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Abstract
We propose a novel approach to learn domain-
specific plausible materials for components
in the vehicle repair domain by probing Pre-
trained Language Models (PLMs) in a cloze
task style setting to overcome the lack of an-
notated datasets. We devise a new method
to aggregate salient predictions from a set of
cloze query templates and show that domain-
adaptation using either a small, high-quality
or a customized Wikipedia corpus boosts per-
formance. When exploring resource-lean al-
ternatives, we find a distilled PLM clearly out-
performing a classic pattern-based algorithm.
Further, given that 98% of our domain-specific
components are multiword expressions, we suc-
cessfully exploit the compositionality assump-
tion as a way to address data sparsity.

1 Introduction

Connecting a symptom to an underlying cause is
a crucial building block for natural language un-
derstanding across domains. For example, as il-
lustrated in Fig. 1, a standard approach that hu-
man mechanics in vehicle repair shops apply when
tracing the cause of a symptom, is to exploit the
link between a vehicle component and the com-
ponent’s materials. This study tackles the task of
automatically learning plausible materials for ve-
hicle components. The information is crucial in
vehicle repair shops, as mechanics are faced with
constantly growing vehicle complexity, making it
hard to manually identify the cause of a malfunc-
tion. While domain-specific information on vehicle
components is often available, plausible domain-
specific material information typically needs to be
gathered from external data sources. For example,
from “Brake disk are usually manufactured from
gray cast iron”, one may retrieve the information
that brake disks consist of iron (and possibly further
materials not mentioned here).

We propose a novel approach to leverage state-
of-the-art pretrained language models (PLMs) for

Figure 1: Conceptual overview for learning domain-
specific plausible materials (e.g., aluminium) for vehicle
components (e.g., engine valves rocker arm).

the task of learning plausible materials in highly
domain-specific contexts, such as vehicle compo-
nents in the vehicle repair domain. Our approach
can also be applied to similarly specific domains,
e.g., to learn which materials or substances are
plausibly used in products in the health domain,
textile industry, etc. As we tackle a task from ma-
terial science, we make a contribution to a field
that is not only very challenging, but heavily under-
investigated from an NLP perspective. We focus on
the PLM RoBERTa (Liu et al., 2019) and develop
an approach that successfully learns plausible ma-
terials in English for components in the vehicle re-
pair domain. We further exploit domain-adaptation
variants and show (i) that harnessing a small high-
quality domain-specific corpus boosts the perfor-
mance over an out-of-the-box vanilla RoBERTa,
and (ii) how similar performance can be reached
by using a widely accessible data source such as
Wikipedia if no domain-specific data is available.

To overcome the typical lack of annotated
datasets for training and fine-tuning models in
highly domain-specific tasks, we probe RoBERTa
in a cloze task setting (Taylor, 1953; Petroni et al.,
2019), compare variants for aggregating the results,
and analyze the influence of a varied set of query
templates on model predictions.
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While PLMs come with great advantages, their
hunger for storage, data, and computing power is
even greater. We thus compare the performance
of the vanilla and domain-adapted versions of
RoBERTA with (i) a distilled version, i.e., the much
smaller DistilRoBERTA (Sanh et al., 2019), and
(ii) the seminal pattern-based bootstrapping algo-
rithm Basilisk (Thelen and Riloff, 2002).

Finally, we tackle the challenge of handling a
dataset with a vast majority of multiword expres-
sions, i.e., 98% of our targets are noun compounds
(such as seat heating switch led). We address the
corresponding severe data sparsity by assuming
that many domain-specific compounds are com-
positional (Clouet and Daille, 2014; Hätty et al.,
2021) such that our domain-specific model may
fall back to information regarding the compound’s
head (in the example above: the right-most simplex
noun in the compound led), and thus improve on
the data sparsity.

2 Related Work

Domain-specific IR In contrast to domains such
as biomedicine and chemistry, “[l]everaging NLP
tools in materials science remains in its infancy”
(Olivetti et al., 2020, p.4), with main challenges
including the development of task- and domain-
specific tools to structure and harnes knowledge for
material synthesis and material discovery. Com-
mon approaches to elicit material mentions from
text include unsupervised approaches such as topic
modeling (Rani and Kumar, 2021) and LDA (Venu-
gopal et al., 2021), as well as supervised methods
for domain-specific NER, often focusing on a sin-
gle material or material group (Mysore et al., 2017,
2019; Friedrich et al., 2020; Gupta et al., 2022;
Nayak and Timmapathini, 2021; O’Gorman et al.,
2021). Differently to previous work, we probe
PLMs in a cloze-task style setting and compare the
results to a similarly unsupervised pattern-based
bootstrapping algorithm. While most unsupervised
methods are not easily interpretable, our query tem-
plates, seed words, patterns and predicted materials
are directly accessible.

