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Abstract

Recent work has focused on compressing pre-
trained language models (PLMs) like BERT
where the major focus has been to improve
the in-distribution performance for downstream
tasks. However, very few of these studies have
analyzed the impact of compression on the
generalizability and robustness of compressed
models for out-of-distribution (OOD) data. To-
wards this end, we study two popular model
compression techniques including knowledge
distillation and pruning and show that the com-
pressed models are significantly less robust
than their PLM counterparts on OOD test sets
although they obtain similar performance on
in-distribution development sets for a task. Fur-
ther analysis indicates that the compressed
models overfit on the shortcut samples and gen-
eralize poorly on the hard ones. We further
leverage this observation to develop a regular-
ization strategy for robust model compression
based on sample uncertainty. Experimental re-
sults on several natural language understand-
ing tasks demonstrate that our bias mitigation
framework improves the OOD generalization
of the compressed models, while not sacrificing
the in-distribution task performance.

1 Introduction

Large pretrained language models (PLMs) (e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), GPT-3 (Brown et al., 2020)) have obtained
state-of-the-art performance in several Natural Lan-
guage Understanding (NLU) tasks. However, re-
cent studies (Niven and Kao, 2019; Du et al., 2021;
Mudrakarta et al., 2018) indicate that PLMs heav-
ily rely on shortcut learning/spurious correlations,
rather than acquiring higher level language under-
standing and semantic reasoning in several NLU
tasks. Specifically, these models often exploit
dataset biases and artifacts, e.g., lexical bias and

∗Most of the work was completed while the first author
was an intern at Microsoft Research during summer 2021.

overlap bias, as shortcuts for prediction. Due to the
independent and identically distributed (IID) split
of training, development, and test sets, these mod-
els that learn spurious decision rules from training
data can perform well on in-distribution data (Du
et al., 2022). Nevertheless, the shortcut learning
behavior will result in models that have poor gener-
alization performance on out-of-distribution (OOD)
data, raising concerns about their robustness.

On the other hand, it is difficult to use these
large PLMs models in real-world applications with
latency and capacity constraints, e.g., on edge de-
vices and mobile phones. Thus, model compres-
sion emerges as one of the techniques to reduce
model size, speed up inference, and save energy
without significant performance drop for down-
stream tasks. State-of-the-art model compression
techniques such as knowledge distillation (Sanh
et al., 2019; Sun et al., 2019) and pruning (Sanh
et al., 2020) primarily focus on evaluating com-
pressed model performance in in-distribution test
data. However, in-distribution testing is insufficient
to capture the generalizability of PLMs (D’Amour
et al., 2020). In contrast to existing work that
is geared towards general-purpose PLMs (Niven
and Kao, 2019; Du et al., 2021; Mudrakarta et al.,
2018), this work aims to study the impact of com-
pression on the shortcut learning and OOD gener-
alization ability of compressed models.

Towards this end, we conduct comprehensive
experiments to evaluate the OOD robustness of
compressed models, with BERT as the base en-
coder. We focus primarily on two popular model
compression techniques in the form of prun-
ing and knowledge distillation (Sanh et al., 2019;
Wang et al., 2020). For pruning, we consider two
popular techniques including iterative magnitude
pruning (Sanh et al., 2020) and structured prun-
ing (Prasanna et al., 2020; Liang et al., 2021).
Specifically, we explore the following research
questions: Are distilled and pruned models as ro-
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bust as their PLM counterparts for downstream
NLU tasks? What is the impact of varying the
level of compression on OOD generalization and
bias of compressed models? We evaluate the per-
formance of several compressed models obtained
using the above techniques on both standard in-
distribution development sets and OOD test sets
for downstream NLU tasks. Experimental analy-
sis indicates that distilled and pruned models are
consistently less robust than their PLM counter-
parts. Further analysis of the poor generalization
performance of compressed models reveals some
interesting observations. For instance, we observe
that the compressed models overfit on the easy /
shortcut samples and generalize poorly on the hard
ones. This motivates our second research question:
How to regularize model compression techniques to
generalize across samples with varying difficulty?
This brings some interesting challenges since we do
not know which samples are easy or hard apriori.

Based on the above observations, we propose
a bias mitigation framework to improve the OOD
robustness of compressed models, termed as RMC
(Robust Model Compression). First, we leverage
the uncertainty of the deep neural network to quan-
tify the difficulty of a training sample. This is given
by the variance in the prediction of a sample from
multiple sub-networks of the original large network
obtained by model pruning. Second, we leverage
this sample-specific measure for smoothing and
regularizing different families of compression tech-
niques. The major contributions of this work can
be summarized as follows:

• We perform a comprehensive analysis to evaluate
the OOD generalization ability and robustness of
compressed models for NLU tasks.

