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Abstract

Connectionist Temporal Classification (CTC)
is a widely used approach for automatic speech
recognition (ASR) that performs conditionally
independent monotonic alignment. However
for translation, CTC exhibits clear limitations
due to the contextual and non-monotonic nature
of the task and thus lags behind attentional de-
coder approaches in terms of translation quality.
In this work, we argue that CTC does in fact
make sense for translation if applied in a joint
CTC/attention framework wherein CTC’s core
properties can counteract several key weak-
nesses of pure-attention models during training
and decoding. To validate this conjecture, we
modify the Hybrid CTC/Attention model origi-
nally proposed for ASR to support text-to-text
translation (MT) and speech-to-text translation
(ST). Our proposed joint CTC/attention models
outperform pure-attention baselines across six
benchmark translation tasks.

1 Introduction

Automatic speech recognition (ASR), machine
translation (MT), and speech translation (ST) have
conspicuous differences but are all closely related
sequence-to-sequence problems. Researchers from
these respective fields have long recognized the op-
portunity for cross-pollinating ideas (He and Deng,
2011), starting from the coupling of statistical ASR
(Huang et al., 2014) and MT (Al-Onaizan et al.,
1999) which gave rise to early approaches for ST
(Waibel, 1996; Ney, 1999). Notably in the end-to-
end era, attentional encoder-decoder approaches
emerged in both MT (Bahdanau et al., 2015) and
ASR (Chorowski et al., 2015; Chan et al., 2016),
rising to great prominence in both fields.

During this same period, there has been an-
other prominent end-to-end approach in ASR: Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006). Unlike the highly flexible atten-
tion mechanism which can handle ASR, MT, and
ST alike, CTC models sequence transduction as a

monotonic alignment of inputs to outputs and thus
fits more naturally with ASR than it does with trans-
lation. Still, many interested in non-autoregressive
translation have applied CTC to MT (Libovický
and Helcl, 2018) and ST (Inaguma et al., 2021b)
and promising techniques have emerged, shrinking
the gap between autoregressive approaches (Sa-
haria et al., 2020; Gu and Kong, 2021; Chuang
et al., 2021; Huang et al., 2022). These recent de-
velopments suggest that the latent alignment ability
of CTC is a promising direction for translation
– this leads us to question: can CTC alignments
improve autoregressive translation? In particular,
we are interested in frameworks that leverage the
strength of CTC while minimizing its several harm-
ful incompatibilities (see §3) with translation tasks.

Inspired by the success of Hybrid CTC/Attention
in ASR (Watanabe et al., 2017), we investigate
jointly modeling CTC with an autoregressive at-
tentional encoder-decoder for translation. Our con-
jecture is that the monotonic alignment and condi-
tional independence of CTC, which weaken purely
CTC-based translation, counteract particular weak-
nesses of attentional models in joint CTC/attention
frameworks. In this work, we seek to investi-
gate how each CTC property interacts with cor-
responding properties of the attentional counterpart
during joint training and decoding. We design a
joint CTC/attention architecture for translation (§4)
and then examine the positive interactions which
ultimately result in improved translation quality
compared to pure-attention baselines, as demon-
strated on the IWSLT (Cettolo et al., 2012), MuST-
C (Di Gangi et al., 2019), and MTedX (Salesky
et al., 2021) MT/ST corpora (§6).1

2 Background: Joint CTC/Attn for ASR

Both the CTC (Graves et al., 2006) and attentional
encoder-decoder (Bahdanau et al., 2015) frame-

1Models are are available in ESPnet. For ST, refer to egs2/
must_c_v2/st1 and for MT refer to egs2/iwslt14/mt1.
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CTC ATTENTION JOINT CTC/ATTENTION ASR MT/ST

PCTC(Y |X)
∆
=

∑

Z∈Z

T∏

t=1

P (zt|X,���z1:t−1) PAttn(Y |X)
∆
=

∏L
l=1 P (yl|y1:l−1, X) PJoint(Y |X)

∆
= PCTC(Y |X)λ × PAttn(Y |X)1−λ ✓ ✓

Hard Alignment .....................................
Criterion only allows monotonic align-
ments of inputs to outputs

Soft Alignment ........................................
Flexible attention-based input-to-output
mappings may overfit to irregular patterns

During Training: Hard alignment objective pro-
duces stable encoder representations allowing the
decoder to more rapidly learn soft alignment patterns

✓ L1..
See §3

Conditional Independence ....................
Assumes that there are no dependencies
between each output unit given the input

Conditional Dependence .......................
Locally normalized models with output
dependency exhibit label/exposure biases

During Decoding: Use of conditionally independent
likelihoods in joint scoring eases the exposure/label
biases from conditionally dependent likelihoods

✓ L2..
See §3

Input-Synchronous Emission ...............
Each input representation emits exactly
one blank or non-blank output token

Autoregressive Generation ....................
Need to detect end-points and compare hy-
potheses of different length in beam search

During Decoding: Input-synchronous emission de-
termines output length based on input length counter-
acting the autoregressive end-detection problem

✓ L3..
See §3

Table 1: Description of three reasons why joint CTC/attention modeling is powerful in ASR. In order to understand
whether these positive interactions between properties of the CTC and attention frameworks are applicable to
MT/ST, we must address three corresponding concerns, L1-3, about the applicability of CTC to translation (§2).

works seek to model the Bayesian decision seeking
the output, Ŷ , from all possible sequences, V tgt∗,
by selecting the sequence which maximizes the
posterior likelihood P (Y |X), where X = {xt ∈
Ssrc|t = 1, ..., T} and Y = {yl ∈ V tgt|l =
1, ..., L}. The source set Ssrc is a discrete vocab-
ulary in the MT case and a continuous real space
in the ST case while the target set V tgt is always
a discrete vocabulary. Note that the T -length of
the input is assumed to be longer than the L-length
output for speech tasks (Graves et al., 2006), but
this is not necessarily true for MT.

What are the critical differences between the
CTC and attention frameworks? As shown in
the first two columns of Table 1, CTC and at-
tention offer different formulations of the poste-
rior likelihood, PCTC(·) and PAttn(·) respectively.
First of all, the attention mechanism is a flexible
input-to-output mapping function which allows a
decoder to perform soft alignment of an output
unit yl to multiple input units x[...] without restric-
tion. One downside of this flexibility is a risk
of destabilized optimization (Kim et al., 2017).
CTC on the other hand marginalizes the likeli-
hoods of all possible input to alignment sequence,
Z = {zt ∈ V tgt ∪ {∅}|t = 1 . . . T}, mappings via
hard alignment where each output unit zt maps to
a single input unit xt in a strictly monotonic pattern.
∅ is a "blank" and Z maps deterministically to Y
by removing blanks and repeated emissions.

Secondly, the attentional decoder models each
output unit y1 with conditional dependence on
not only the input X , but also the previous output
units y1:l−1. In contrast, CTC makes a conditional
independence assumption that each zt does not
depend on z1:t−1 if already conditioned on X (as

denoted by the strike-through in Table 1) – this
is a strong assumption which allows for efficient
computation of marginalized likelihoods over all
Z ∈ Z(Y, T ) via dynamic programming. On the
plus, since CTC does not model causality between
output units it is not plagued by the same label and
exposure biases that exist in attentional decoders
due to local normalization of causal likelihoods
(Bottou, 1991; Ranzato et al., 2016; Hannun, 2019).

Finally, the attentional decoder is an autore-
gressive generator that decodes the output until
a stop token, <eos>. Comparing likelihoods for
sequences of different lengths requires a heuris-
tic brevity penalty. Furthermore label bias with
respect to the stop token manifests as a length prob-
lem where likelihoods degenerate for unexpectedly
long outputs (Murray and Chiang, 2018). In com-
parison, CTC is an input-synchronous emitter
that consumes an input unit in order to produce an
output unit. Therefore, CTC cannot produce an
output longer than the input representation which
feeds the final posterior output layer – but this also
means that CTC does not require end detection.

