
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1528–1542
May 2-6, 2023 ©2023 Association for Computational Linguistics

Summarize and Generate to Back-translate:
Unsupervised Translation of Programming Languages

Wasi Uddin Ahmad†, Saikat Chakraborty∗, Baishakhi Ray‡, Kai-Wei Chang†
†University of California, Los Angeles, ∗Microsoft Research, ‡Columbia University

†{wasiahmad,kwchang}@ucla.edu ∗saikatc@microsoft.com ‡rayb@cs.columbia.edu

Abstract

Back-translation is widely known for its effec-
tiveness in neural machine translation when
there is little to no parallel data. In this ap-
proach, a source-to-target model is coupled
with a target-to-source model trained in par-
allel. The target-to-source model generates
noisy sources, while the source-to-target model
is trained to reconstruct the targets and vice
versa. Recent developments of multilingual
pre-trained sequence-to-sequence models for
programming languages have been very effec-
tive for a broad spectrum of downstream soft-
ware engineering tasks. Hence, training them
to build programming language translation sys-
tems via back-translation is compelling. How-
ever, these models cannot be further trained via
back-translation since they learn to output se-
quences in the same language as the inputs dur-
ing pre-training. As an alternative, we propose
performing back-translation via code summa-
rization and generation. In code summarization,
a model learns to generate natural language
(NL) summaries given code snippets. In code
generation, the model learns to do the oppo-
site. Therefore, target-to-source generation in
back-translation can be viewed as a target-to-
NL-to-source generation. We show that our pro-
posed approach performs competitively with
state-of-the-art methods. We have made the
code publicly available.1

1 Introduction

The choice of programming language (PL) in soft-
ware development depends on the requirement of
the software and the available features of a partic-
ular PL. In modern API-driven software develop-
ment, language choice often depends on the avail-
ability of libraries and APIs. The advent of newer
and richer programming languages often requires
legacy software to be translated into modernized
PLs. In theory, modern programming languages’

1https://github.com/wasiahmad/SumGenToBT

Input in Java
1 p u b l i c s t a t i c boolean generator(

PsiBuilder b, i n t l){
2 boolean r = f a l s e ;
3 i f (! recursion_guard(b, l)) re turn r;
4 r = generator_0(b, l + 1);
5 i f (!r) re turn generator_1(b, l + 1);
6 }

(1) Java to Python Generation
1 p u b l i c s t a t i c boolean generator(

PsiBuilder b, i n t l){
2 boolean r = f a l s e ;
3 i f (! recursion_guard(b, l)) re turn r;
4 i f (! generator_0(b, l)) re turn r;
5 r = generator_0(b, l + 1);
6 i f (!r) re turn generator_1(b, l + 1);
7 }

(2) Java Code to NL Summary

guard is used to determine if a generator is already
defined .

(3) NL Summary to Python Code
1 def is_generator(self , name):
2 i f name in self._generators:
3 re turn True
4 i f name in self._generators[name]:
5 re turn True
6 re turn False

Figure 1: Although PLBART is asked to generate in
Python given input in Java (1), it generates in Java (due
to its pre-training objective). In contrast, PLBART, fine-
tuned on code summarization and generation, generates
“noisy” translations (as in (2, 3)).

“Turing Completeness” allows rule-based transla-
tion of programs from one PL to another. The rule-
based translation may require an extensive number
of custom-written transformation rules and could
end up producing very unreadable source code. In
addition, such a translation could entail translating
the entire library, even if a library implementing
similar functionality is available in the target PL.

Aligning libraries and APIs across different PLs
is a non-trivial task. Recent progress in Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2015;
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(a) PLBART (b) PLBART + S&G

Figure 2: T-SNE plot of function embeddings of Java and Python functions. Figure 2a shows the embedding
generated by the PLBART model. Figure 2b are the generated embedding when the PLBART is finetuned to jointly
summarize code to NL and generate code from NL (PLBART + S&G). While PLBART clusters programs from
each PLs, parallel programs in different PLs are brought closer to each other by PLBART + S&G.

Vaswani et al., 2017) leveraging pre-trained mod-
els (Feng et al., 2020a; Guo et al., 2021; Roziere
et al., 2021; Ding et al., 2022; Ahmad et al., 2021a;
Wang et al., 2021) could be a possible way to learn
the alignment between PLs and translate source
code across languages.

A significant challenge in supervised learning
for NMT is the need for large-scale parallel corpora.
For instance, if we are planning to train a translator
for Java to Python translation, we need a consider-
able number of the same program (i.e., exhibiting
the same semantic behavior) in both languages.
Availability of such parallel datasets is a vital chal-
lenge in programming language translation (Chen
et al., 2018). Back-Translation (BT) (Edunov et al.,
2018; Lachaux et al., 2020) is a clever way to learn
alignments across different languages. While BT
demonstrates success in NMT, those require either
(i.) small (perhaps noisy) parallel datasets or (ii.) a
model with some capacity of cross-lingual genera-
tion - to kickstart the BT-based learning process.