Prompting and Cloze Query Engineering Re-
cent work has leveraged cloze-task style settings
to probe the knowledge that PLMs acquire dur-
ing pretraining, thus targeting linguistic capabili-
ties (Goldberg, 2019; Ettinger, 2020; Apidianaki
and Garí Soler, 2021; Rogers et al., 2021), the
understanding of rare words (Schick and Schütze,

2020) and conceptual abstractions (Ravichander
et al., 2020), as well as factual and commonsense
knowledge (Petroni et al., 2019; Jiang et al., 2021).
An emerging strand of research highlights PLM
sensitivity to the input in a cloze-task style set-
ting. For example, Elazar et al. (2021) demon-
strate that PLMs show deficiencies in prediction
consistency when presented cloze-style query para-
phrases. Others exploit this flaw by explicitly con-
sidering paraphrases of a cloze query in addressing
a model’s sensitivity to a specific input query to
elicit a desired output (Davison et al., 2019; Jiang
et al., 2021). Pandia and Ettinger (2021) show that
models lack robustness in their ability to harness
relevant context information in the face of cloze
tasks containing distracting contextual cues. In
reverse, priming the model using trigger tokens
(Shin et al., 2020) and lexical cues (Misra et al.,
2020) might aid in guiding the model to predict
the desired output. Specifically, Shin et al. (2020)
propose AUTOPROMPT to develop automatically
constructed prompts or patterns to elicit knowledge
from pretrained PLMs for a variety of tasks. In
contrast to previous work, we semi-automatically
construct a variety of prompts to cover a salient set
of paraphrases for eliciting plausible materials in a
PLM; this allows for meaningful comparison and
interpretation of the predictions’ quality and the
influence of the cloze queries.

Semantic Plausibility While classical distribu-
tional models tend to model selectional preferences
and thematic fit instead of capturing semantic plau-
sibility (Erk et al., 2010), we have recently seen
advances to model plausibility across various di-
mensions, including physical and abstract semantic
plausibility (Wang et al., 2018; Porada et al., 2019).
SOTA models for event plausibility however still
rely on straightforward conditional probabilities of
co-occurrences as estimated by distributional mod-
els (Emami et al., 2021; Porada et al., 2021). Con-
sidering our task of learning plausible materials for
vehicle components, we go beyond selectionally
preferred component materials as predicted with
high probabilities, aiming also for less frequently
observed cases that are nevertheless plausible.

(Domain-specific) MWEs and Compositionality
Multiword expressions (MWEs) are challenging
for any natural understanding system, given that
MWE meanings are idiosyncratic to some degree,
i.e., the meaning of an MWE is not entirely (or
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even not at all) predictable from the meanings of
the constituents (Sag et al., 2002; Reddy et al.,
2011; Salehi et al., 2014; Schulte im Walde et al.,
2016; Cordeiro et al., 2019; Schulte im Walde and
Smolka, 2020). Even though MWEs are ubiquitous
not only in general- but also in domain-specific lan-
guage (Clouet and Daille, 2014; Hätty et al., 2021),
up to date only few NLP systems have exploited
MWE meaning modules, as in machine translation
(Cholakov and Kordoni, 2014; Weller et al., 2014).
This study is faced with 98% noun compounds
among our domain-specific targets, and we test the
compound–head compositionality assumption (e.g.,
a seat heating switch led "is a type of" led but an
engine valves rocker arm "is not a type of" arm) to
fight the severe MWE-triggered data sparsity.

3 Data

Vehicle Component Dataset As targets for our
components, we rely on a set of 7,069 unique com-
ponent names curated by experts from the vehi-
cle repair domain.1 A component name may de-
note a tangible physical component such as cool-
ing blower, as well as intangible functional and
software components such as ABS warning lamp
function and road test. The dataset comprises 155
single-word components and 6,914 multiword com-
ponents with up to eight constituents (see Fig. 6 in
App. A for the distribution). When applying the as-
sumption of MWE compositionality, we fall back
to the right-most constituent word as the MWE
head (Altakhaineh, 2019), resulting in a total of
725 different heads across the 6,914 multiword
components.