As previously shown by (Kim et al., 2017;
Watanabe et al., 2017), jointly modeling CTC and
an attentional decoder is highly effective in ASR.
The foundation of this architecture is a shared en-
coder, ENC, which feeds into both CTC, PCTC(·),
and attentional decoder, PAttn(·), posteriors:

h = Enc(X) (1)

PCTC(zt|X) = CTC(ht) (2)

PAttn(yl|X, y1:l−1) = Dec(h, y1:l−1) (3)

where CTC(·) denotes a linear projection to the
CTC output vocabulary, V tgt ∪ {∅}, followed by
softmax. DEC(·) denotes autoregressive decoder
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layers followed by a linear projection to the decoder
output vocabulary, V tgt ∪ {<eos>}, and softmax.
The joint network is optimized via a multi-tasked
objective, LASR = LASR

CTC + λLASR
Attn , where λ inter-

polates the CTC and decoder cross-entropy losses.
Joint decoding is typically performed with a one-

pass beam search where CTC plays a secondary
role as a joint scorer while attention leads the major
hypothesis expansion and end detection functions
in the algorithm (Watanabe et al., 2017; Tsunoo
et al., 2021). However, CTC is capable of taking
over the lead role if called upon (e.g. for streaming
applications) (Moritz et al., 2019).

3 Potential CTC Limitations in MT/ST

Why exactly does this joint CTC/attention frame-
work perform so well in ASR? As summarized in
column 3 of Table 1, we are particularly interested
in three reasons which arise from the combination
of the hard vs. soft alignment, conditional inde-
pendence vs. dependence, and input-synchronous
emission vs. autoregressive generation properties
of CTC and attention respectively. These dynamics
have become well understood in ASR, owing to the
popularity of the joint framework (Watanabe et al.,
2018) amongst ASR practitioners.

So can CTC and attention also complement each
other when applied jointly to translation?2 ASR,
MT, and ST can all be generalized as sequence
transduction tasks following the Bayesian formula-
tion. Attentional decoders have been a predominant
technical solution to each of these tasks. However,
the CTC framework appears to have several limita-
tions specific to MT/ST that are not present in ASR;
this seemingly diminishes the promise of the joint
CTC/attention framework for translation. In this
work, we seek to address the following three con-
cerns about MT/ST CTC which appear to inhibit
the CTC/attention framework (please refer back to
Table 1 as needed).

L1 Can CTC encoders perform sophisticated
input-to-output mappings required for translation?

Unlike ASR, translation entails non-monotonic
mappings due to variable word-ordering across lan-
guages. Additionally, inputs may be shorter than
outputs as mappings are not necessarily one-to-one.
Furthermore, the mapping task for ST is composi-
tional where logically a speech signal first maps to a
source language transcription before being mapped

2This particular question has not been addressed in litera-
ture. For an account of related works, please see §8.

to the ultimate translation. All of these complica-
tions appear to directly contradict the hard align-
ment of CTC. If CTC cannot produce stable en-
coder representations for MT/ST, then during joint
training attention does not receive the optimization
benefit as in ASR (per row 2 of Table 1). Fortu-
nately, prior works suggest that these challenges are
not insurmountable. Chuang et al. (2021) showed
that self-attentional encoders can perform latent
model variable word orders for ST, Libovický and
Helcl (2018); Dalmia et al. (2022) proposed up-
sampling encoders that produce expanded input
representations for MT, and Sanabria and Metze
(2018); Higuchi et al. (2022) proposed hierarchi-
cal CTC encoders that can compose multiple out-
put resolutions for ASR. In §4.1, we incorporate
these techniques into a unified hierarchical CTC
encoding method for MT/ST which is capable of
sophisticated input-to-output mappings.

L2 Does CTC-based translation quality lag too
far behind attention-based to be useful?

CTC-based ASR has recently shown compet-
itive performance due in large part to improved
neural architectures (Gulati et al., 2020) and self-
supervised learning (Baevski et al., 2020; Hsu et al.,
2021), but the gap between CTC and attention for
translation appears to be greater (Gu and Kong,
2021). Perhaps the conditional independence
of CTC inhibits the quality to such a degree in
MT/ST where these likelihoods cannot ease the
label/exposure biases of the attentional decoder as
they do in ASR (per row 3 of Table 1). The rel-
ative weakness of non-autoregressive translation
approaches has been well-studied. Knowledge dis-
tillation (Kim and Rush, 2016; Zhou et al., 2019)
and iterative methods (Qian et al., 2021; Chan et al.,
2020; Huang et al., 2022) all attempt to bridge the
gap between non-autoregressive models and their
autoregressive counterparts. In §6, we address this
concern empirically; we find that even CTC mod-
els with 28% relative BLEU reduction compared
to attention yield improvements when CTC and
attention are jointly decoded.

L3 Is the alignment information produced by
CTC-based translation models reasonable?

In ASR, CTC alignments are reliable enough
to segment audio data by force aligning inputs
to target transcription outputs (Kürzinger et al.,
2020) and exhibit minimal drift compared to hid-
den Markov models (Sak et al., 2015). However,
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Figure 1: Hierarchical MT/ST encoders where represen-
tations are first up/down-sampled by SRCENCMT/ST and
then re-ordered by TGTENCMT/ST.

CTC alignments are not as well studied in transla-
tion. It is an open question of whether or not the
input-synchronous emission of CTC for transla-
tion has sufficient alignment quality to support the
end detection responsibility during joint decoding
as it does in ASR (per row 4 of Table 1). Ideally,
the CTC alignments are strong enough such that
CTC can lead joint decoding by proposing candi-
dates for hypothesis expansion in each beam step
until all input units are consumed (at which point
the end is detected), as in an input-synchronous
beam search. More conservatively, the CTC align-
ments may be too unreliable to take the lead but
could still guide the attentional decoder’s end de-
tection by penalizing incorrect lengths via joint
scoring, as in an output-synchronous beam search.
In §4.2, we lay out comparable forms for input and
output-synchronous beam search which allows us
to examine the impact on translation quality de-
pending on whether CTC is explicitly responsible
for or only implicitly contributing to end detection.

4 Joint CTC/Attention for Translation

4.1 Hierarchical CTC Encoding
Per L1 described in §3, we seek to build a CTC
encoder for translation which handles sophisticated
input-to-output mappings. Unlike ASR where out-
puts are assumed to be 1) always shorter than inputs
and 2) monotonic with respect to inputs, transla-
tion needs to account for variability of lengths and
and word orderings. We therefore propose to use a
hierarchical CTC encoding scheme which 1) aligns
inputs to length-adjusted source-oriented encod-
ings before 2) aligning to re-ordered target-oriented
encodings, as shown in Figure 1. Our encoding
process thus consists of two compartmentalized

functions: length-adjustment and re-ordering.

Length-adjustment For MT, we up-sample the
lengths of the source-oriented encodings in order
to output sequences longer than the input. For ST,
we down-sample the lengths of the source-oriented
encodings to coerce a discrete textual representa-
tion of the real-valued speech input. We enforce
source orientations using CTC criteria that seek to
align the length adjusted intermediate layer encoder
representations towards source text sequences (for
MT this is the same as the input and for ST this
is the ASR target). By compartmentalizing length-
adjustment within this initial stage, we allow subse-
quent encoder layers to focus solely on re-ordering.