In this work, we investigate the suitability of
the multilingual Pre-trained Sequence-to-Sequence
Model (PSM) for unsupervised programming lan-
guage translation via BT. In particular, we assume
a use-case scenario where no parallel data is avail-
able. Without much of a surprise, we empirically
found that, while these PSMs are good at generat-
ing code in each language, they exhibit very little
to no knowledge about cross-lingual generation
since such PSMs are typically trained to recon-
struct code sequences from noisy inputs. For exam-
ple, when we provide the input code in Figure 1 to
PLBART (Ahmad et al., 2021a) and ask to generate
Python code without training, it generates a slight
variation of the input Java code, showing its lack

of knowledge about cross-lingual generation.
To endow such PSMs with knowledge about

cross-lingual generation, we propose using a third
language (i.e., English). Since a large quantity of
monolingual code corpora comes with documenta-
tion, which supposedly describes what the source
code is doing, we train a Summarize-and-Generate
(S&G) model that can generate pseudo-parallel
code sequences. Figure 1 shows PLBART’s behav-
ior when it is further trained via S&G. First, given
the Java code, it generates an NL summary (fig-
ure 1-2) and subsequently generates Python Code
(figure 1-3). We empirically show that, even if such
S&G model generates noisy parallel sequences, it
allows us to employ PSMs in the BT-based training
to learn programming language translation.

In summary, we present a Summarize-and-
Generate (S&G) based approach to enable unsuper-
vised program translation training of PLBART via
Back-Translation (BT). Experiment results show
that our proposed approach makes PLBART train-
able via BT and performs competitively with state-
of-the-art program translation models.

2 Motivation

Recent years saw several Pre-trained Sequence-
to-Sequence models (PSM) (Ahmad et al., 2021a;
Wang et al., 2021). These models are pre-trained on
hundreds of Gigabytes of source code. Thus, in this
work, we are motivated to investigate their adoption
in learning program translation via back-translation.
To understand such feasibility, we investigate the
program representations generated by the PSM. As
a case study, we chose PLBART (Ahmad et al.,
2021a) and evaluated its multilingual embeddings
as suggested in Artetxe and Schwenk (2019). We
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public void testFile(){
    println("");
    ...
}

def test_file():
    print("")
    ...
    pass

Test whether a file exists or not

Java Code Python Code

Natural Language

Generation Task (G)
Summarization Task (S)

(a) Step1: Supervised training of PLBART on Code Summarization and Generation (S&G).

def nextPowerOf2(n):
    count = 0
    if (n and not
        (n & (n - 1))):
        return n
    while(n != 0):
        n >>= 1
        count += 1
    return 1 << count

int nextPowerOf2(int n){
    int count = 0;
    if (n>0 && 
        (n & (n-1)) == 0)
        return n;
    while(n != 0)
        n >>= 1; count += 1;
    return 1 << count;
}

Java Code (Source) Python Code (target)

Forward Translation (Training) Backward Translation with S&G Backward Translation with BT

(b) Step2: Unsupervised training of PLBART via Backtranslation (BT). In the first m training steps (out of total N
steps), PLBART generates natural language (NL) summary of the code in target language (Python in this example)
and generates the code in source language (Java in this example) from the NL summary. In the remaining N −m
steps, PLBART directly generates the code in source language from the code in target language.

Figure 3: Overview of our proposed framework to train PLBART in two sequential steps.

find the parallel Java function for each of the 948
Python functions using the parallel dataset pro-
posed in Lachaux et al. (2020). We find the nearest
neighbor using cosine similarity between function
embeddings and calculate the error rate. Unsur-
prisingly, PLBART performs poorly in function
retrieval with an 87.5% error rate.

In comparison, we fine-tune PLBART jointly on
code summarization and generation in Java and
Python. Repeating the experiment of function re-
trieval, we find that fine-tuned PLBART’s error rate
drops to 23.7%. To visually illustrate the embed-
dings produced by PLBART and its fine-tuned vari-
ant, we provide a T-SNE plot of 8 sample functions’
embedding in Figure 2. We see the functions that
belong to the same language are clustered together
while the same functions in two different languages
are far apart from each other (see Figure 2a).

In contrast, the fine-tuned PLBART breaks up
the intra-language clusters and brings functions
in different languages close to each other in the
embedding space (see Figure 2b). These results
motivate us to initialize the translation models with
fine-tuned PLBART on code summarization and

generation for back-translation as it learned some
alignment across programming languages.

3 Approach

Sequence-to-sequence models, such as PLBART
(Ahmad et al., 2021a), CodeT5 (Wang et al., 2021),
SPT-Code (Niu et al., 2022) map source code
sequences into a shared multilingual space by
pre-training on multiple programming languages
jointly using unlabeled data (e.g., source code from
Github). The pre-training objective of these models
is either denoising autoencoding (DAE) or fill-in-
the-blank, where the models reconstruct the orig-
inal code snippet or predict the missing code to-
kens given a corrupted code snippet. Although pre-
trained jointly on many languages, these models
only learn to generate in the same language as input.
As a result, these models are not trainable via back-
translation (BT) to learn programming language
translation in an unsupervised fashion. As an alter-
native, we propose translating to and from natural
language to perform back-translation between two
programming languages. We refer to translating to
and from natural language as code summarization
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and code generation, respectively. Our proposal is
motivated based on the availability of bimodal data,
source code, and their summaries that are used to
train code summarization and generation models.