• We further analyze plausible reasons for the
low generalizability of compressed models and
demonstrate connections to shortcut learning.

• We propose a mitigation framework for regu-
larizing model compression, termed as RMC,
which smoothes the knowledge distillation train-
ing based on the estimated sample difficulties.

• We perform experiments to demonstrate that our
RMC framework improves OOD generalization
while not sacrificing the standard in-distribution
task performance on multiple NLU tasks.

2 Related Work

Shortcut Learning and Mitigation. Recent stud-
ies indicate that PLMs tend to exploit biases and

artifacts in the dataset as shortcuts for prediction,
rather than acquiring higher level semantic un-
derstanding and reasoning for NLU tasks (Niven
and Kao, 2019; Du et al., 2021; McCoy et al.,
2019a). There are some preliminary work to miti-
gate the bias of general PLMs, including product-
of-experts (Clark et al., 2019; He et al., 2019; Sanh
et al., 2021), re-weighting (Schuster et al., 2019;
Yaghoobzadeh et al., 2019; Utama et al., 2020),
adversarial training (Stacey et al., 2020), posterior
regularization (Cheng et al., 2021), etc.
Robustness in Model Compression. Current
practice for evaluating model compression perfor-
mance focuses mainly on standard benchmark per-
formance (Zhu et al., 2020; Wang et al., 2021). In
the computer vision domain, previous work shows
that compressed models perform poorly in Com-
pression Identified Exemplars (CIE) (Hooker et al.,
2019), and compression amplifies algorithmic bias
towards certain demographics (Hooker et al., 2020).
The most similar work to ours are two concurrent
work (Xu et al., 2021a; Li et al., 2021) that in-
vestigate the performance of compressed models
beyond standard benchmarks for natural language
understanding tasks. However, both work mainly
focus on evaluating the robustness of compressed
models with respect to the scenario of adversarial
attacks, i.e., TextFooler (Jin et al., 2020), and the
unified adversarial framework (Li et al., 2021). In
contrast, we comprehensively characterize the ro-
bustness of BERT compression in OOD test sets
to probe the OOD generalizability of the compres-
sion techniques. Besides, we use insights from this
robustness analysis to design a generalizable and
robust model compression framework.

3 Are Compressed Models Robust?

We perform a comprehensive analysis to evaluate
the robustness of compressed language models.

3.1 Compression Techniques

We consider two popular families of compression,
namely, knowledge distillation and model pruning.
Knowledge Distillation: The objective here is to
train a small-size model by mimicking the behav-
ior of the larger teacher model using knowledge
distillation (Hinton et al., 2015). In this work, we
focus on task-agnostic distillation. In particular,
we consider DistilBERT (Sanh et al., 2019) and
MiniLM (Wang et al., 2020) distilled from BERT-
base. For a fair comparison, we select compressed
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models with similar capacities (66M parameters in
this work). In order to evaluate the impact of com-
pression techniques on model robustness, we also
consider similar capacity smaller models without
using knowledge distillation. These are obtained
via simple truncation where we retain the first 6
layers of the large model, and via pre-training a
smaller 6-layer model from scratch.

Iterative Magnitude Pruning: This is a task-
specific unstructured pruning method (Sanh et al.,
2020). During the fine-tuning process for each
downstream task, the weights with the lowest mag-
nitude are removed until the pruned model reaches
the target sparsity. Note that we utilize the stan-
dard pruning technique, rather than the LTH-based
pruning (lottery ticket hypothesis) that uses re-
winding (Chen et al., 2020). We also consider
different pruning ratios to obtain pruned models
with different levels of sparsity.

Structured Pruning: This method family is based
on the hypothesis that there is redundancy in the
attention heads (Prasanna et al., 2020; Voita et al.,
2019; Bian et al., 2021; Chen et al., 2021). We also
consider task-specific pruning. During the fine-
tuning process for each task, it prunes the whole
attention heads based on their importance to the
model predictions. Please refer to Sec. A in Ap-
pendix for more details. We prune around 20%
attention heads in total (i.e., 28 attention heads).
Further pruning increases the sparsity with signif-
icant degradation of the model’s performance on
in-distribution development sets.

3.2 Evaluation Datasets

To evaluate the robustness of the compressed mod-
els introduced in the last section, we use three NLU
tasks, including MNLI, FEVER, and QQP1. Please
refer to Sec. B in Appendix for more details.

• MNLI (Williams et al., 2018): This is a natural
language inference task. In this work, we report
the accuracy metric on the matched subset. We
use HANS (McCoy et al., 2019b) as the adver-
sarial test set, which contains 30, 000 synthetic
samples. Models that exploit shortcut features
have been shown to perform poorly on the HANS
test set.

