrate that when leaving one tar-
get language out, the predicted performance of
MF CTX significantly outperforms all other ap-
proaches. However, when leaving one transfer lan-
guage out, although the performance scores pre-
dicted by MF CTX are better then other MF ap-
proaches, they do not outperform NLPerf. These
results indicate that the performance of a predictor
based on the MF framework seems to heavily de-
pend on the missing LOLO direction, being target
or transfer – rendering MF CTX well suited for
cold start predictions when performance scores for
unseen target languages are of interest.

3.4 On the Effects of Non-Linearity

In Table 4 the performance in terms of RMSE of
XGBoost, linear regression (LR) and BPMF CTX
for BLI is shown. The proposed MF methods were
not able to outperform the SOTA in this scenario.
However, while NLPerf is a non-linear method, our
approaches are all bilinear. Comparing to the per-
formance of LR, BPMF CTX clearly outperforms,
having the additional advantage of being able to
provide measures of uncertainty. This suggests that
further investigations are necessary in whether a
non-linear model would be better suited for the
prediction of performance scores for BLI.

4 Related Work

Matrix completion (MC) is an important technique
used to recover a matrix from a subset of its en-
tries, widely applied and studied in many areas of
research like machine learning, data science, signal
processing and communications (Du and Swamy,
2013; Yuchi et al., 2022). In NLP, it is found in
keyword searches or recommender systems, among
others (Chen et al., 2018b,a). MC in the context
of recommender systems can be interpreted as e.g.
the task of predicting a product to recommend to
costumers. In the famous Netflix price competition,
targeting recommender systems for movies, it has
been shown that an approach based on matrix fac-
torization (MF) via low-rank latent factor models
is the basis for the best algorithm to predict user
ratings (Koren et al., 2009; Chen et al., 2018b).

There are two main directions of performance
prediction in machine learning. The performance
can either be predicted as a function of certain
training dataset properties or as a function of its
training time or number of iterations (Kolachina
et al., 2012). Following the former, current state of
the art approaches like NLPerf (Xia et al., 2020) or
LITMUS (Srinivasan et al., 2022) leverage the ad-
vantages of regression models like gradient boost-
ing trees. We use NLPerf as a competitive baseline
in this work. Note that NLPerf was shown to outper-
form several simple mean-value baselines, namely
the average over the performances of all available
test instances; the average over shared source lan-
guages; and the average over models if multiple
models are used. This approach can easily incorpo-
rate additional features of the experiments, but they
do not provide a direct measure of uncertainty.

In Ye et al. (2021) methods used for performance
prediction are based on tensor-regression-based ap-
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proaches being robust PCA and CP decomposition.
Those are developed to provide a more fine-grained
performance measure. While confidence intervals
in the frequentist sense are provided, no Bayesian
analysis was conducted. In Srinivasan et al. (2021)
collective MF was used for performance prediction
of massive multilingual language models, where
it underperformed XGBoost. However, no exper-
iments were shown for bilingual tasks. We dif-
fer in our work because we explore the frame-
work of MF extensively and are able to provide
a range of experiments contrasting probabilistic
and non-probabilistic approaches. Additionally our
approach can give CIs as a measure of uncertainty
of our predictions. Closer to our approach is the
work of Elsahar and Gallé (2019), where instead
of evaluating domain similarity or diversity, a lin-
ear classifier is used to predict the performance
drop under domain shift using metrics based on
H−divergence, reverse classification accuracy and
confidence measures. In contrast to this body of lit-
erature, our methods provide the additional benefit
of Bayesian uncertainty quantification.

An area of application for performance predic-
tion, to be additionally highlighted here, is data
selection, during which the method can be used to
identify a suitable training dataset under domain
shift, which will lead to the best model perfor-
mance. Earlier work in this field in e.g. Blitzer
et al. (2007) uses the unsupervised A−distance
measure of divergence between domains, while
existing literature on phrase based machine transla-
tion in Axelrod et al. (2011) and Moore and Lewis
(2010) show that perplexity- or cross-entropy based
scoring methods are beneficial to select suitable
sentences for training, increasing the overall model
performance. Connected to this stream of literature
is also the work of Ruder and Plank (2017). They
present a Bayesian optimisation approach, which is
model-independent and is used to learn data selec-
tion measures for transfer learning. Additionally,
incorporating not only information about the data
set, but also about the model, Atwell et al. (2022)
shows that the h−discrepancy, which is a general-
isation of the source guided discrepancy (Kuroki
et al., 2019), can be used to identify the best gener-
alization performance of discourse models.

5 Conclusion

In this work, we presented an extensive study of
various MF methods applied to the problem of per-

formance prediction. Using a Bayesian approach
we can give a measure of uncertainty in terms of
CIs in addition to point estimates. Additionally, we
show that leveraging the obtained bounds of the CIs
can guide decision-making regarding whether it is
lucrative to deploy a model for certain language-
pairs and whether the corresponding datasets for
the language-pairs should be acquired.

Our results confirm that bilinear MF methods
can be used to predict the performance scores of
various NLP tasks, which is computationally less
expensive than using a non-linear model like XG-
boost in NLPerf. Furthermore, we show that the
MF framework is suited to predict performance
scores in cold-start scenarios.

The MF framework was not able to outperform
the SOTA for the two-model scenario BLI, which
might be due to the small matrix size and unsuit-
able features. However, BPMF CTX clearly out-
performed LR. This suggests that further studies
are required regarding non-linear MF methods.