3.1 Code Summarization and Generation
Source code documentation (e.g., docstring or com-
ment) written by software developers is available
along with source code on a large scale. Such
documentation has been the key source to form
code summarization datasets (Wan et al., 2018;
Hu et al., 2018; LeClair and McMillan, 2019; Hu-
sain et al., 2019), and to study natural language
(NL) to code generation (Parvez et al., 2021). It
is tangible that we can use a code summarization
and generation model to translate programming
languages. Such a model would first generate an
NL summary from an input code in the source lan-
guage and then generate code from the previously
generated NL summary in the target language. As
we show in the evaluation, such an approach does
not work well in practice (see table 2); however,
code summarization and generation models are vi-
able proxies to generate noisy translations. This
enables us to train PLBART, to begin with generat-
ing noisy translations, and further learn to improve
in a self-supervised fashion when trained via back-
translation. Formally, we jointly train PLBART in
a supervised setting to learn code summarization
(S) and generation (G):

S = TRAINCode→Summary (Pc,s)
G = TRAINSummary→Code (Pc,s)

(1)

where Pc,s is estimated using the code-to-text
benchmark from CodeXGlue (Lu et al., 2021). We
follow Tang et al. (2021) to perform multilingual
fine-tuning of PLBART (in Java and Python) to
learn S and G.

3.2 Back-translation
Back-translation (BT) is one of the most popular
ways for unsupervised machine translation (Artetxe
et al., 2018b; Lample et al., 2018a,b). In this ap-
proach, we leverage monolingual data in an un-
supervised fashion. BT jointly trains a source-to-
target model coupled with a backward target-to-
source model. The target-to-source model trans-
lates target sequences into the source language, pro-
ducing noisy sources corresponding to the ground
truth target sequences. The source-to-target model
is then trained to generate the targets from the noisy
sources and vice versa. The two models are trained

in parallel until convergence. This training proce-
dure is widely known as online back-translation
and is the focus of this work.

Back-translation uses a target-to-source model to
generate noisy sources and trains a source-to-target
model to reconstruct the targets. Specifically, in
each step k (a mini-batch update), back-translation
performs the following:

P(f)
k = {(x, fk−1(x))|x ∈ Dsource}
bk = TRAIN target→source

(
P(f)
k

)

P(b)
k =

{
(bk(y), y) |y ∈ Dtarget

}

fk = TRAIN source→target
(
P(b)
k

)
.

(2)

Here, Dsource, Dtarget represents unlabeled data in
source and target languages and TRAIN indicates
standard sequence-to-sequence training.

Generally, the training via back-translation starts
from a forward (f0) and a backward (b0) model that
is trained using parallel data (small gold-standard
or large-scale but noisy). Then an extensive collec-
tion of unlabeled data is used to train the translation
models. In this work, we assume there is no paral-
lel data available across programming languages.
We initialize the forward and backward model with
the pre-trained language model, PLBART. As men-
tioned before, PLBART cannot generate code in a
language different from the input (not even a noisy
code) (for example, figure 1-1). Therefore, we pro-
pose jointly fine-tuning PLBART on code summa-
rization and generation on multiple programming
languages in a supervised setting. Then use the
resulting model to initialize the forward and back-
ward model (f0, b0) for back-translation.

3.3 Summarize–Generate to Back-translate

The recent advancements of pre-trained sequence-
to-sequence models on programming languages
enables us to use them in initializing the source-to-
target (f ) and target-to-source (b) models for back-
translation. Presumably, such pre-trained models
should facilitate the learning process during train-
ing. Yet, their pre-training objective – i.e., recon-
struction of original input from a noisy source lim-
its their ability to generate code snippets across
languages (as shown in Figure 1). For example,
PLBART as f(·) and b(·) would reconstruct the
input, resulting in fk−1(x) ≈ x and bk(y) ≈ y. As
a result, the models will learn to merely copy the
input sequences rather than translate them.

To this end, we propose to make use of available
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Algorithm 1 Training Procedure
Input: Monolingual (unlabeled) data Dsource and
Dtarget; number of initial steps m; number of total
steps I; code summarizer S(·, ·); code generator
G(·, ·); parameters θ to initialize the forward and
backward translation models f(·, ·) and b(·, ·).
Output: Final model parameters θ.

1: for k = 0, · · · , I do
2: y ← (ys ∼ Dsource) ∪ (yt ∼ Dtarget)
3: if k ≤ m then
4: xnl ∼ S(·|y) ▷ code-to-summary
5: x̂ ∼ G(·|xnl) ▷ summary-to-code
6: else
7: x̂← (xs ∼ b(·|yt)) ∪ (xt ∼ f(·|ys))
8: Update θ by maximizing log-likelihood of

f(x̂s, yt) and b(x̂t, ys)

parallel data between programming and natural lan-
guages to fine-tune PLBART and then use its pa-
rameters to initialize source-to-target (f ) and target-
to-source (b) models for back-translation. Con-
sequently, we revise the back-translation training
method outlined in Eq. (2) to follow a two-step
generation process to perform back-translation:
code-to-summary generation in natural language
followed by summary-to-code generation in the
source language. Formally, the first m steps (while
k ≤ m) of back-translation is performed as:

P(f)
k = {(x,G (S (x))) |x ∈ Dsource}
P(b)
k =

{
(G (S (y)), y) |y ∈ Dtarget

}
.