Re-ordering We then obtain target-oriented en-
codings with subsequent encoder layers, where re-
ordering is enforced using CTC criteria that seek
to align final layer encoder representations towards
target text sequences. Critically, the underlying
neural network architecture must be able to model
latent re-ordering as the CTC criterion itself will
only consider monotonic alignments of the final
encoder representation to the target.

Our proposed MT/ST hierarchical encoders con-
sist of the following components:

hSRC = SRCENCMT/ST(X) (4)

PCTC(z
SRC
t |X) = SRCCTCMT/ST(h

SRC
t ) (5)

hTGT = TGTENCMT/ST(h
SRC) (6)

PCTC(z
TGT
t |X) = TGTCTCMT/ST(h

TGT
t ) (7)

The hierarchical encoders are jointly optimized
with an attentional decoder using a multi-tasked
objective, L = LSRCCTC +λ1LTGTCTC +λ2LATTN,
where λ’s interpolate source-oriented CTC, target-
oriented CTC, and decoder cross-entropy losses.

As shown in Figure 1.a, SRCENCMT(·) consists
of N1 Transformer (Vaswani et al., 2017) layers
followed by N2 up-sampling Output Length Con-
troller (OLC) layers used in LegoNN (Dalmia et al.,
2022) – the layer-wise positional embeddings of the
OLC architecture enable latent length-adjustment
of textual inputs. TGTENCMT(·) consists of N3

non-up-sampling OLC layers – the layer-wise at-
tention of the OLC architecture enables latent re-
ordering. Our ST encoder is similar, but uses Con-
formers (Gulati et al., 2020) to capture the local
and global dependencies in speech, as shown in Fig-
ure 1.b. SRCENCST(·) consists of N1 convolutional
blocks (Dong et al., 2018) for down-sampling fol-
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coder consists of the following components:342

hSRC = SRCENCST(X) (14)343

pCTC(z
SRC
t |X) = SRCCTCST(h

SRC
t ) (15)344

hTGT = TGTENCST(h
SRC) (16)345

pCTC(z
TGT
t |X) = TGTCTCST(h

TGT
t ) (17)346

where SRCENCST(·) is realized by N1 convolu-347

tional blocks for downsampling () followed by N2348

Conformer [cite –BY], while TGTENCST(·) is re-349

alized by N3 Conformer layers. We chose Con-350

former based on its previously demonstrated effec-351

tiveness for modeling local and global dependen-352

cies in speech signals [cite –BY].353

The hierarchical encoders are optimized along354

with an attentional decoder as follows:355

L = LSRCCTC + �1LTGTCTC + �2LATTN (18)356

where �’s interpolate between three objectives:357

source-oriented CTC, LSRCCTC, target-oriented358

CTC, LTGTCTC, and decoder cross-entropy, LATTN.359

3.2 One-Pass Synchronous Joint Decoding360

Algorithm 1 General One-Pass Beam Search
1: procedure SEARCH(X , N , STEP, b, p)
2: topPrtHs = {<sos> : 1.0}; allEndHs = {}
3: for i 2 N do
4: prtHs, endHs = STEP(topPrtHs, X, i, p, N)
5: topPrtHs = top-k(prtHs, k = b)
6: allEndHs = allEndHs[ endHs
7: end for
8: return top-1(allEndHs)
9: end procedure

10: SEARCH(X, maxL, OUTPUTSTEP, b, p) . output sync
11: SEARCH(X, T, INPUTSTEP, b, p) . input sync

As shown in [sec 2.1 and 2.2 –BY] CTC makes pre-361

dictions at every input step, whereas the Attention362

Decoder makes a new prediction at every output363

step. This allows us to build two forms of one-364

pass beam search algorithms (1) that functions over365

the output steps, which we call output-synchronous366

beam-search, (2) that functions over the input steps,367

which we call input-synchronous beam-search. In368

the following sections we will discuss each of them369

in detail.370

3.2.1 Output-Synchronous371

3.2.2 Input-Synchronous372

3.2.3 Speed vs. Accuracy373

4 Data and Experimental Setup374

Data: We use standard benchmark datasets for375

evaluating our speech translation and machine376

Algorithm 2 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
1: procedure OUTPUTSTEP(prtHs, X, l, p, maxL)
2: newPrtHs = {}; endHs = {}
3: for y1:l�1 2 prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l�1), k = p)
5: for c 2 attnCnds do

6: y1:l = y1:l�1 � c

7: ↵CTC = CTCScore(y1:l, X1:T )
8: ↵Attn = AttnScore(y1:l, X1:T )
9: � = LengthPen(y1:l)

10: PBeam(y1:l|X) = ↵CTC + ↵Attn + �
11: if (c is <eos>) or (l is maxL) then
12: endHs[y1:l] = PBeam(·)
13: else
14: newPrtHs[y1:l] = PBeam(·)
15: end if
16: end for
17: end for
18: return newPrtHs, endHs
19: end procedure

Algorithm 3 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T )
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)
4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is y[91]) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)
12: ↵Attn = AttnScore(ỹ, X1:T )
13: � = LengthPen(ỹ)
14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs
23: end procedure

translation models. For speech translation, we eval- 377

uate our models on MuST-Cv2 [cite –BY] English 378

to German (En-De) and English to Japanese (En- 379

Ja) datasets. These are 16kHz recordings of TED 380

talks in English with text translations in various 381

target languages. The En-De training set consists 382

of around 250k utterances, totalling to around 450h 383

of training speech data. The En-Ja training set con- 384

5

Hypothesis 
Expansion

Joint 
Scoring

End 
Detection

MODEL TYPE MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MTedX MuST-C-v2 MuST-C-v2 MTedX
MODEL NAME Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En

Pure-Attn (Prior) 7 7 Attn Only (32.15)† (38.95)† -} 25.8‡ 12.4‡ -}

Pure-Attn (Ours) 7 7 Attn Only 32.8 (33.73) 39.0 (39.86) 25.6 27.8 14.3 22.7

Joint CTC/Attn 3 7 CTC Only 27.3 33.8 22.4 24.4 10.2 21.4
Joint CTC/Attn 3 7 Attn Only 33.6 39.5 28.0 28.3 14.2 23.7

Joint CTC/Attn 3 3 Joint I-Sync 33.7 39.7 27.8 29.2 15.1 25.1
Joint CTC/Attn 3 3 Joint O-Sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 2: Test set performances, as measured by BLEU ("), of our proposed joint CTC/Attention models compared
to pure-attention baselines. Joint CTC/Attention models are always jointly trained, but can be either jointly decoded
using input/output synchronony or decoded using only their CTC or attention branches. For IWSLT14, we mention
(tokenized BLEU) for comparison with prior works: †Raunak et al. (2020) and ‡Inaguma et al. (2020). }Prior
MTedX works show only All-All or pair-wise settings.

Algorithm 1 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
1: procedure OUTPUTSTEP(prtHs, X, l, p, maxL)
2: newPrtHs = {}; endHs = {}
3: for y1:l�1 2 prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l�1), k = p)
5: for c 2 attnCnds do

6: y1:l = y1:l�1 � c

7: ↵CTC = CTCScore(y1:l, X1:T )
8: ↵Attn = AttnScore(y1:l, X1:T )
9: � = LengthPen(y1:l)

10: PBeam(y1:l|X) = ↵CTC + ↵Attn + �
11: if (c is <eos>) or (l is maxL) then
12: endHs[y1:l] = PBeam(·)
13: else
14: newPrtHs[y1:l] = PBeam(·)
15: end if
16: end for
17: end for
18: return newPrtHs, endHs
19: end procedure

Modeling We compare our joint CTC/Attention390

models to purely attentional encoder-decoder base-391

lines. All proposed and baseline models were tuned392

separately, using validation sets only, within the393

same hyperparameter search spaces for training394

and decoding to ensure fair comparison. All exper-395

iments were conducted using ESPnet-ST (Inaguma396

et al., 2020). Full descriptions of model sizes, hy-397

perparameters, and pre-processing are in §D.4398

Evaluation: Unless otherwise indicated, we mea-399

sure performance with detokenized case-sensitive400

4We compare our baselines for MuST-C-v2 to the default
recipes in ESPnet in Table 2. For back-compatibility with
additional prior works using MuST-C-v1 En-De, see §A.