While we chose to present a specific set of tasks
within this work, the proposed MF methods can be
used for other NLP scenarios where the considered
problem can be modelled as a matrix.

Limitations

While a variety of NLP problems can be modelled
as a matrix as our investigations in this paper show,
this does not apply to all existing NLP tasks and ex-
cludes our methods in its current form from being
used on datasets, provided for tasks like e.g. univer-
sal dependency parsing or morphological analysis
as done in Xia et al. (2020). The reason is, that a
suitable matrix representation is not possible.

While we were able to show that context fea-
tures significantly improve the estimation results,
we found that language features did not improve the
predictions. Therefore, further studies are neces-
sary to understand how language information can
be additionally incorporated into the MF frame-
work for performance prediction.

Our Bayesian approach uses MCMC sampling to
perform approximate inference, a process that can
be rather time consuming and could be replaced
by more efficient sampling methods in the future.
Furthermore, our methods are currently limited
to linear approaches, for a fair comparison with
the non-linear model NLPerf, non-linear methods
needs to be investigated.
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Task MTWiki ParsingTSF ELTSF POSTSF MTTSF BLI

MF D = 10 5min 4min 2min 7min 14min 1min
MF D = 20 5min 4min 2min 7min 14min 1min
MF CTX D = 10 8min 6min 4min 12min 22min 2min
MF CTX D = 20 8min 7min 4min 12min 22min 2min
PMF D = 10 1 h 31min 1 h 6min 48min 1 h 34min 1 h 29min 1 h 58min
PMF D = 20 1 h 29min 1 h 17min 54min 2 h 10min 2 h 33min 1 h 53min
BPMF D = 10 7 h 40min 9 h 54min 8 h 52min 10 h 8min 10 h 10min 22 h 2min
BPMF D = 20 8 h 11min 10 h 44min 10 h 17min 11 h 30min 9 h 30min 17 h 4min
BPMF D = 30 6 h 54min 10 h 49min 10 h 25min 11 h 1min 9 h 57min 18 h 50min
BPMF CTX D = 10 9 h 48min 10 h 33min 10 h 22min 11 h 34min 13 h 27min 14 h 25min
BPMF CTX D = 20 9 h 56min 11 h 57min 10 h 52min 15 h 22min 13 h 2min 15 h 32min
BPMF CTX D = 30 9 h 14min 12 h 42min 11 h 31min 14 h 23min 13 h 25min 15 h 38min

Table 5: Execution time required for one training and inference run on average per run for each experiment on one
cpu, without hyperparamter tuning, assuming optimal hyperparameters have been found before. Training MF and
MF CTX: 5 fold CV.

A Models Considered in the Experiments

The MT model behind the MTWiki data is trained on
aligned Wikipedia data (Schwenk et al., 2021). The
training data for translation are WikiMatrix bitexts
(Schwenk et al., 2021) containing a mixture of high
and low resource languages, mined using an ap-
proach based on multilingual sentence embeddings,
and tested using NMT (fairseq4, Transformer) on
the TED test set (Qi et al., 2018a) using BLEU
performance. The BLI performance dataset is ob-
tained based on the following procedure. Multilin-
gual semi-supervised word embeddings (Conneau
et al., 2017), and fully unsupervised cross-lingual
word embeddings (Artetxe et al., 2018) for high
and low resource languages, which are learnt under
a bilingual setting, are tested on BLI using accu-
racy as the performance measure (Anastasopoulos
and Neubig, 2019). For all TSF tasks, the perfor-
mance scores are obtained using LangRank (Lin
et al., 2019), which gives a rank to each transfer lan-
guage. Therefore, additionally a feature showing
the rank of each transfer language can be lever-
aged. In the following a short description about
the underlying models is given, a more compre-
hensive explanation can be found in (Lin et al.,
2019). For MTTSF the underlying trained model
is an attention-based sequence-to-sequence model
(Bahdanau et al., 2015). Training is performed on
the multilingual TED talk corpus (Qi et al., 2018b).
For the ELTSF performance scores two character-
level LSTM encoders are trained (Rijhwani et al.,
2019). The POSTSF dataset is obtained through

4https://fairseq.readthedocs.io/en/latest/

the training of a bi-directional LSTM-CNNs-CRF
model (Ma and Hovy, 2016), while the dependency
parsers uses a deep biaffine attentional graph-based
model (Dozat and Manning, 2016). The diversity
of the underlying models, namely being statistical-,
neural network- or dictionary based, gives us a bet-
ter impression about the usability of our predictor.

B On Computational Complexity

Non-Bayesian MF models have linear time com-
plexity in the number of latent factors O(D) per
SGD iteration or O(D|δ(R)|) for one pass of all
observed source-language pairs. The Bayesian
MF models have cubic complexity on the size
of the latent factors and linear on the number of
source/target languages. Due to very small sizes
of our datasets, computations were possible on a
single cpu. The execution times per model per one
run of training and inference are given in Table 5.
Compared to the Bayesian approaches, the Non-
Bayesian MF methods have a short execution time.
It increases with the size of the score matrix, e.g.
the model for MTTSF with a score matrix size of
54× 54 has the highest number of cells compared
to all other models and takes also the longest time
to perform one training and inference run. The
times shown can be taken as a reference point. Fur-
thermore, implementing the experiments on GPU
would speed up the process further, in our case
we report the execution times on CPU for a better
comparison. The CPU used for our experiments
is Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.
Implementing MCMC sampling using GPU will
lead to a further execution time improvement.
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