(3)

We find the noisy parallel sequences2 generated
via summarization and generation commences the
learning process. The overall idea of our proposed
framework is illustrated in Figure 3 and the Al-
gorithm 1 describes the training procedure. Note
that we find it is sufficient to apply our proposed
summarization-generation based back-translation
only for the first m steps as the source-to-target and
target-to-source models gradually learn to translate,
the standard back-translation training reinstated.

4 Experiment Setup

4.1 Models and Baselines

Our model Our proposed approach can be ap-
plied to pre-trained sequence-to-sequence mod-

2The output sequences are still noisy since the code sum-
marization and generation models are not highly accurate
although trained in a supervised fashion.

els, e.g., PLBART (Ahmad et al., 2021a) and
CodeT5 (Wang et al., 2021). In this work, we
chose PLBART3 to perform experiments and show
the effectiveness of our proposed framework.

Baseline Models

We compare our proposed approach applied to
PLBART with the following existing approaches.

j2py is a framework that translates Java source
code to Python.4 It follows handwritten rules man-
ually built using expert knowledge.

Summarize-and-Generate (S&G) performs
code-to-code translation via two steps, code-to-
summary and summary-to-code generation. We
evaluate the S&G model (as in Eq. (1)) that is used
to perform code summarization and generation in
our proposed framework to train PLBART via BT.

TransCoder is a neural translation model for
programming languages (Lachaux et al., 2020).
TransCoder is developed by pretraining Trans-
former (Vaswani et al., 2017) via masked language
modeling (MLM) objective (Devlin et al., 2019)
on monolingual source code datasets. In a second
step, TransCoder is trained via denoising autoen-
coding (DAE) and BT. In this work, we consider
TransCoder as the primary baseline.5

DOBF Roziere et al. (2021) proposed a pretrain-
ing objective, DOBF, that leverages the structural
aspects of programming languages. According
to this pretraining paradigm, the identifiers (class,
function, and variable names) in code snippets are
obfuscated, and a model is trained to recover the
original names. DOBF shares the same neural ar-
chitecture as TransCoder. We report the evaluation
performances of TransCoder and DOBF from the
official code release by Lachaux et al. (2020).6

4.2 Evaluation Dataset and Metrics

Evaluation Dataset Lachaux et al. (2020) pro-
posed an evaluation dataset composed of parallel
functions in Java, Python, and C++ languages. The
dataset consists of 464 Java to Python and 482
Python to Java test examples, with 10 unit test
cases accompanying each.

3Since its pretraining implementation is publicly available
at https://github.com/wasiahmad/PLBART.

4https://github.com/natural/java2python
5We compare TransCoder and PLBART in terms of model

architecture and training setup in the Appendix D.
6https://github.com/facebookresearch/CodeGen/

blob/main/docs/transcoder.md#results).
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Java Python
Github - unimodal data
Nb of functions 7.2 M 8.3 M
Nb of tokens 752 M 665 M
CodeNet - unimodal data
Nb of functions 0.42 M 0.15 M
Nb of tokens 47.3 M 17.0 M
CodeXGlue - bimodal data
Nb of functions 164,923 251,818
Nb of tokens 21.2 M 44.3 M

Table 1: Statistics of the data used to train PLBART
at different stages in this work. Bimodal data refers to
parallel function-summary pairs, while unimodal data
refers to monolingual (and unparallel) functions.

Evaluation Metrics

BLEU measures n-gram overlap between a gen-
erated translation and a collection of reference
translations (Papineni et al., 2002).

Exact Match (EM) represents the percentage
of generated translations exactly match with the
collection of reference translations.

CodeBLEU measures grammatical and logical
correctness in addition to n-gram overlap between
generated and reference translations (Ren et al.,
2020). CodeBLEU is defined as a weighted sum
of n-gram match, weighted n-gram match,7 syntax
match (based on AST), and data-flow match.

Computational Accuracy (CA), proposed by
Lachaux et al. (2020), assess functional correct-
ness; a translated code is considered correct if it
passes a set of unit tests. It evaluates if a gener-
ated function outputs the same as the reference
when given the same set of inputs. This metric
overcomes the shortcoming of match-based met-
rics (e.g., BLEU, CodeBLEU) by accounting for
the program-execution behavior (Lachaux et al.,
2020; Chen et al., 2021).

4.3 Training Datasets and Preprocessing

Code Summarization and Generation Lu et al.
(2021) curated a code summarization dataset con-
sisting of code and summary pairs based on the
CodeSearchNet dataset (Husain et al., 2019). We
use this dataset in Java and Python program-
ming languages to train the code-to-summary and
summary-to-code generation models.

7Different weights are assigned to n-grams such that the
keywords (e.g., for, while) have higher weights

Back-translation (BT) For BT training (as dis-
cussed in § 3.3), we use the GitHub public dataset
available on Google BigQuery (Hoffa, 2016).8 We
first deduplicate9 the GitHub dataset at the pro-
gram level, extract the functions, and finally per-
form another deduplication at the function level.
Note that the Github dataset is composed of source
code that covers a wide variety of programming
topics (as they come from various projects). In
contrast, the evaluation dataset is composed of pro-
gramming problems covering basic data structure
and algorithmic concepts. Therefore, to investigate
the impact of data on BT training, we alternatively
chose unparallel code samples in Java and Python
from CodeNet (Puri et al., 2021). The CodeNet
dataset is collected from two online judge websites,
AIZU Online Judge and AtCoder, and composed
of submissions for 4053 problems. We use the
deduplicated accepted solutions to the problems
for BT training. Presumably, CodeNet and the eval-
uation dataset (Lachaux et al., 2020) have a similar
nature that should positively impact downstream
translation performance.