Algorithm 2 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T )
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)
4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is y[91]) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)
12: ↵Attn = AttnScore(ỹ, X1:T )
13: � = LengthPen(ỹ)
14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs
23: end procedure

BLEU (Post, 2018) on punctuated 1-references. 401

6 Results and Analyses 402

In this section, we first present our main results on 403

6 benchmark MT and ST tasks. We then present ev- 404

idence that hierarchical encoding (§4.1) produces 405

stable encoder representations that simplify the 406

decoder’s source attention (addressing L1 in §3). 407
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MODEL TYPE MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MTedX MuST-C-v2 MuST-C-v2 MTedX
MODEL NAME Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En

Pure-Attn (Prior) 7 7 Attn Only (32.15)† (38.95)† -} 25.8‡ 12.4‡ -}

Pure-Attn (Ours) 7 7 Attn Only 32.8 (33.73) 39.0 (39.86) 25.6 27.8 14.3 22.7

Joint CTC/Attn 3 7 CTC Only 27.3 33.8 22.4 24.4 10.2 21.4
Joint CTC/Attn 3 7 Attn Only 33.6 39.5 28.0 28.3 14.2 23.7

Joint CTC/Attn 3 3 Joint I-Sync 33.7 39.7 27.8 29.2 15.1 25.1
Joint CTC/Attn 3 3 Joint O-Sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 2: Test set performances, as measured by BLEU ("), of our proposed joint CTC/Attention models compared
to pure-attention baselines. Joint CTC/Attention models are always jointly trained, but can be either jointly decoded
using input/output synchronony or decoded using only their CTC or attention branches. For IWSLT14, we mention
(tokenized BLEU) for comparison with prior works: †Raunak et al. (2020) and ‡Inaguma et al. (2020). }Prior
MTedX works show only All-All or pair-wise settings.

Algorithm 1 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
1: procedure OUTPUTSTEP(prtHs, X, l, p, maxL)
2: newPrtHs = {}; endHs = {}
3: for y1:l�1 2 prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l�1), k = p)
5: for c 2 attnCnds do

6: y1:l = y1:l�1 � c

7: ↵CTC = CTCScore(y1:l, X1:T )
8: ↵Attn = AttnScore(y1:l, X1:T )
9: � = LengthPen(y1:l)

10: PBeam(y1:l|X) = ↵CTC + ↵Attn + �
11: if (c is <eos>) or (l is maxL) then
12: endHs[y1:l] = PBeam(·)
13: else
14: newPrtHs[y1:l] = PBeam(·)
15: end if
16: end for
17: end for
18: return newPrtHs, endHs
19: end procedure

Modeling We compare our joint CTC/Attention390

models to purely attentional encoder-decoder base-391

lines. All proposed and baseline models were tuned392

separately, using validation sets only, within the393

same hyperparameter search spaces for training394

and decoding to ensure fair comparison. All exper-395

iments were conducted using ESPnet-ST (Inaguma396

et al., 2020). Full descriptions of model sizes, hy-397

perparameters, and pre-processing are in §D.4398

Evaluation: Unless otherwise indicated, we mea-399

sure performance with detokenized case-sensitive400

4We compare our baselines for MuST-C-v2 to the default
recipes in ESPnet in Table 2. For back-compatibility with
additional prior works using MuST-C-v1 En-De, see §A.

Algorithm 2 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T )
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)
4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is y[91]) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)
12: ↵Attn = AttnScore(ỹ, X1:T )
13: � = LengthPen(ỹ)
14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs
23: end procedure
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Algorithm 2 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T )
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)
4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is repeat) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)
12: ↵Attn = AttnScore(ỹ, X1:T )
13: � = LengthPen(ỹ)
14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs
23: end procedure

Evaluation: Unless otherwise indicated, we mea-
sure performance with detokenized case-sensitive
BLEU (Post, 2018) on punctuated 1-references.4

6 Results and Analyses

In this section, we first present our main results on
6 benchmark MT and ST tasks. We then present ev-
idence that hierarchical encoding (§4.1) produces
stable encoder representations that simplify the
decoder’s source attention (addressing L1 in §3).
Next we present evidence that joint decoding is ben-
eficial despite the fact that CTC-only performance
lags behind that of attention-only (addressing L2 in
§3). Finally, we present evidence that CTC’s align-
ment information resolves attention’s end-detection
problem in both input and output synchronous joint
decoding (§4.2) (addressing L3 in §3).

6.1 Joint CTC/Attention Models Outperform
CTC-only and Attention-only Baselines

As shown in Table 2, joint CTC/Attention with
output-synchronous decoding outperforms pure-
attention across all MT and ST tasks (line 2 vs.
6). Joint training while only decoding with the
attention branch still outperforms pure-attention
models without any joint training (line 2 vs. 4).
Note that CTC is consistently the weaker of the
two branches in jointly trained models (line 3 vs.

4Evaluation with additional metrics is provided in §A.1.

4). Joint input/output-synchronous decodings yield
further improvements overall, confirming that both
joint training and decoding are beneficial (line 4
vs. 5/6). However, we find that input-synchrony
lags behind output-synchrony (line 5 vs. 6); this
phenomenon is discussed further in §7.

6.2 Hierarchical Encoding Reduces
Attention’s Alignment Burden

We examine the regularization effect that CTC joint
training has on the attentional decoder, per L1 in
§3, by first quantifying the monotonicity, m of a
(L, T ) shaped source attention pattern, A:

m =
⇣ X

2<lL

[argmax
t2T

Al � argmax
t2T

Al�1]
⌘
/L

where [·] denotes the Iverson bracket. In other
words, we define monotonicity m as the rate at
which the decoder at step l attends most sharply
on an input index, argmaxt2T Al, which is greater
than or equal to that of the previous step l � 1,
argmaxt2T Al�1. We compute m over all exam-
ples in our validation sets for De-En MT and En-De
ST and show the layer-wise averages over all exam-
ples and attention heads in Figure 2. It can be seen
that the decoder source attention patterns are more
monotonic when using jointly trained hierarchical
encoders. Per line 2 of Table 1, we argue that this
greater monotonicity allows the decoder to more
rapidly learn soft alignment patterns – ultimately
this advantage is reflected in the overall perfor-
mance gains observed from joint training without
joint decoding (line 2 vs. 4 in Table 2).

For a qualitative example illustrating the in-
creased monotonicity of decoder source attention
patterns, please see §A.7. We also found that in-
creased monotonicity leads improved multilingual
parameter sharing in our All-En MT and ST mod-
els, suggesting that the target-orientation of our en-
coder reduced the decoder’s burden of soft-aligning
target English outputs to source languages with
varying word-orders (discussed further in §A.5).

What are the respective contributions of SRC-
CTC and TGTCTC? TGTCTC holds elevated im-
portance as joint decoding is not possible without it.
However, we’d like to understand how each compo-
nent contributes to the benefits observed from joint
training without joint decoding in §6.1. In Table 3,
we show ablate SRCCTC and TGTCTC in order to
confirm that both contribute to performance gains.
Note that SRCCTC on its own appears to contribute

lowed by N2 Conformer layers – this stage is anal-
ogous to the ASR sub-task of ST where a long
speech signal is length-adjusted to a shorter latent
textual representation. TGTENCST(·) consists of
N3 Conformer layers – this stage is analogous to
the MT sub-task of ST where latent re-ordering is
enabled by self-attention. LegoNN and Conformer
are further described in §A.4.