1MNLI, FEVER, and QQP are the three most widely used
datasets to evaluate the shortcut learning/bias behavior and
OOD generalization of PLMs in the literature (Tu et al., 2020;
He et al., 2019; Clark et al., 2019; Schuster et al., 2019)

• FEVER (Thorne et al., 2018): This is a fact veri-
fication dataset. Recent studies indicate that there
are strong shortcuts in the claims (Utama et al.,
2020). To facilitate the robustness and generaliza-
tion evaluation of fact verification models, two
symmetric test sets (i.e., Sym v1 and Sym v2)
were created, where bias exists in the symmetric
pairs (Schuster et al., 2019). Both OOD test sets
have 712 samples.

• QQP: The task is to predict whether a pair of
questions is semantically equivalent. We con-
sider the OOD test set PAWS-qqp, which con-
tains 677 test samples generated from QQP cor-
pus (Zhang et al., 2019; Yang et al., 2019). Be-
sides, we also consider the PAWS-wiki OOD test
set, which consists of 8, 000 test samples gener-
ated from Wikipedia pages.

For all three tasks, we employ accuracy as the
evaluation metric and evaluate the performance of
the compressed models on both the in-distribution
development set and the OOD test set.

3.3 Evaluation Setup

In this work, we use the uncased BERT-base as the
teacher network, and study the robustness of its
compressed variants. The final model consists of
the BERT-base encoder (or its compressed variants)
with a classification head (a linear layer on top of
the pooled output). Recent studies indicate that fac-
tors such as learning rate and training epochs could
have a substantial influence on robustness (Tu et al.,
2020). In particular, increasing training epochs can
help improve the generalization of the OOD test set.
In this work, we focus on the relative robustness of
compressed models compared to the uncompressed
teacher, rather than their absolute accuracies. For
a fair comparison, we unify the experimental setup
for all models. We use Adam optimizer with weight
decay (Loshchilov and Hutter, 2017), where the
learning rate is fixed as 2e-5, and we train all mod-
els for 5 epochs on all datasets. We perform the
experiments using PyTorch and use the pre-trained
models from the Huggingface model pool (Wolf
et al., 2019). We report the average results over
three runs for all experiments.

3.4 Relative Robustness Metric

As we later demonstrate, with increase in compres-
sion ratio or model sparsity, the performance of
the smaller models degrades for both in-domain
and OOD test sets. To compare the gap between
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MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias

BERT-base 109M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

20% 87.2M 84.4 55.5 1.182 86.5 57.0 64.6 1.045 90.7 47.2 33.5 1.037 1.088
40% 65.4M 84.0 54.7 1.204 86.4 57.2 64.0 1.051 90.5 46.6 32.4 1.049 1.101
60% 43.6M 83.4 52.8 1.266 86.3 56.9 63.3 1.068 90.2 45.9 31.8 1.061 1.132
70% 32.7M 81.8 52.2 1.249 85.9 56.6 63.3 1.063 89.5 45.4 30.7 1.065 1.127

Table 1: Accuracy comparison (in percent) and relative bias Fbias (the smaller the better) for models with iterative
magnitude pruning with different levels of sparsity. The last column indicates the average Fbias values over three
tasks. Pruned models have relatively higher degradation in OOD test set compared to the development set.

MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias

BERT-base 109M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

DistilBERT 66M 82.3 51.2 1.289 84.5 51.9 60.4 1.183 89.9 48.1 34.6 1.006 1.159
MiniLM 66M 83.1 51.4 1.309 84.2 53.4 60.7 1.137 89.9 46.8 31.0 1.039 1.162
Truncated-l6 66M 80.8 51.6 1.247 84.4 52.6 60.4 1.163 90.0 46.0 32.4 1.056 1.155
Pretrained-l6 66M 81.6 52.2 1.229 85.8 54.7 62.6 1.115 90.0 46.4 33.9 1.045 1.130

Table 2: Accuracy comparison (in percent) and relative bias Fbias (the smaller the better) of compressed models
with knowledge distillation. Distilled models have relatively higher degradation in OOD test set compared to the
development set. Except BERT-base, all other models have 66M parameters.