Preprocessing We use tree_sitter10 for tok-
enizing Java functions and the tokenizer of the stan-
dard library for Python.11 We extract standalone
functions12 from the BT training datasets follow-
ing the function extraction technique from Lachaux
et al. (2020). Considering our computational bud-
get, we filter the standalone functions exceeding a
maximum length of 256 to cope with our computa-
tional resources. The statistics of the preprocessed
datasets are presented in Table 1.

4.4 Implementation Details

We jointly train PLBART on code summarization
and generation in Java and Python using the au-
thors’ provided code.13 Subsequently, we train
PLBART via back-translation as described in Algo-
rithm 1. We set I = 10, 000 and tuned m = 200.14

We train PLBART using 8 Nvidia GeForce RTX

8https://console.cloud.google.com/marketplace/
product/github/github-repos

9We used a hash-based data deduplication method.
10https://github.com/tree-sitter
11https://docs.python.org/3/library/tokenize.

html
12Standalone functions can be used without instantiating

a class. In Java, this corresponds to static methods, and in
Python, it corresponds to functions outside classes.

13https://github.com/wasiahmad/PLBART/tree/
main/multilingual

14We tuned m in the range [100, 1000] with 100 steps.

1533

https://console.cloud.google.com/marketplace/product/github/github-repos
https://console.cloud.google.com/marketplace/product/github/github-repos
https://github.com/tree-sitter
https://docs.python.org/3/library/tokenize.html
https://docs.python.org/3/library/tokenize.html
https://github.com/wasiahmad/PLBART/tree/main/multilingual
https://github.com/wasiahmad/PLBART/tree/main/multilingual


Models
Java→ Python Python→ Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
j2py* - - - 38.3 - - - -
TransCoder∗ 68.1 3.7 - 46.9 64.6 0.8 - 32.6
TransCoder w/ DOBF∗ - - - 49.2 - - - 40.4
S&G (1) 7.6 0.0 15.8 0.2 12.4 0 16.3 0.2
PLBART (this work)
trained via BT 31.2 0.0 36.6 0.0 31.7 0.0 32.1 0.0
trained via BT (via S&G) 64.2 2.8 63.4 40.4 64.1 2.1 65.9 31.9

Table 2: Evaluation results of the baselines models and our proposed framework using greedy decoding. ∗ indicates
the updated scores reported in the official code repository of Lachaux et al. (2020). Note that, TransCoder and
PLBART models have 312M and 140M parameters, respectively.

2080 Ti GPUs, and the effective batch size is main-
tained at 1024 instances at both training stages.
We optimize PLBART with the Adam optimizer
(Kingma and Ba, 2015), a learning rate of 10e-4,
and use a polynomial learning rate decay schedul-
ing. The best models are selected based on the
validation BLEU scores. We implement our ap-
proach in Fairseq (Ott et al., 2019) and use float16
operations to speed up training.
Decoding During inference, we use beam search
decoding (Koen, 2004) to generate multiple trans-
lations using PLBART. We chose greedy search
(Beam 1) as the default decoding scheme for valida-
tion and evaluation. However, following Lachaux
et al. (2020), we report two sets of results for the
computational accuracy (CA) metric: CA@n B=n,
the percentage of functions with at least one correct
translation in the beam (of size n), and CA@1 B=n
the percentage of functions where the hypothesis
in the beam with the highest log-probability is a
correct translation.

5 Results and Analysis

5.1 Main Result
Table 2 shows the performance of our proposed
approach and the baseline models on both Java
to Python and Python to Java translation. We be-
gin by comparing PLBART directly used in back-
translation (BT) training with our proposed ap-
proach (the last block in Table 2). Since PLBART
does not know to generate across languages, when
the model is trained via BT, it only learns to copy
the input sources. As a result, PLBART scores
0% EM and 0% CA, while 30+ BLEU and Code-
BLEU scores. In contrast, following our pro-
posed approach of summarizing and generating to
back-translate, PLBART trained via BT (via S&G)

Models TransCoder PLBART
Java→ Python
CA@1 B=1 46.9 40.4
CA@1 B=10 48.8 41.8
CA@5 B=5 60.0 47.7
CA@10 B=10 64.4 50.3
Python→ Java
CA@1 B=1 32.6 31.9
CA@1 B=10 36.0 34.5
CA@5 B=5 44.3 45.1
CA@10 B=10 51.1 50.0

Table 3: Computational accuracy (CA@m) with beam
search decoding and comparison between TransCoder
and PLBART. TransCoder’s performances are reported
from Lachaux et al. (2020). The value B indicates the
beam size. CA@m B=n means that we use beam de-
coding to generate n translations, and select the top m
translations based on their log-probability scores.

achieves 40.4% and 31.9% CA scores. This perfor-
mance is competitive to state-of-the-art translation
system, TransCoder.15 We compare them using
beam search decoding in Table 3.