Domain-Specific Corpora We utilize two
domain-specific English corpora for extracting
materials for vehicle components from text: (i) a
domain-specific vehicle repair manual written by
domain-experts, containing approx. 800K English
tokens (henceforth: DOMAIN) and (ii) a portion
of the English Wikidata (henceforth: WIKI). For
this, we download a Wikidata dump2, from which
we only keep those 118,154 articles which contain
one or more of the 6,914 multiword components
in the titles or body (Hätty et al., 2020). For
domain-adaptation, we delete sentences that do
not contain any of the multiword components,
resulting in approx. 225K sentences.

1The Vehicle Component Dataset and the DOMAIN corpus
are provided by Bosch.

2
https://dumps.wikimedia.org/enwiki/, 2.3.2022

4 PLM Experiments

Our PLM experiments investigate to what extent
and how PLMs encode domain-specific component
materials when prompted with cloze query variants,
as illustrated in Fig. 2: We use the vehicle compo-
nent dataset to construct a set of 504 cloze query
templates for each individual component. We first
probe a RoBERTa model without any modifications
and gather the top-5 predictions for each compo-
nent, resulting in a total of >2K predictions. To
aggregate these predictions, we experiment with
three aggregation methods and determine the top-5
most plausible predictions per component and ag-
gregation method for expert evaluation. In a follow-
up experiment, we perform domain-adaptation of
RoBERTa and DistilRoBERTa for the vehicle re-
pair domain using our two domain-specific corpora,
and compare the probing results of the vanilla and
the domain-adapted models. The following subsec-
tions describe our PLM experiments in detail.

4.1 Cloze Query Prediction and Processing
Our cloze query handling involves three steps
(again, cf. Fig. 2): we first construct a set of cloze
query templates, then we aggregate model predic-
tions, and finally we analyze the effect of individual
cloze queries to select the most meaningful tem-
plates for the final top-5 predictions. As Vanilla
RoBERTa model (Liu et al., 2019) (henceforth:
Vanilla RB), we draw on the roberta-base
implementation by huggingface (Wolf et al.,
2020) without any modifications.

Step 1: Cloze Query Template Construction
We develop a set of templates and generate cloze
statements for each vehicle component to probe
our PLM for plausible component materials: First
of all, we define a set of 18 paraphrases typically
used to express that a component is made from
one or more materials (Davison et al., 2019; Jiang
et al., 2021). For this, we start with a set of highly
frequent verb relations in our corpus (such as con-
tain) and use WordNet synsets (Fellbaum, 1998)
to determine additional relevant verbs. We then
apply both plural and singular forms of the com-
ponent nouns with corresponding indefinite arti-
cles to define queries (see Table 1). To include
prompts that refer to prototypical (and thus presum-
ably highly plausible) materials, we follow Apidi-
anaki and Garí Soler (2021) and integrate the quan-
tifiers {MOST} and {ALL}; we also add the quan-
tifier {MANY}. Furthermore, we define a query
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Figure 2: Overview of prediction generation and aggregation, with the numbers in the orange boxes referring to
queries/predictions for one example component, e.g., battery.

Cloze Query Templates
[context] + [noun_quant.] + indef. article + component + verb_relation + [adverb] + <mask>.

SINGULAR a battery consists of <mask>.
PLURAL batteries consist of <mask>.
noun_quantifier + PLURAL most batteries consists of <mask>.
adverb + SINGULAR a battery usually consists of <mask>.
adverb + PLURAL batteries usually consists of <mask>.
context + SINGULAR when used in a vehicle, a battery consists of <mask>.
context + PLURAL when used in a vehicle, batteries consists of <mask>.

Table 1: Cloze query template and filled-in queries for the vehicle component battery. SINGULAR and PLURAL are
placeholders that are filled in with vehicle component nouns in singular and plural form, respectively.

template element for adverbs referring to typicality,
by including the adverbs {USUALLY, GENERALLY,
NORMALLY}. Fostering materials that are not nec-
essarily prototypical but still potentially plausible,
we use the noun quantifier {SOME} (Apidianaki
and Garí Soler, 2021) and the adverbs {POSSIBLY,
PLAUSIBLY}. In our domain-specific scenario, hu-
mans tend to intuitively restrict the answer space
of plausible materials by providing contexts such
as “WHEN USED IN A VEHICLE, ...”. Accordingly,
we follow recent work investigating the impact of
so-called trigger tokens (Shin et al., 2020) and lex-
ical cues (Misra et al., 2020) to predict a related
token, and define six limiting context phrases to
leverage intuitive human behaviour.