4.2 Input/Output-Synchronous Decoding

Per L2 and L3 described in §3, we seek to design a
joint decoding algorithm with input and output-
synchronous variants of one-pass beam search
which differ only in whether CTC or attention takes
the leading role. As shown in Algorithms 1 and 2,
we propose to align the input and output beam-step
functions along three common functions: hypoth-
esis expansion, joint scoring, and end detection.
Using these mirrored forms, let us now interpret
the respective roles of CTC and attention.

Output-Synchrony Consider first that attention
is in the leading role, which means that we are
working with an output-synchronous beam search.
Note that this is the algorithm originally pro-
posed by Hori et al. (2017). OUTPUTSTEP per-
forms hypothesis expansion by computing the at-
tentional decoder’s output posterior at label step
l, PAttn(yl|X, y1:l−1) for each partial hypothesis,
y1:l−1. A pre-beam size, p, is then used to select
the top candidate output units (Seki et al., 2019),
attnCnds, which are used to expand the partial

hypotheses via concatenation, denoted by ⊕. In
the joint scoring block, the attentional decoder like-
lihood, AttnScore(·), and length penalty/reward,
LengthPen(·) yield the estimated joint likelihood
PBeam. Finally in end detection, OUTPUTSTEP

must check for the stop token, <eos>, which may
be proposed by attnCnds.

Input-Synchrony Now let us consider the differ-
ences when CTC is in the leading role. Note that
this algorithm extends Hannun et al. (2014)’s CTC
beam search algorithm to include joint scoring with
attentional likelihoods. INPUTSTEP performs hy-
pothesis expansion by computing CTC’s alignment
posterior at time step t, PCTC(zt|X). Unlike in
output-synchrony, here each hypothesis expansion
also consumes one step of the input. The same
pre-beam size, p, is used to select top candidate
alignment units, CTCCnds, but partial hypotheses
are only expanded for non-blank and non-repeat
candidates. The joint scoring block is identical to
output-synchrony except for one difference: CTC
likelihood, CTCScore(·), is applied over the full
input, X1:T , in OUTPUTSTEP and over the partial
input, X1:t, in INPUTSTEP. This difference en-
genders a speed vs. accuracy trade-off, which we
discuss in D2 of §7. Finally, end detection simply
occurs when all input units have been consumed
(t = T ). Therefore, INPUTSTEP does not require
checking for the stop token as all hypotheses at
time T are ended.

We propose this particular form of input-
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MODEL TYPE MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MTedX MuST-C-v2 MuST-C-v2 MTedX
# MODEL NAME Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En

1 Pure-Attn (Prior) ✗ ✗ Attn Only (32.2)† (39.0)† -♢ 25.8‡ 12.4‡ -♢

2 Pure-Attn (Ours) ✗ ✗ Attn Only 32.8 (33.7) 39.0 (39.9) 25.6 27.8 14.3 22.7

3 Joint CTC/Attn ✓ ✗ CTC Only 27.3 33.8 22.4 24.4 10.2 21.4
4 Joint CTC/Attn ✓ ✗ Attn Only 33.6 39.5 28.0 28.3 14.2 23.7

5 Joint CTC/Attn ✓ ✓ Joint I-Sync 33.7 39.7 27.8 29.2 15.1 25.1
6 Joint CTC/Attn ✓ ✓ Joint O-Sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 2: Test set performances, as measured by BLEU (↑), of our proposed joint CTC/Attention models compared
to pure-attention baselines. Joint CTC/Attention models are always jointly trained, but can be either jointly decoded
using input/output synchrony or decoded using only their CTC or attention branches. For IWSLT14, we mention
(tokenized BLEU) for comparison with prior works: †Raunak et al. (2020) and ‡Inaguma et al. (2020). ♢Prior
MTedX works show only All-All or pair-wise settings.

synchronous beam search in order to exactly mirror
the functions of its output-synchronous counter-
part; without this mirrored formulation, we cannot
attribute differences in decodings to the swapped
roles of CTC and attention. For instance, now we
can answer questions such as can CTC perform hy-
pothesis expansion on par with attention, allowing
us to address concerns about applying weaker joint
CTC models during decoding per L2 and L3 in §3.
To the best of our knowledge, we are the first to
examine the theoretical and empirical differences
of input and output synchrony through a unified for-
mulation, as discussed further in §7. Other forms
of input-synchronous beam search in prior works
cannot directly be used for this purpose. Triggered
Attention (Moritz et al., 2019) is one such exam-
ple which is purpose-fit for streaming to a degree
where several core components (e.g. look-ahead
and re-triggering) cannot trivially be re-factored
into an output-synchronous variant.

5 Experimental Setup

Data We examine the efficacy of our proposed
approaches on two language pairs for each of the
MT and ST tasks. For MT, we use German-to-
English (De-En) and Spanish-to-English (Es-En)
from IWSLT14 (Cettolo et al., 2012). For ST, we
use English-to-German (En-De) and English-to-
Japanese (En-Ja) from MuST-C-v2, reporting tst-
COMMON results (Di Gangi et al., 2019). We
also examine the multilingual setting of 6 Euro-
pean languages to English (All-En) from MTedX
(Salesky et al., 2021) for both tasks. Full dataset
descriptions for reproducibility are in §B.

Modeling We compare our joint CTC/Attention
models to purely attentional encoder-decoder base-
lines. All proposed and baseline models were tuned
separately, using validation sets only, within the
same hyperparameter search spaces for training
and decoding to ensure fair comparison. All exper-
iments were conducted using ESPnet-ST (Inaguma
et al., 2020). Full descriptions of model sizes, hy-
perparameters, and pre-processing are in §B.3

Evaluation: Unless otherwise indicated, we mea-
sure performance with detokenized case-sensitive
BLEU (Post, 2018) on punctuated 1-references.4

6 Results and Analyses

In this section, we first present our main results on
6 benchmark MT and ST tasks. We then present ev-
idence that hierarchical encoding (§4.1) produces
stable encoder representations that simplify the
decoder’s source attention (addressing L1 in §3).
Next we present evidence that joint decoding is
beneficial despite the fact that CTC-only perfor-
mance lags behind that of attention-only (address-
ing L2 in §3). Finally, we present evidence that
CTC’s alignment information alleviates attention’s
end-detection problem in both input and output syn-
chronous joint decoding (§4.2) (addressing L3 in
§3).

6.1 Joint CTC/Attention Models Outperform
CTC-only and Attention-only Baselines

As shown in Table 2, joint CTC/Attention with
output-synchronous decoding outperforms pure-

3We compare our baselines for MuST-C-v2 to the default
recipes in ESPnet in Table 2. For back-compatibility with
additional prior works using MuST-C-v1 En-De, see §A.2.

4Evaluation with additional metrics is provided in §A.1.
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attention across all MT and ST tasks (line 2 vs.
6). Joint training while only decoding with the
attention branch still outperforms pure-attention
models without any joint training (line 2 vs. 4).
Note that CTC is consistently the weaker of the
two branches in jointly trained models (line 3 vs.
4). Joint input/output-synchronous decodings yield
further improvements overall, confirming that both
joint training and decoding are beneficial (line 4
vs. 5/6). However, we find that input-synchrony
lags behind output-synchrony (line 5 vs. 6); this
phenomenon is discussed further in §7.