Overall, the experimental results confirm our
conjecture that pre-trained sequence-to-sequence
models cannot be effectively used in BT training;
however, training via S&G empowers them to gen-
erate across languages and be further trained via
BT to learn programming language translation.

5.2 Analysis

Summarize and generate to create parallel data
Our proposed approach generates parallel code se-
quences on the fly (online) for training. An alter-

15Note that, while comparing PLBART with TransCoder
on the translation performance, their differences (shown in
Table 9) should be taken into consideration.
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Approach
Java to Python Python to Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
Warm-start w/ PD 60.5 2.8 61.1 41.9 62.6 2.4 65.9 32.0
Proposed approach 64.2 2.8 63.4 40.4 64.1 2.1 65.9 31.9

Table 4: Comparison between PLBART warm-started using parallel data (PD) and our approach to summarize and
generate to back-translate on the fly during the initial steps of back-translation training.

Data Source
Java to Python Python to Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
Github 64.2 2.8 63.4 40.4 64.1 2.1 65.9 31.9
CodeNet 65.6 3.1 64.7 50.9 65.1 2.5 68.5 46.5

Table 5: PLBART evaluation results when our proposed framework uses data from Github (available via BigQuery
(Hoffa, 2016)) and competitive programming sites (available via CodeNet (Puri et al., 2021)).

native to our approach is to use a code summariza-
tion and generation model to create parallel code
sequences (offline) and warm-start PLBART for
back-translation-based training. We compare these
two approaches in Table 4, and the results show that
both approaches perform comparably. However, it
is essential to note that the online setting gives us
flexibility as we can tune the number of initial steps
(m in Algorithm 1). In contrast, the offline setting
requires generating a sufficiently large number of
parallel code sequences for effective training.

Impact of in-domain training data The evalu-
ation dataset comprises solutions to programming
problems involving data structures and algorithm
concepts. While Github offers large-scale unla-
beled data, most of its code belongs to software
projects that use APIs and advanced functionalities.
Therefore, we utilize an alternative dataset called
CodeNet collected from two online judge websites.
We refer to this dataset as in-domain since its nature
aligns with the evaluation dataset (data structure
and algorithm focused problems aggregated from
GeeksforGeeks). We compare in-domain data us-
age with Github data on BT-based training. The re-
sults in Table 5 show that the use of in-domain data
significantly boosts the performance in both trans-
lation directions. A detailed error analysis reveals
that such a performance boost is due to a reduction
in TypeError. We speculate that in-domain data
have similarities in the data type usage that helps
the model. We present further error analysis and
qualitative examples in the Appendix.

6 Related Work

Programming Language Translation Translat-
ing programs or source code across different pro-

gramming languages (PL) requires a profound un-
derstanding of the PLs. Having strictly defined
syntax and semantics, PLs are suitable for phrase-
based statistical machine translation (Nguyen et al.,
2013; Karaivanov et al., 2014; Aggarwal et al.,
2015). Chen et al. (2018) introduced a tree-to-tree
machine translation to translate programs and to
learn the syntactic alignment between source and
target PL. Recently proposed pre-trained program-
ming language models showed promising results
in translating programs across PLs (Feng et al.,
2020b; Guo et al., 2021; Ahmad et al., 2021a,b).
However, these approaches require a set of parallel
programs to train the encoder-decoder model.

Recently proposed Transcoder (Lachaux et al.,
2020) shows initial success results in unsupervised
program translation, eliminating the requirement
of bi-modal data. They achieve such jointly train-
ing a model using XLM (Conneau and Lample,
2019), Denoising Auto Encoding (DAE) (Vincent
et al., 2008), and Back-Translation(BT) (Lample
et al., 2018a). This work empirically investigated
the suitability of adopting BT to train existing pre-
trained encoder-decoder models and proposed an
alternative via summarization and generation.

Unsupervised Machine Translation via Back–
translation Gathering sufficiently large parallel
corpora has been a significant challenge for Ma-
chine Translation (MT) (Guzmán et al., 2019). Sev-
eral research efforts are invested in learning MT
using monolingual data (Artetxe et al., 2018a,b;
Lachaux et al., 2020) to solve this problem. For
example, Gulcehre et al. (2015) proposed integrat-
ing a Language model into the decoder. He et al.
(2016) proposed Neural MT (NMT) as a bidirec-
tional and dual learning task. More recent ad-
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vancements in unsupervised MT leverages back-
translation (BT) (Sennrich et al., 2016; Lample
et al., 2018a,b). In back-translation, the target-to-
source model generates noisy sources given tar-
get sequences and then trains the source-to-target
model to reconstruct the targets and vice versa.
While BT has been widely adopted for unsuper-
vised NMT, it is used in other applications (Zhu
et al., 2017; Hoffman et al., 2018; Shen et al., 2017;
Yang et al., 2018; Zhang et al., 2019).

7 Conclusion

In this research, we show that pre-trained sequence-
to-sequence models (e.g., PLBART) are not suit-
able for direct adaptation via back-translation to
learn to translate. To address the issue, we propose
to use code summarization and generation as an al-
ternative to performing back-translation. We show
that our proposed approach turns PLBART into a
translation model that performs competitively to
existing unsupervised translation models.