The above procedure constructs 504 cloze
queries for each vehicle component such as the
input query “a battery contains <mask>.”, where
the plausible material candidate is masked and to
be predicted by a PLM. A full overview of query
variants is presented in Table 1.

Step 2: Cloze Query Prediction Aggregation
For each component, we prompt our PLM with
the corresponding 504 cloze queries and obtain the
top-5 predicted tokens ranked by probability for
each of the queries, resulting in 2,520 predictions
per component, see Fig. 2.3 Given that we want
only a small list of highly plausible materials, we
experiment with three approaches to aggregate the

3We apply basic post-processing as described in App. B.2.

2,520 predictions for each component such that the
most plausible material candidates are ranked at
the top of a component’s material list.

• BEST-SCORE probabilities aggregate the most
probable PLM-predicted material types from
the 2,520 top-5 predictions across all queries.
In this way, predictions that the model con-
siders highly probable in a specific query con-
stellation are considered highly plausible, no
matter how often they have been predicted.

• AVG probabilities are obtained by summing
up the probabilities for each query variant on
the material type level and then averaging by
the number of queries that predicted that mate-
rial. This way, probability mass is taken away
from materials that were predicted with high
probabilities by only one or few queries. The
aggregation is thus directed towards materials
that are less prominent for individual queries
but more pervasive across query variants.

• PREVALENCE refers to a method where the
most salient PLM-predicted materials are ob-
tained by ranking only according to how often
the material was predicted across all top-5
suggestions of all query variants. Completely
ignoring the probabilities in this step accounts
for the amount of used cloze queries and pro-
vides insight into whether the model leverages
semantic information across specific queries.
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AVG BEST-SCORE PREVALENCE

Total@5 0.08 0.18 0.42
Acc@5 0.36 0.58 0.86

Table 2: Results of aggregation methods on top-5 pre-
dicted materials for 100 components each, i.e., a total
of 500 predictions per method, reporting total@5 and
accuracy in %.

After aggregating the final top-5 predictions by
using each of the three presented methods, we an-
alyze4 for 100 components (see App. C for sam-
pling details) whether the top-5 material predic-
tions are plausible. We follow previous work (Et-
tinger, 2020; Apidianaki and Garí Soler, 2021) and
evaluate by accuracy, i.e. the proportion of vehi-
cle components for which a suggested material is
among the model’s top-5 predictions.

Results are reported in Table 2. The suggested
materials ranked by PREVALENCE with over 40%
of correct predictions clearly outperform BEST-
SCORE and AVG. Especially AVG is observed to
promote rather implausible predictions such as dna,
food, or death. Based on this preliminary assess-
ment, we use the PREVALENCE method for ag-
gregating the top-5 predictions in our final experi-
ments.

Step 3: Cloze Query Template Selection Us-
ing the top-5 material predictions by PREVALENCE,
we now investigate the productiveness of query
templates for 100 components (see App. C for sam-
pling details) in order to select the most salient ones
for our final experiments. Productiveness investi-
gates which queries are productive, i.e., contribute
a material to the final top-5 materials.

In our first productiveness analysis, we analyze
the 68,651 queries that trigger any of the top-5 pre-
dictions across all 100 sampled components and all
query template variants. Fig. 3 shows the number
of queries actively triggering a top-5 prediction in
comparison to the overall number of queries that
could have potentially been activated (in absolute
numbers). Overall, plural variants exhibit a slightly
higher productiveness than singular variants.

In our second productiveness analysis, we exam-
ine whether some verb relations "do all the work"
in comparison to others that are not activated and

4The analysis is performed by one of the authors of this pa-
per, who is familiar with the vehicle repair domain. Note that
this preliminary assessment is only for comparing aggregation
methods, and therefore independent of the final evaluation
involving three experts, see Fig. 2.

Figure 3: Query template productiveness across the
respective defined query template variants.

Figure 4: Relation productiveness across singular and
plural query template variants.

should therefore be excluded for the final experi-
ments. Fig. 4 shows the relations triggering a top-5
prediction across all query variants. The most pro-
ductive relations for singular and plural variants are
[comprise, formed of, build with] and [made up of,
composed of, consist of ], respectively. For all but
two cases, query productiveness of plural variants
is higher than for the singular equivalents.