6.2 Hierarchical Encoding Reduces
Attention’s Alignment Burden

We examine the regularization effect that CTC joint
training has on the attentional decoder, per L1 in
§3, by first quantifying the monotonicity, m of a
(L, T ) shaped source attention pattern, A:

m =
( ∑

2<l≤L

[argmax
t∈T

Al ≥ argmax
t∈T

Al−1]
)
/L

where [·] denotes the Iverson bracket. In other
words, we define monotonicity m as the rate at
which the decoder at step l attends most sharply
on an input index, argmaxt∈T Al, which is greater
than or equal to that of the previous step l − 1,
argmaxt∈T Al−1. We compute m over all exam-
ples in our validation sets for De-En MT and En-De
ST and show the layer-wise averages over all exam-
ples and attention heads in Figure 2. It can be seen
that the decoder source attention patterns are more
monotonic when using jointly trained hierarchical
encoders. Per line 2 of Table 1, we argue that this
greater monotonicity allows the decoder to more
rapidly learn soft alignment patterns – ultimately
this advantage is reflected in the overall perfor-
mance gains observed from joint training without
joint decoding (line 2 vs. 4 in Table 2).

For a qualitative example illustrating the in-
creased monotonicity of decoder source attention
patterns, please see §A.7. We also found that in-
creased monotonicity leads improves multilingual
parameter sharing in our All-En MT and ST mod-
els, suggesting that the target-orientation of our en-
coder reduced the decoder’s burden of soft-aligning
target English outputs to source languages with
varying word-orders (discussed further in §A.5).

What are the respective contributions of SRC-
CTC and TGTCTC? TGTCTC holds elevated im-
portance as joint decoding is not possible without it.

Figure 2: Layer-wise monotonicity (↑) of the source-
attention patterns produced by MT/ST decoders.

MT (DE-EN) ST (EN-DE)

SRCCTC TGTCTC IWSLT14 MuST-C-v2

✗ ✗ 32.1 27.7
✓ ✗ 34.1 27.8
✗ ✓ 33.3 28.1
✓ ✓ 34.8 28.3

Table 3: Ablation on the impacts of SRCCTC and
TGTCTC CTC components of hierarachical encoding,
as measured by performance on validation sets. Only
attention is used in decoding to enable fair comparisons.

However, we’d like to understand how each com-
ponent contributes to the benefits observed from
joint training without joint decoding in §6.1. In
Table 3, we ablate SRCCTC and TGTCTC in or-
der to confirm that both contribute to performance
gains. Note that SRCCTC on its own appears to
contribute more to MT than it does to ST, suggest-
ing that the length adjustment stage is more critical
in MT.

6.3 Even Weak CTC Models Strengthen Joint
CTC/Attention Models

We examine the generalization effect that augment-
ing autoregressive likelihoods with conditionally
independent likelihoods has during inference, per
L2 in §3, by evaluating De-En MT and En-De
ST models on out-of-domain EuroParl test sets
(Iranzo-Sánchez et al., 2020). As shown in Ta-
ble 4, joint CTC/Attention models outperform pure-
attention baselines across in-domain (In-D) and
out-of-domain (Out-D) settings. When decoding
only the CTC branch of joint models (denoted as
CTC I-Sync in the table) performance is signifi-
cantly degraded compared to the attention branch
of the same models (denoted as Attn O-Sync in the
table). This gap appears slightly lessened in the out-
of-domain setting where CTC’s conditional inde-
pendence may offer some robustness. Nonetheless
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DECODING MT (DE-EN) ST (EN-DE)
MODEL METHOD In-D Out-D In-D Out-D

Pure-Attn Attn Only 32.8 15.8 27.8 20.5

Joint C/A Attn Only 33.6 17.1 28.3 21.0
+CTC Rescore 33.6 17.1 28.3 21.0

Joint C/A Joint O-Sync 34.1 17.6 29.2 21.7

Joint C/A CTC Only 27.3 13.1 24.4 16.5
+Attn Rescore 29.5 13.9 26.2 17.8

Joint C/A Joint I-Sync 33.7 17.4 29.2 21.1

Table 4: In/out domain test performances of joint
CTC/attention models with various decoding methods.

these weak CTC models still boost their stronger
attention counterparts during joint decoding (both
via input and output-synchrony), suggesting that
ensembling of conditionally independent and de-
pendent likelihoods is a powerful technique.

Further, synchronous joint decoding methods
outperform their two-pass re-scoring counterparts
(discussed in D2 of §7), suggesting that joint selec-
tion of the hypothesis set is necessary for easing
the respective weaknesses of autoregressive and
conditionally independent likelihood estimation.

6.4 CTC’s Alignment Information Resolves
Attention’s End-Detection Problem

Finally, we examine the effect that CTC’s align-
ment information has on end detection during
decoding, per L3 in §3. In Figure 3, we ob-
serve the change in translation quality (as mea-
sured by BLEU) and output length (as measured
by hypothesis-to-reference length ratio) when the
length penalty (denoted as LengthPen(·) in Algo-
rithms 1 and 2) is gradually increased, forcing de-
codings to produce longer outputs. Pure-attention
baselines rapidly degenerate when forced to pro-
duce hypotheses that are longer than references as
they struggle to detect the ends of hypotheses (Mur-
ray and Chiang, 2018). On the other hand, joint
decoding produces gradually longer outputs regard-
less of whether CTC is in a primary role (input-
synchrony) or a secondary role (output-synchrony),
demonstrating that CTC alignments ease the de-
coder’s end-detection problem by explicitly or im-
plicitly ruling out hypotheses of incorrect lengths.

7 Discussion: More on Joint Decoding

D1 Why do input vs. output-synchronous joint
decodings yield slightly different results?

By comparing the CTC likelihood estimation
in INPUTSTEP vs. OUTPUTSTEP, it can be

Figure 3: Elasticity of BLEU and length ratios
(|hyp|/|ref|) w.r.t length penalty in validation sets.

DECODING TYPE ACCURACY SPEED

Method Beam Size BLEU Search Error RTF

Joint O-Sync 5 29.1 0.73% 0.9
Joint O-Sync 10 29.2 0.44% 1.7
Joint O-Sync 50 29.0 0.36% 9.0

Joint I-Sync 5 28.1 1.02% 0.4
Joint I-Sync 10 28.6 1.09% 0.9
Joint I-Sync 50 29.0 0.87% 6.4

Table 5: Speed vs. accuracy for joint input/output-sync
decoding of En-De ST val. set as a fxn. of beam size.

seen that there is a trade-off between speed
vs. accuracy. First, note that in OUTPUTSTEP,
CTCScore(y1:l, X1:T ), is a marginalization over
the likelihoods of all possible alignments of the par-
tial hypothesis y1:l to the full input X1:T (Seki et al.,
2019). On the other hand, CTCScore(ỹ, X1:t) in
INPUTSTEP is an estimation of the marginalized
likelihoods of the partial hypothesis y1:l to the
partial input X1:t (Graves, 2012; Hannun et al.,
2014). Even at step T , these two CTCScore(·)’s
are not equivalent. Since CTCCnds may include
the blank token, INPUTSTEP may prune partial
hypotheses at a previous beam step which would
have merged with y1:l. Therefore, CTCScore(·) in
input-synchrony is less accurate. However, input-
synchrony requires fewer computations. Using dy-
namic programming, output-synchrony computes
CTCScore(·) for all partial hypothesis within a sin-
gle beam step with O(bpT ) log-additions (Watan-
abe et al., 2017) while input-synchrony uses only
O(bp) log-additions (Hannun et al., 2014).

In Table 5, we perform an experimental val-
idation of our theoretical understanding of the
speed vs. accuracy trade-off between the two
synchronous joint decoding variants. To quantify
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speed, we compute the real-time factor (RTF) as
the ratio of decoding time over the duration of input
speech. To quantify accuracy beyond the BLEU
metric, we compute the search error rate (Meister
et al., 2020) by counting the sequences for which
the hypothesis has higher exact likelihood than the
reference. For the same beam size, output is slower
but more accurate than input-synchronous. We con-
clude that input-synchrony may in fact be prefer-
able in applications with latency constraints.