Limitations

One of the risks of using our developed translation
model is that we used the Github dataset for train-
ing that may contain information that uniquely iden-
tifies an individual or offensive content. Since we
are developing the translation model for research
purposes only, we believe our usage of the Github
data does not violate their licensing terms and con-
ditions. While we do not present it as a justification,
the PLBART model was pre-trained on the Github
data that may include sensitive information. As
we converted PLBART into a programming lan-
guage translation model, it is unlikely to generate
sensitive information unless it is provided such in-
formation as input. However, we should be careful
while using translation models trained using unfil-
tered data. All the experiments performed in this
work are based only on one seed. Therefore, using
other random seeds may lead to results that could
be different from ours.

Ethics Statement

Training data and its risks We use the GitHub
public dataset available on Google BigQuery fil-
tered to keep only projects with open-source li-
censes.16 While we do not perform preprocessing
that would eliminate any personally identifiable

16We select the open-source licenses: ‘apache-2.0’, ‘mit’,
‘gpl-2.0’, ‘gpl-3.0’, ‘bsd-2-clause’, ‘bsd-3-clause’.

information or offensive content, we remove nat-
ural language comments that presumably reduce
toxic content. Nonetheless, using code language
models (LMs) comes with certain risks, e.g., gen-
erating biased, toxic, and vulnerable code. Chen
et al. (2021) discussed the broader impact and risks
of code LMs (Section 7). We should keep those
factors to ensure the responsible use of code LMs.
Carbon Footprint We avoided using large mod-
els, reducing their environmental impacts. We train
PLBART-base model on summarization-generation
and backtranslation for a maximum of 10k steps on
8 RTX 2080 Ti GPUs that took 1-2 days. There-
fore, the training would emit approximately 15kg
of carbon into the environment.17 No model fine-
tuning is performed in this work.
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Supplementary Material: Appendices

TransCoder PLBART
Java→ Python
#Tests 464 464
Error 149 146
Failure 93 123
Success 218 188

EM 17 24
Timeout 4 7
Python→ Java
#Tests 482 482
Error 201 212
Failure 118 108
Success 157 154

EM 6 2
Timeout 6 8

Table 6: Detailed results of computational accuracy
using greedy decoding for Java↔ Python translation.

A Analysis of Computational Accuracy

Table 6 shows the breakdown of computational
accuracies for Java-to-Python and Python-to-Java
translation for TransCoder and our proposed ap-
proach using PLBART. We execute the generated
function and match the output w.r.t. the expected
output. TransCoder results in 149 error cases,
93 failure cases, and 218 success cases in Java-
to-Python translation, with 17 solutions matching
the ground truth. In contrast, PLBART results in
146 error cases, 123 failure cases, and 188 success
cases. Out of these 188 successes in PLBART, 24
solutions exactly match the target solution.

For Python-Java translation, TransCoder results
in 201 errors, 118 failures, and 157 successes, out
of which 6 are an exact match. On the other hand,
in the case of PLBART, there are 212 error cases,
108 failure cases, and 154 success cases, out of
which two exactly match the target solution. Per-
forming human study to understand why translated
functions fail test cases would facilitate model com-
parisons, and we leave it as future work.

B Error Analysis

We further analyze the error cases for TransCoder
and our proposed approach using PLBART. Since
Python is an interpreted language, syntactic and
semantic errors are caught at runtime. Thus, we
categorize all errors for Java-to-Python translation

Error Category TransCoder PLBART

#Errors (Java→ Python) 149 146

Compilation - -

Runtime 149 146
TypeError 47 61
IndexError 18 20
NameError 17 16
ValueError 11 15
UnboundLocalError 13 11
Others 17 14
SyntaxError 26 9

#Errors (Python→ Java) 201 212

Compilation 151 180
TypeError 89 108
CantFindSymbol 23 30
SyntaxError 14 25
BadOperand 15 12
Others 10 5

Runtime 50 27
IndexOutOfBoundsE. 40 15
NumberFormatE. 5 6
NullPointerE. 2 3
Others 3 3

Table 7: Category of errors made by the TransCoder
and PLBART translation models. The error categories
are sorted based on the PLBART’s error count on the
respective category. In Python → Java runtime error
categories, “E.” stands for “Exception”.

as runtime errors. Table 7 shows the errors in
both Java-to-Python and Python-to-Java transla-
tion. While PLBART is susceptible to TypeError,
TransCoder is disproportionately susceptible to
SyntaxError. In the case of Python-to-Java trans-
lation, PLBART exhibits more Compilation er-
rors, but TransCoder exhibits more Runtime er-
rors. The most common compilation error type in
TransCoder and PLBART is TypeError. The most
common runtime error in Python-to-Java transla-
tion is InderOutOfBoundException for both mod-
els, where TransCoder exhibits more than twice the
number of such errors in PLBART.

Finally, we identified the top five error cate-
gories (which account for 123 errors out of 146)
exhibited by PLBART in Java-to-Python transla-
tion and analyzed the error messages. In most
cases, TypeError and ValueError are due to a
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Error Category Count

Type Error 61
list indices must be integers or slices, not A 18
A object does not support item assignment 13
A object cannot be interpreted as an integer 8
unsupported/bad operand type(s) 10
int object is not iterable/callable/subscriptable 6
Others 6

Index Error 20
B index out of range 19
others 1

Name Error 16
name C is not defined 16

Value Error 15
not enough values to unpack 7
too many values to unpack 3
the truth value of an array with more than one element is ambiguous 3
others 2

Unbound Local Error 11
local variable D referenced before assignment 11

Table 8: Analyzing the five most frequent error cases (123 out of 146) encountered in PLBART generated Java to
Python translation. A and B indicate {bool, int, tuple, str, range} and {string, list}, respectively. C and D indicate
identifier (class, function, variable) names.