Models Attemtion heads DEV HANS Fbias

BERT-base 144 84.2 59.8 -

BERT-116heads-v1 116 84.1 55.5 1.172
BERT-116heads-v2 116 84.2 53.7 1.250
BERT-116heads-v3 116 84.0 55.3 1.176

Table 3: Accuracy comparison (in percent) and relative
bias Fbias (the smaller the better) of compressed models
with structured pruning. Pruned models have relatively
higher degradation in OOD test set compared to the
development set. All compressed models have been
pruned 28 attention heads.

in-distribution task performance and OOD general-
izability, we define a new metric that measures this
performance gap of the compressed models with
respect to the uncompressed BERT-base (teacher).
First, we calculate the accuracy gap between in-
distribution development set and OOD test set as
Fdev−FOOD

Fdev
for BERT-base (denoted by ∆BERT-base);

and its compressed variant (denoted by ∆compressed).
Second, we compute the relative bias as the ratio
between the accuracy gap of the compressed model
with respect to BERT-base: Fbias =

∆compressed
∆BERT-base

.
Here Fbias > 1 indicates that the compressed
model is more biased than BERT-base with the
degree of bias captured in a larger value of Fbias.
Since FEVER has two OOD test sets, we use the
overall accuracy of sym1 and sym2 to calculate
Fbias. Similarly, the OOD accuracy for QQP is the
overall accuracy on PAWS-wiki and PAWS-qqp.

3.5 Experimental Observations

We report the performance of accuracy and the rel-
ative bias measure Fbias for iterative magnitude
pruning in Table 1, knowledge distillation in Ta-
ble 2 and structured pruning in Table 3. We have
the following key observations.
Iterative Magnitude Pruning: First, for slight and
mid-level sparsity, the pruned models have com-
parable and sometimes even better performance
on the in-distribution development set. Consider
FEVER as an example, where the compressed
model preserves the accuracy on the in-distribution
set even at 60% sparsity2. However, the generaliza-
tion accuracy on the OOD test set has a substantial
drop. This indicates that the development set fails
to capture the generalizability of the pruned mod-
els. Second, as the sparsity increases, the general-
ization accuracy on the OOD test set substantially
decreases while dropping to random guess for tasks
such as MNLI. Third, at high levels of sparsity (e.g.
70%), both development and OOD test set perfor-
mances are significantly affected. In general, we
observe Fbias > 1 for all levels of sparsity in Ta-
ble 1. Note that we limit the maximum sparsity at
70% after which the training is unstable with a sig-
nificant performance drop even on the development
set (Liang et al., 2021). As in the previous cases,
there is substantial accuracy drop on the OOD test

2Here, 60% sparsity indicates that 40% parameters are
remaining after pruning.
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set compared to the development set (e.g., 7.6% vs
1.9% degradation respectively for the MNLI task).
Knowledge Distillation: Similar to pruning, we
observe a higher accuracy drop in the OOD test
set compared to the in-distribution development set
for distilled models. Consider DistilBERT perfor-
mance on MNLI as an example with 1.9% accuracy
drop in development set compared to 8.6% drop
in the OOD test set. This can also be validated in
Table 2, where all Fbias values are larger than 1, de-
picting that all the distilled models are less robust
than BERT-base. Another interesting observation is
that distilled models, i.e., DistilBERT and MiniLM,
have higher bias Fbias compared to the pre-trained
models, i.e., Pretrained-l6 and Truncated-l6, as we
compare their average Fbias values in Table 2. This
indicates that the compression process plays a sig-
nificant role in the low generalizability and robust-
ness of the distilled models.
Structured Pruning: Recent studies have reported
the super ticket phenomenon (Liang et al., 2021).
The authors observe that, when the BERT-base
model is slightly pruned, the accuracy of the pruned
models improves on in-distribution development
set. However, we observe that this finding does
not hold for OOD test sets. From Table 3, we ob-
serve that all pruned models are less robust than
BERT-base, with Fbias much larger than 1.

4 Attribution of Low Robustness

In this section, we explore the factors that lead to
low robustness of compressed models. Previous
work has demonstrated that the performance of
different models on the GLUE benchmark (Wang
et al., 2018) tends to correlate with the performance
on MNLI, making it a good representative of natu-
ral language understanding tasks in general (Phang
et al., 2018; Liu et al., 2020). For this reason, we
choose the MNLI task for a study.

For the MNLI task, we consider the dataset splits
from (Gururangan et al., 2018). The authors par-
tition the development set into easy/shortcut 3 and
hard subsets. In this experiment, we use pruned
models with varying sparsity to investigate the rea-
son for the low robustness of the compressed mod-
els. We have the following key observations.

Observation 1: The compressed models tend to
overfit the easy/shortcut samples and generalize
poorly on the hard ones. The performance of

3We use ‘easy’ and ‘shortcut’ interchangeably in this work.

Figure 1: Pruned model performance on hard vs easy
/ shortcut samples with varying sparsity, where x-axis
denotes the sparsity level.

pruned models at five sparsity levels (ranging be-
tween [0.2− 0.85]) on the easy and hard samples
for the MNLI task is illustrated in Figure 1. It
demonstrates that the accuracy on the hard samples
is much lower compared to the accuracy on the
easy ones. As the sparsity increases, we observe a
larger accuracy drop on the hard samples compared
to the easy ones. In particular, the accuracy gap
between the two subsets is 22.7% at the sparsity of
0.85, much higher than the 16.1% accuracy gap at
the sparsity of 0.4. These findings demonstrate that
the compressed models overfit on the easy samples,
while generalizing poorly on the hard ones. Fur-
thermore, this phenomenon is amplified at higher
levels of sparsity for the pruned models.