D2 Why did synchronous joint decodings outper-
form re-scoring decodings in Table 4?

There is a family of two-pass decoding algo-
rithms (Watanabe et al., 2017; Sainath et al., 2019),
which also achieve joint decoding by first estimat-
ing the likelihoods of a subset of sequences V ′

with one module and then re-scoring the estimates
with the other module. In these approaches, the
subset V ′ is determined asynchronously, meaning
the joint likelihood is not considered until the re-
scoring step; this delayed consideration of the joint
likelihood is the main drawback compared to the
synchronous approaches. If the attentional decoder
is used to determine V ′, then V ′ would suffer from
exposure/label bias and the length problem (§2).
On the other hand, if CTC is used to determine V ′,
the lack of causal modeling in CTC leads to poor
estimates of V ′ – particularly for translation.

8 Related Works

The idea of using latent alignments to improve
autoregressive translation has been explored previ-
ously by Haviv et al. (2021) who concluded that
CTC alignments are not compatible with teacher
forcing. The key difference is that we train CTC
and autoregressive models jointly while Haviv et al.
(2021) sought to apply CTC to train autoregressive
models, replacing cross-entropy entirely. More re-
cently in a concurrent work, Zhang et al. (2022)
have also shown the effectiveness of jointly train-
ing CTC and attention in the context of ST for un-
written languages where no ASR transcriptions are
available. We believe that our contribution show-
ing the effectiveness of also jointly decoding CTC
and attention demonstrates an additional technique
which can further improve their direction. Our
work also differs in that we seek to incorporate the
ASR objective into ST via hierarchical encoding.

Other concurrent works integrated CTC and at-
tention within blockwise streaming (Deng et al.,
2022) and compositional multi-decoder (Yan et al.,

DECODING TYPE SPEED

Method Beam Size RTF %∆

Pure-Attn O-Sync 5 0.9 -
Pure-Attn O-Sync 10 1.2 -
Pure-Attn O-Sync 50 3.5 -

Joint CTC/Attn O-Sync 5 0.9 +0%
Joint CTC/Attn O-Sync 10 1.7 +42%
Joint CTC/Attn O-Sync 50 9.0 +157%

Joint CTC/Attn I-Sync 5 0.4 -56%
Joint CTC/Attn I-Sync 10 0.9 -25%
Joint CTC/Attn I-Sync 50 6.4 +85%

Table 6: Limitations Table: comparison of joint decod-
ing and pure-attention RTFs across different beam sizes.
%∆ between the joint RTF and pure-attention RTF for
the same beam size is shown, where positive %’s indi-
cate slow-downs and negative %’s indicate speed-ups.

2022) architectures for ST in particular. Our work
supports their findings by addressing why CTC is
helping, and we provide a unified approach that
generalizes to both MT and ST. Prior works have
also used the non-autoregressive property of CTC
as means for speeding up autoregressive models
during inference (Inaguma et al., 2021a; Gaido
et al., 2021), but these works focus on latency and
do not apply CTC to improve translation quality.

9 Conclusion

We propose to jointly train and decode
CTC/attention models for MT and ST using
1) hierarchical encoding to resolve incompati-
bilities between CTC and the non-monotonic
mappings in translation and 2) synchronous
decoding to ease the exposure/label biases of
autoregressive decoders with CTC’s conditionally
independent alignment information. Our analyses
reveal several reasons why even weak CTC
models benefit autoregressive translation via joint
modeling, suggesting that future explorations
into jointly modeling attentional decoders with
other latent alignment models (Graves, 2012;
Ghazvininejad et al., 2020; Saharia et al., 2020)
may uncover similar benefits.

Limitations

There are several potential limitations pertaining
to the increased computational overhead and la-
tency of the joint modeling approach. One con-
cern is that joint decoding is much slower, but
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we found that input-synchronous joint decoding
is actually faster than pure-attention decoding for
smaller beam sizes, as shown in Table 6.

The other limitation is that our MT models up-
sample input representations in the early layers of
the encoder, thereby increasing the computations in
subsequent encoder layers and the decoder’s cross-
attention. We can use LegoNN-based encoders
(Dalmia et al., 2022) to adjust the up-sampling
rate to a fractional value, minimizing the compu-
tations given dataset statistics. Alternatively, we
may avoid the need for up-sampling by applying a
larger byte-pair encoding size (Kudo and Richard-
son, 2018) to the target language compared to the
source language. CTC’s use in guiding efficient
down-sampling of representations in ST (Gaido
et al., 2021) suggest that it may also be applied for
efficient up-sampling for MT – we leave this study
on efficiency to future work.

Finally, note that the corpora used for the MT
experiments in this work are considered medium
resourced. Prior work (Murray and Chiang, 2018)
has shown that the autoregressive end-detection
problem exists across low to high resourced sce-
narios; suggesting that the CTC/attention approach
would be generally beneficial. We leave the study
of joint CTC/attention modeling on higher re-
sourced MT corpora to future work.
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A Supplementary Information

A.1 Additional Translation Metrics
To supplement our BLEU evaluation in Table 2, we
also measure the translation quality of our models
using Translation Error Rate (TER) (Snover et al.,
2006) and METEOR (Banerjee and Lavie, 2005).
As shown in Table 7, our findings are consistent
across all three metrics for both MT and ST models.

A.2 MuST-C-v1 Back-Compatibility
See Table 9 for results compared to prior works.

A.3 Valid Set performances
Table 8 presents the validation performances for
our ST and MT models.

A.4 Description of Encoder Architectures
LegoNN Encoder (Dalmia et al., 2022) is a stacked
multi-block architecture that was introduced to
encode and re-sample the input sequence into a
sequence of representations of a desired length,
which is typically a factor of the input sequence. It
first encodes the input using transformer encoder
blocks (Vaswani et al., 2017) and then re-encodes
them into a sequence of latent representations us-
ing cross-attention. Starting from a sequence of
learnable positional embeddings (Gehring et al.,
2017), these latent representations are learned us-
ing another stack of transformer encoder layers
with an added cross-attention component over the
input representations in each block.

The Conformer encoder (Gulati et al., 2020) is
a stacked multi-block architecture and has shown
consistent improvement over a wide range of E2E
speech processing applications (Guo et al., 2021).
It includes a multi-head self-attention module, a
convolution module, and a pair of position-wise
feed-forward modules in the Macaron-Net style.
While the self-attention module learns the long-
range global context, the convolution module aims
to model the local feature patterns synchronously.

A.5 Increased Cross-Attentional
Monotonicity Leads to Increased
Multilingual Parameter Sharing

We further examine the source attention parameters
in our All-En models to understand the impact that
the increased monotonicity of decoder attention
(§6.2) has on multilingual parameter sharing. To do
so, we extract sparse subnets for each language pair
following the Lottery Ticket Sparse Fine-Tuning

proposed by Ansell et al. (2022) and compute the
pair-wise sharing across the 6 source languages,
as measured by the count of overlapping param-
eters between subnets. In Figure 4, we show the
relative change (∆%) in multilingual sharing when
using hierarchical encoding compared to the base-
line. The broad increases suggest that the target-
orientation of our encoder reduced the decoder’s
burden of soft-aligning target English outputs to
source languages with varying word-orders, allow-
ing for more efficient allocation of capacity.

A.6 compare_mt. py Length Analysis
As shown in Figure 5, both joint synchronous de-
codings are more robust than pure-attention for
long output lengths across both MT and ST. Input-
synchrony appears particularly more robust in gen-
eration of very long outputs for ST.