Input function in Java

1 s t a t i c i n t sortedCount ( i n t mat[][],
2 i n t r, i n t c){
3 i n t result = 0;
4 f o r ( i n t i = 0; i < r; i++){
5 i n t j;
6 f o r (j = 0; j < c - 1; j++)
7 i f (mat[i][j + 1] <= mat[i][j])
8 break;
9 i f (j == c - 1) result ++;

10 }
11 f o r ( i n t i = 0; i < r; i++){
12 i n t j;
13 f o r (j = c - 1; j > 0; j--)
14 i f (mat[i][j - 1] <= mat[i][j])
15 break;
16 i f (c > 1 && j == 0) result ++;
17 }
18 re turn result;
19 }

Translated function in Python

1 def s o r t e d _ c o u n t (mat , r, c):
2 result = 0
3 f o r i in range(r):
4 j = 0
5 f o r j in range(c - 1):
6 i f mat[i][j + 1] <= mat[i][j]:
7 break
8 i f j == c - 1:
9 result += 1

10 f o r i in range(r):
11 j = c - 1
12 f o r j in range(c - 1):
13 i f mat[i][j - 1] <= mat[i][j]:
14 break
15 i f c > 1 and j == 0:
16 result += 1
17 re turn result

Figure 4: An example of Java to Python translation by PLBART that passes 2 out of 10 unit test cases. Line no. 13
(marked in green) in the Java function is incorrectly translated in python (line no. 12, marked in red). Replacing the
range function parameter “(c-1)” by “(c - 1, 0, -1)” would make the translated function pass all the test cases.

mismatch in the underlying data type of variable.
Table 8 shows the detailed statistics of different
error types, sub-types, and their frequencies. As
mentioned earlier, training using in-domain data

collected from CodeNet (Puri et al., 2021) signif-
icantly reduces TypeError. We hypothesize that
in-domain data have similarities in the data type
usage that helps the model improve.
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TransCoder PLBART
#layers (encoder) 6 6
#layers (decoder) 6 6
#heads 8 12
Model dim 1024 768
Vocab size 64,000 50,000
Total parameters 312 M 140 M
Stage1: Pre-training
Objective MLM DAE
Total tokens 920 B 87 B
Token types BPE Sentencepiece
Languages Java, Python, C++ Java, Python, English
Stage2: Training
Objective DAE+BT BT
Total tokens 625 M 430 M
Token types BPE Sentencepiece
Languages Java, Python, C++ Java, Python

Table 9: TransCoder vs. PLBART.

C Qualitative Examples

Figure 4 shows an example of Java-to-Python trans-
lation by PLBART. The translated code is both
syntactically and semantically correct i.e., our com-
piler could successfully parse and build the trans-
lated code. It passed 2 test cases out of 10 when exe-
cuted. The translated code is slightly different from
the input Java code. In particular, line 13 in the
input Java code is a loop that iterates backward (de-
creasing order). However, line 12 in the generated
python code iterates forward (increasing order). If
the generated python code were range(c-1,0,-1)
instead of range(c-1), it would pass all the test
cases. We attribute such behavior to the fact that
range(*) is a much more frequent pattern than
range(*,0,-1) in python code.

D TransCoder vs. PLBART

As we consider TransCoder as the primary base-
line of our proposed approach using PLBART, for
the sake of fairness, we compare them in terms
of model structure and training setting. Table 9
presents the comparison. TransCoder and PLBART
both use the Transformer (Vaswani et al., 2017) ar-
chitecture, but TransCoder is a twice as large model
as PLBART. Both the models have gone through a
two-stage training process. In Stage-1, TransCoder
is pre-trained via MLM using 920B tokens, while
PLBART is pre-trained via DAE using 87B tokens.
In Stage-2, TransCoder leverages 625M tokens and
jointly trained via DAE and BT. In comparison,

PLBART is trained via BT using 430M tokens.
Why TransCoder does not suffer from the
same language generation issue? In Stage-1
pre-training, TransCoder only trains the Trans-
former Encoder and then initializes a decoder with
Encoders’ parameters, and the cross attention sub-
layers are randomly initialized. We speculate that
such random initialization leaves TransCoder un-
biased towards generating in the same language
as input. Moreover, PLBART uses language ID
token as a prefix to generate in the target lan-
guage. We noticed that PLBART’s decoder dis-
regards the prefix token if not fine-tuned to gen-
erate in the target language. On the other hand,
TransCoder uses language embeddings with each
token in the input. Intuitively, this does not allow
the TransCoder’s decoder to ignore the language
information. For example, with position index “0”
and language ID “Python”, TransCoder is more
likely to generate “def” token and less likely to
generate “static” or “int” since they do not ap-
pear in the Python language. In essence, unlike
PLBART, TransCoder does not suffer from the is-
sue of sequence-to-sequence models being unable
to generate across languages.
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