Observation 2: Compressed models tend to assign
overconfident predictions to easy samples. One
of the potential reasons is that compressed models
are more prone to capture spurious correlations
between shortcut features in training samples with
certain class labels for their predictions (Geirhos
et al., 2020; Du et al., 2021).

4.1 Variance-based Difficulty Estimation

Based on the above observations, we propose a
variance-based metric to quantify the difficulty de-
gree of each sample. For each sample in the devel-
opment set, we calculate its loss at five different
levels of pruning sparsity as shown in Figure 1. We
further calculate the variance of the above losses for
each sample and rank them based on the variance.
Finally, we assign the samples with low variance to
the “easy" subset and rest to the “hard" one. Com-
paring our variance-based proxy annotation with
the ground truth annotation in (Gururangan et al.,
2018) gives an accuracy of 82.8%. This indicates
that the variance-based estimation leveraging prun-
ing sparsity is a good indicator of sample difficulty.
This motivates our design of the mitigation tech-
nique introduced in the next section.
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Figure 2: RMC framework for bias mitigation with two-stage training. In the first stage, we feed the training
samples to pruned models at different levels of sparsity (ranging from [0.2− 0.85]) as introduced in Section 4.1);
compute corresponding losses and their variance to estimate the difficulty degree of each training sample. In the
second stage, we use the difficulty degree to regularize the teacher network for robust model compression.

5 Mitigation Framework

In this section, we propose a general bias mitigation
framework (see Figure 2), termed as RMC (Robust
Model Compression), to improve the robustness
of compressed models on downstream tasks. Our
RMC framework follows the philosophy of task-
specific knowledge distillation (Sanh et al., 2020;
Jiao et al., 2020), but with explicit regularization
of the teacher network leveraging sample uncer-
tainty. This prevents the compressed model from
overfitting in the easy samples that contain short-
cut features and helps improve its robustness. This
regularized training is implemented in two stages.

5.1 Quantifying Sample Difficulty
In the first stage, our objective is to quantify the
difficulty degree of each training sample.
Variance Computation: Following the observa-
tions obtained in Section 4.1, we first use iterative
magnitude pruning to obtain a series of pruned
models from BERT-base with different levels of
sparsity and then we use the losses of the pruned
models at different levels of sparsity to compute
their variance vi for each training sample xi: vi =∑n

t=1(li,t−l̄i)
2

n . We choose five sparsity levels, i.e.,
n = 5, that are diverse enough to reflect the diffi-
culty degree of each training sample. Here, samples
with high variance correspond to hard ones.
Difficulty Degree Estimation: Based on the vari-
ance vi for each training sample xi, we can estimate
its difficulty degree as:

di = α+
1− α

Vmax − Vmin
· (vi − Vmin) , (1)

where Vmin and Vmax denote the minimum and
maximum values of the variances, respectively.
Equation 1 is used to normalize the variance of

the training samples in the range of [α, 1], where
di = 1 denotes the most difficult training sample,
according to our criteria of loss variance. Samples
with di closer to α are treated as shortcut/biased
samples. Prior work (Niven and Kao, 2019) show
that the bias behavior of the downstream training
set can be attributed to data collection and anno-
tation biases. Since the bias level is different for
each dataset, we assign a different α in Equation 1
to each training set to reflect its bias level.

5.2 Robust Knowledge Distillation
In the second stage, we fine-tune BERT-base on the
downstream tasks to obtain the softmax probability
for each training sample. We then use the difficulty
degree of the training samples (discussed in the
previous section) to smooth the teacher predictions.
The instance-level smoothed softmax probability
is used to guide the training of compressed models
through regularized knowledge distillation.
Smoothing Teacher Predictions: We smooth the
softmax probability ŷTi from the teacher network,
according to the difficulty degree di of each training
sample xi. The smoothed probability is given as:

si,j =
(ŷT

i )
di
j∑K

k=1(ŷ
T
i )

di
k

, (2)

where K denotes the total number of class labels.
We perform instance-level smoothing for each train-
ing sample xi. If the difficulty degree of a train-
ing sample di = 1, then the softmax probability
si for the corresponding sample from the teacher
is unchanged. In contrast, at the other extreme
as di → α, we increase the regularization to en-
courage the compressed model to assign less over-
confident predictions to the sample. The difficulty
degree range is [α, 1] rather than [0, 1] to avoid
over-smoothing of the teacher predictions.
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MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias

BERT-base 110M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

40% – Vanilla 65.4M 84.0 54.7 1.204 86.4 57.2 64.0 1.051 90.5 46.6 32.4 1.049 1.101
– Distil 65.4M 84.1 56.2 1.145 86.3 58.4 64.5 1.013 90.5 47.3 33.2 1.032 1.063
– Smooth 65.4M 84.2 56.5 1.135 86.2 60.7 65.8 0.937 90.7 47.2 33.8 1.036 1.036
– Focal 65.4M 84.0 56.7 1.122 86.4 59.4 65.2 0.981 90.7 46.2 32.1 1.060 1.054
– JTT 65.4M 83.8 56.3 1.132 86.2 58.1 64.9 1.008 90.4 47.3 33.7 1.030 1.057
– RMC 65.4M 84.2 58.6 1.049 86.1 61.9 66.4 0.897 90.4 47.6 34.3 1.023 0.990

Table 4: Generalization accuracy comparison (in percent) and the corresponding Fbias values for iterative magnitude
pruning at 40% sparsity with different mitigation methods. The last column indicates average Fbias over three tasks.

Smoothness-Induced Model Compression: We
employ the smoothed softmax probability si from
BERT-base to supervise the training of the com-
pressed models, where the overall loss function is:

L(x) = (1− λ) ∗ L1

(
yi, ŷ

S
i

)
+ λ ∗ L2

(
si, ŷ

S
i

)
, (3)

where yi is the ground truth and ŷSi is the proba-
bility of the compressed model. L1 denotes the
cross-entropy loss, and L2 represents the knowl-
edge distillation loss with KL divergence. Hyperpa-
rameter λ manages the trade-off between learning
from hard label yi and softened softmax probability
si. Among the different families of compression
techniques introduced in Section 3.1, we directly
fine-tune the distilled models using Equation 3. For
iterative magnitude pruning, we use Equation 3 to
guide the pruning during the fine-tuning process.

6 Mitigation Performance Evaluation

In this section, we conduct experiments to evaluate
the robustness of our RMC mitigation framework.

6.1 Experimental Setup

For all experiments, we follow the same setting as
in Section 3.3, and the same evaluation datasets as
in Section 3.2. We use the OOD test set exclusively
for evaluation. We compute the variance of sam-
ples (outlined in Section 4.1) in the in-distribution
development set to split it into a shortcut and hard
subset. The relative robustness between the hard
and easy subset is used to tune the hyperparameter
α in Equation 1, where we set α as 0.5, 0.3, 0.2 for
MNLI, FEVER, and QQP, respectively. The weight
λ in Equation 3 is fixed as 0.9 for all experiments.

6.2 Baseline Methods

We consider the following five baselines. Please
refer to Sec. C in Appendix for more details.

• Vanilla: This only fine-tunes the base encoder
without any regularization.

• Distil (Task-Specific Knowledge Distillation)
(Sanh et al., 2020): This first fine-tunes BERT-
base on the downstream NLU tasks. The soft-
max probability from the fine-tuned BERT-base
is used as the supervision signal for distillation.

• Smooth (Global Smoothing) (Müller et al.,
2019): This performs global smoothing for all
training samples with task-specific knowledge
distillation, where we use the same level of reg-
ularization as in RMC (di = 0.9 in Equation 2).
In contrast, RMC uses instance-level smoothing.

• Focal (Focal Loss) (Lin et al., 2017): Compared
to cross-entropy loss, focal loss has an additional
regularizer to reduce the weight for easy sam-
ples and assign a higher weight to hard samples
bearing less-confident predictions.

• JTT (Just Train Twice) (Liu et al., 2021): This
is a re-weighting method, which first trains the
BERT-base model using standard cross-entropy
loss for several epochs, and then trains the com-
pressed model while up-weighting the training
examples that are misclassified by the first model,
i.e., hard samples.

6.3 Mitigation Performance Analysis
We compare our RMC framework with the above
baselines and have the following key observations.

Iterative Magnitude Pruning: Table 4 shows the
mitigation results of accuracy and relative bias
Fbias. All mitigation methods are performed with
pruned models at 40% sparsity. We observe that
task-specific knowledge distillation only slightly
improves accuracy on the OOD test set compared
to Vanilla tuning, since the teacher model itself is
not robust for downstream tasks (Niven and Kao,
2019). Global smoothing further improves general-
ization accuracy compared to prior methods. Our
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MNLI FEVER QQP

Sparsity #Param DEV HANS Fbias DEV Sym1 Sym2 Fbias DEV pawswiki pawsqqp Fbias Average Fbias