A.7 View of Regularized Attention
See Figure 6 for a qualitative example of mono-
tonic source attention patterns (supplementary to
the quantitative monotonicity in Figure 2).

B Reproducibility

B.1 Dataset Descriptions
See Table 10 for dataset descriptions. Data prepa-
ration was done using ESPnet recipes.

B.2 Model Architectures
See Table 11 for model architectures.

B.3 Training/Decoding Hyperparameters
See Tables 12-15 for hyperparameter descriptions.

B.4 Metrics
Sacrebleu signature for all non-Japanese:
BLEU+case.mixed+numrefs.1

+smooth.exp+tok.13a+version.1.5.1

Sacrebleu signature for Japanese:
BLEU+case.mixed+lang.en-ja+numrefs.1

+smooth.exp+tok.ja-mecab-0.996-IPA
+version.1.5.1

For tokenized BLEU in the IWSLT MT datasets
we used mutibleu.perl (Moses-SMT, 2018)

B.5 Computing
ST models were trained on 2 x V100 for 2 days.
MT models were trained on 1 x A6000 for 1 day.
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DECODING IWSLT14 (DE-EN) MUST-C-V2 EN-DE

MODEL NAME METHOD BLEU (↑) TER (↓) METEOR (↑) BLEU (↑) TER (↓) METEOR (↑)

Pure-Attn (Ours) Attn-only 32.8 50.9 29.4 27.8 59.1 38.6

Joint CTC/Attn Attn-only 33.6 50.7 30.0 28.3 58.4 39.2

Joint CTC/Attn Joint I-Sync 33.7 50.6 30.0 29.2 57.8 40.1
Joint CTC/Attn Joint O-Sync 34.1 49.9 30.2 29.2 57.5 40.2

Table 7: Test set performances, as measured by BLEU (↑), TER (↓), and METEOR (↑), of our proposed joint
CTC/Attention models compared to pure-attention baselines.

DECODING IWSLT14 IWSLT14 MUST-C-V2 MUST-C-V2
MODEL NAME METHOD De-En Es-En En-De En-Ja

Pure-Attn (Ours) Attn O-sync 34.1 41.2 28.5 11.3

Joint CTC/Attn Joint I-sync 34.6 42.0 29.0 12.4
Joint CTC/Attn Joint O-sync 35.0 42.3 29.2 12.4

Table 8: Valid set performances, as measured by BLEU (↑).

MUST-C-V1
MODEL NAME En-De

ESPnet-ST1 22.9
Dual-Decoder2 23.6
E2E-ST-TDA3 25.4
Multi-Decoder4 26.4
Pure-Attn (ours) 27.1

Joint CTC/Attn w/ Joint O-Sync 28.2

Table 9: Comparison of our best MuST-C-v1 En-De
Joint CTC/Attn model and our Pure-Attn baseline with
prior works: 1Inaguma et al. (2020), 2Le et al. (2020),
3Du et al. (2022), 4Dalmia et al. (2021)

Dec Src Attn Subnet Sharing Improvements

Figure 4: Improvement of multilingual sharing in
MT/ST decoder source attention parameters when us-
ing joint CTC/Attention vs. attention-only training, as
measured by pair-wise ∆% in sparse subnet overlap.

Figure 5: Compare-mt (Neubig et al., 2019) output
sentence length to BLEU for joint decoding vs pure-
attention models. Model codes: sys1 = Joint Input-Sync,
sys2 = Joint Output-Sync, sys3 = Pure-Attn
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Figure 6: Visualization of source attention patterns produced by pure-attention baseline (top) vs. joint CTC/attention
(bottom) ST models. Qualitative example extracted from the final decoder layer. Irregular patterns are observable in
the pure-attention plots, but not in the joint CTC/attention plots.

Dataset Task Source Lang(s) Target Lang(s) Domain # Train/Valid/Test Utts # Speech Train Hours

IWSLT17 (Cettolo et al., 2012) MT De En TED Talk 160k/7k/7k -
IWSLT17 (Cettolo et al., 2012) MT De Es TED Talk 160k/7k/7k -

MuST-C-v2 (Di Gangi et al., 2019) ASR/ST En De TED Talk 250k/1k/3k 450h
MuST-C-v2 (Di Gangi et al., 2019) ASR/ST En Ja TED Talk 330k/1k/3k 540h

MTedX (Salesky et al., 2021) MT Es, Fr, Pt, It, Ru, El En TED Talk 130k/6k/6k -
MTedX (Salesky et al., 2021) ASR Es, Fr, Pt, It, Ru, El En TED Talk 400k/6k/6k 730h
MTedX (Salesky et al., 2021) ST Es, Fr, Pt, It, Ru, El En TED Talk 130k/6k/6k 250h

EuroParl (Iranzo-Sánchez et al., 2020) MT De En Parliament Speech - /-/2k -
EuroParl (Iranzo-Sánchez et al., 2020) ST En De Parliament Speech -/-/1k -

Table 10: MT/ST/ASR dataset descriptions. Utterance counts are rounded to the nearest thousand. Language codes:
De=German, En=English, Es=Spanish, Ja=Japanese, Fr=French, Pt=Portuguese, It=Italian, Ru=Russian, El=Greek

Model Task # Encoder Layers [S] # Decoder Layers SrcCTC Layer Up/Down-Sample Pre-Train Init Src BPE Size Tgt BPE Size # Params

Pure-Attn MT 12 [6,12,18] 6 - - - 10k (joint) 54M
Joint CTC/Attn MT 18 [6,12,18] 6 6 3x - 10k (joint) 95M

Pure-Attn ST 18 [12, 18] 6 - 1/4x Enc lyr 1-12 from ASR 4k 4k 74M
Joint CTC/Attn ST 18 [12, 18] 6 12 1/4x Enc lyr 1-12 from ASR 4k 4k 72M

Pure-Attn ASR 12 6 - - - 4k 4k 46M

Table 11: MT/ST/ASR model descriptions. The best MT/ST Encoder layers settings were selected over a search
space indicated by S. Parameter counts are rounded to the nearest million. Note that the 12 layer pure-attn model
outperformed the 18 layer version and that the 12 layer joint model still outperformed these baselines.
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Hyperparameter Value

Hidden Dropout 0.3
Attention dropout 0.3
Activation dropout 0.3
LR schedule inv. sqrt. (Vaswani et al., 2017)
Max learning rate best of [1e-3, 3e-3]
Warmup steps 10000
Number of steps 200 epoch
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 1e-4
λ1, λ2 (1, 2)

Table 12: Training Hyperparameters for MT Models.

Hyperparameter Value

Hidden Dropout 0.1
Attention dropout 0.1
Activation dropout 0.1
LR schedule inv. sqrt. (Vaswani et al., 2017)
Max learning rate 0.002
Warmup steps 25000
Number of steps 40 epoch
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 0.0001
λ1, λ2 (2, 5)

Table 13: Training Hyperparameters for ST Models.

Decoding Type Hyperparameter Value

Pure Attn
Max Length Ratio [1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3]
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
Beam Size 5

Joint O-Sync
Max Length Ratio 1
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
CTC Weight 0.3
Beam Size 5

Joint I-Sync

Max Length Ratio 1
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
Blank Penalty [0.5, 0.75, 1.0]
CTC Weight [0.3, 0.5]
Beam Size [10, 30]

Table 14: Decoding Search Space MT Models.

Decoding Type Hyperparameter Value

Pure Attn
Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
Beam Size [10, 30, 50]

Joint O-Sync
Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
CTC Weight [0.3, 0.5]
Beam Size [10, 30, 50]

Joint I-Sync

Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
Blank Penalty 1
CTC Weight [0.3, 0.5]
Beam Size [10, 30, 50]

Table 15: Decoding Search Space ST Models.
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