BERT-base 110M 84.2 59.8 - 86.2 58.9 64.5 - 90.9 48.9 34.7 - -

MiniLM – Vanilla 66M 83.1 51.4 1.309 84.2 53.4 60.7 1.137 89.9 46.8 31.0 1.039 1.162
– Distil 66M 83.1 53.7 1.221 83.8 56.5 61.0 1.052 89.6 46.7 31.8 1.037 1.103
– Smooth 66M 82.7 53.8 1.206 83.7 56.9 62.1 1.017 89.4 46.8 32.2 1.032 1.085
– Focal 66M 83.2 55.6 1.145 83.8 54.7 61.4 1.081 90.3 46.8 33.2 1.041 1.089
– JTT 66M 82.8 55.7 1.129 83.5 53.8 61.7 1.085 90.1 47.0 32.9 1.034 1.083
– RMC 66M 83.7 57.8 1.068 85.3 58.0 63.3 1.017 90.5 47.0 33.4 1.038 1.041

Table 5: Generalization accuracy and the Fbias values comparison of different training strategies with and without
mitigation on in-distribution development set and OOD test set using MiniLM as the compressed encoder.

(a) Accuracy on OOD test set (b) Relative bias 𝐹𝑏𝑖𝑎𝑠

Figure 3: RMC mitigation performance for iterative
magnitude pruning at different levels of pruning sparsity
for MNLI task.

RMC framework obtains the best accuracy on OOD
test set across all the tasks on aggregate. RMC fur-
ther reduces the average relative bias Fbias by 10%
over Vanilla tuning, as shown in Table 4, indicat-
ing the benefits of uncertainty-based sample-wise
smoothing in terms of improving model robust-
ness. For the MNLI task, we also illustrate the
mitigation performance of our RMC framework for
different levels of sparsity in Figure 3. We observe
that RMC consistently improves accuracy on OOD
HANS while reducing the relative bias Fbias for all
levels of sparsity over the Vanilla method.

Knowledge Distillation: Table 5 shows the miti-
gation results of accuracy and relative bias Fbias.
We observe that RMC significantly improves
over MiniLM for OOD generalization leverag-
ing smoothed predictions from BERT-base teacher.
With instance-level smoothing in RMC, the gener-
alization accuracy for the compressed model on the
OOD test set is significantly closer to BERT-base
teacher compared to the other methods. We also
decrease the relative bias Fbias in Table 5 by 10.4%
over Vanilla tuning. On the QQP task, RMC simul-
taneously improves the performance of compressed
model on both the in-distribution development set
and the two OOD test sets.

Models DEV HANS Hard (H) Easy (E) Gap (E-H)

MiniLM–Vanilla 83.1 51.4 73.2 90.9 17.7
MiniLM–RMC 83.7 57.8 74.9 90.6 15.7

40%–Vanilla 84.0 54.7 74.9 91.0 16.1
40%–RMC 84.2 58.6 75.9 90.3 14.4

Table 6: Our RMC framework improves accuracy of the
compressed models on the hard samples and reduces
overfitting on the shortcut/easy samples, leading to re-
duced performance gap between the two subsets.

6.4 Further Analysis on Robust Mitigation

In this section, we further investigate the reasons
for the improved generalization performance with
RMC with an analysis on the MNLI task. Table 6
shows the accuracy performance of RMC for model
pruning and distillation on the shortcut/easy and
hard samples. We observe RMC to improve the
model performance on the under-represented hard
samples, where it reduces the generalization gap be-
tween the hard and shortcut/easy subset by 10.6%
at 0.4 level of sparsity and by 11.3% for knowl-
edge distillation. This analysis demonstrates that
RMC reduces the overfitting of the compressed
models on the easy samples and encourages them
to learn more from the hard ones, thus improving
the generalization on the OOD test sets.

7 Conclusions

In this work, we conduct a comprehensive study
of the robustness challenges in compressing large
PLMs when fine-tuning in downstream NLU
datasets. Furthermore, we propose a general mit-
igation framework with instance-level smoothing
for robust model compression. Experimental anal-
ysis demonstrates our framework to improve the
generalization and OOD robustness of compressed
models for different compression techniques, while
not sacrificing the in-distribution performance.
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Limitations

First, we study the shortcut learning/bias problem
and OOD generalization of model compression
techniques, exclusively focusing on the two most
widely used families of compression techniques,
including knowledge distillation and pruning. Our
empirical analysis indicates that these two fami-
lies of compression techniques suffer from the low
generalization issue. However, other types of com-
pression technique, such as matrix decomposition
and quantization, are not discussed in this work.
Studying the whole compression techniques is a
challenging topic and will be investigated in our fu-
ture research. Second, our RMC framework needs
to calculate the variance of losses for each train-
ing sample, thus requiring additional training time.
Training efficiency can be further improved by im-
plementing parallel training or more efficient ways
of calculating sample difficulty, which will also be
studied in our future research.
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A More Details of Pruning Methods

In this section, we introduce more details about the
compression techniques studied.
knowledge Distillation: For a fair comparison,
we do not compare with TinyBERT (Jiao et al.,
2020) and MobileBERT (Sun et al., 2020), since
TinyBERT is fine-tuned with data augmentation
on NLU tasks, and MobileBERT is distilled from
BERT-large rather than BERT-base.
Magnitude Pruning: It is based on the overpa-
rameterization assumption of pre-trained language
models (Xu et al., 2021b; Huang et al., 2021). For
iterative magnitude pruning, we freeze all the em-
bedding modules and only prune the parameters in
the encoder (i.e., 12 layers of Transformer blocks).
After pruning, the pruned weight values are set
to 0 to reduce the amount of information to store.
Unlike the LTH version, we consider standard mag-
nitude pruning without using rewinding.

Structured Pruning: To calculate the importance,
we follow (Michel et al., 2019; Prasanna et al.,
2020) and calculate the expected sensitivity of
the attention heads to the mask variable ξ(h,l):
I
(h,l)
h = Ex∼X

∣∣∣ ∂L(x)
∂ξ(h,l)

∣∣∣ , where I
(h,l)
h denotes the

contribution score of the attention head h in layer
l, L(x) represents the loss value for the sample x,
and ξ(h,l) is the mask of the attention head h in
layer l. After obtaining the contribution scores, the
attention heads with lowest score I

(h,l)
h are pruned.

B More on Evaluation Datasets

In this section, we introduce more details about the
three benchmark datasets.
MNLI: This task aims to predict whether the rela-
tionship between the premise and the hypothesis
is contradiction, entailment, or neutral. It is di-
vided into a training set and development set with
392, 702 and 9, 815 samples, respectively.

FEVER: The task is to predict whether the claims
support, refute, or not-have-enough-information
about the evidence. Recent studies indicate that
there are strong shortcuts in claims (Utama et al.,
2020). It is divided into a training set and a de-
velopment set with 242, 911 and 16, 664 samples,
respectively.

QQP: It is divided into a training set and a de-
velopment set with 363, 846 and 40, 430 samples,
respectively.

C More on Comparing Baselines

In this section, we introduce more details on com-
paring baselines.
Distil and Smooth: For both baseline methods, we
use a loss function similar to that of Equation 3.
We fix the weight λ to 0.9 for all experiments, to
encourage the compressed model to learn more
from the probability output of the teacher network.
A major difference between the two baselines is
that Smooth has an additional smoothing process
involved during the fine-tuning process.

Focal Loss: The original focal loss function is:
FL (pi) = − (1− pi)

γ log (pi). Our implementa-
tion is as follows:

FL (pi) = − (1− pi)
γ

1
N

∑N
k=1 (1− pk)

γ
log (pi) .

The hyperparameter γ controls the weight differ-
ence between hard and easy samples, and is fixed
at 2.0 for all tasks. We use the denominator to nor-
malize the weights within a batch, where N is the
batch size. This is used to guarantee that the aver-
age weight for a batch of training samples is 1.0.
As such, the weight for the easy samples would be
down-weighted to lower than 1.0, and the weight
for hard samples would be up-weighted to values
larger than 1.0.

JTT: This is also a reweighting baseline that en-
courages the model to learn more from hard sam-
ples. The hyperparameter λup in (Liu et al., 2021)
is set to 2.0. We also normalize the weights so that
the average weight for each training sample is 1.0.

D Running Environment

For a fair evaluation of the robustness of com-
pressed models, we run all experiments using a
server with 4 NVIDIA GeForce 3090 GPUs. All
experiments are implemented with the Pytorch ver-
sion of the Hugging Face Transformer library.

E The Capacity Issue

One natural speculation about the low robustness
of compressed models is due to their low capacity
(i.e., smaller size). To disentangle the two impor-
tant factors that influence model performance, i.e.,
low capacity and compression, we compare dis-
tilled models with Uncased-l6, which is trained
only using pretraining. The results are given in
Table 2. The results indicate that Uncased-l6 has
better generalization ability over the MNLI and
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FEVER two tasks. Take structured pruning as an
example; although the three pruned models in Ta-
ble3 have the same model size, their generalization
accuracy is different. These results indicate that
the low robustness of compressed models is not
entirely due to their low capacity, and compression
plays a significant role.

F MNLI Easy and Hard Subsets

The authors train a hypothesis-only model and use
it to generate predictions for the whole develop-
ment set (Gururangan et al., 2018). Samples that
are given correct predictions by the hypothesis-only
model are regarded as easy samples, and vice versa.
The easy subset contains 5488 samples, and the
hard subset contains 4302 samples.
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