Our two productiveness analyses suggest that
our set of domain-specific query templates repre-
sents a well-defined set which is successful as a
whole in cooperation with a suitable method for ag-
gregating a large number of resulting predictions,
and does not include strongly over- or underper-
forming variants. For our final PLM experiments,
we thus leverage the full set of query templates.

4.2 Domain Adaptation of RoBERTa

We experiment with our two domain-specific
corpora DOMAIN and WIKI (see §3) to adapt
RoBERTa to the vehicle repair domain (hence-
forth: DOMAIN RB and WIKI RB, respectively).
Additionally, we compare RoBERTa to a domain-
specific resource-lean model DOMAIN DistilRB,
where we adapt DistilRoBERTa (Sanh et al., 2019)
to the vehicle repair domain using DOMAIN.
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The domain adaptations draw on the
roberta-base and distilroberta-base
implementations from huggingface (Wolf
et al., 2020); we split our input texts into train
(90%) and validation (10%) sets. Following
common choices, we set the argument specifying
the fraction of tokens to mask to 15%. We train
with a learning rate of 2e-5, a weight decay of
0.01, and a batch size of 1,024 (cf. App. B.3 for
further details). We train for three epochs and
save the best model according to validation set
performance. We train one model for each of the
aforementioned variants (DOMAIN RB, WIKI RB,
and DOMAIN DistilRB). Model results will be
presented in §7, in comparison to Basilisk results.

5 Basilisk Experiments: A Classic

In comparison to the PLM experiments, we explore
the seminal pattern-based bootstrapped learner
Basilisk (Thelen and Riloff, 2002) for learning
domain-specific plausible materials for vehicle
components. Basilisk is designed to learn high-
quality semantic lexicons for one or more cate-
gories, provided an unstructured natural language
text corpus plus seed words for each semantic cate-
gory to be learnt. The resource-lean learner lever-
ages extraction patterns representing linguistic con-
texts, thus exploiting lexico-syntactic structures to
capture word meaning.

As the starting step for Basilisk, we select ten
seed nouns from the most frequent words in DO-
MAIN5 that belong to the semantic class material.
Since Basilisk depends on extraction patterns to
supply contextual support for additional words
belonging to the same semantic class, we rely
on dependency parsing to create domain-specific
syntactic contextual patterns by using the seed
words obtained from DOMAIN and only the
DOMAIN corpus. We then apply Basilisk as boot-
strapping algorithm to select the best-performing
patterns for a pattern pool and subsequently fill a
candidate word pool with the extractions of the
highest-scoring patterns. We retrieve, for example,
SEED*<GDep>:<compound>:<dependent>:alloy
on the basis of which the word alloy gets added
to the candidate word pool. We stop Basilisk after
n bootstrapping rounds and store the retrieved

5Set of seeds: {water, steel, metal, glass, rubber, plastic,
aluminum, copper, polyester, quartz} In the beginning, we
created individual seed word lists for DOMAIN and WIKI,
where the latter lacked sufficient quality. Thus, we harness the
DOMAIN seed words for both datasets.

semantic lexicon of n plausible materials for a
given vehicle component. To then connect these
possible materials with the components, we first
process the underlying unstructured data sources
and only keep sentences containing at least one
component name mention. Second, we filter the
obtained sentences with the semantic lexicon and
store all component-material candidate matches.

In this way, we generate 396,887 extraction pat-
terns, and use the Basilisk implementation (Thelen
and Riloff, 2002) with all corresponding patterns
and seed words on the DOMAIN dataset. We limit
the candidate word pool size to n “ 200, and gen-
erate possible material candidates for both the DO-
MAIN and the WIKI datasets.

6 Evaluation

To our knowledge, no gold standard is available
for the task of plausible material extraction in the
vehicle repair domain. We thus perform an expert
evaluation of the quality of predictions for each slot
obtained from the vanilla and the domain-adapted
RoBERTA models. To compare PLM-based results
to resource-leaner methods, we also evaluate re-
sults from the pattern-based Basilisk algorithm and
DistilRoBERTa.

Evaluation Task For each model, we select
and evaluate 100 randomly sampled components,6

(i) balancing the number of constituents per target
component, (ii) providing the full component vs.
providing only its head, and (iii) varying the under-
lying corpus (for Basilisk only). For both 1- and 2-
constituent words,7 we sample 30 components with
20 full/10 head samples with equal amounts from
DOMAIN/WIKI. For 3-constituent words, we sam-
ple 20 instances with equal amounts of full/head
and DOMAIN/WIKI samples. For both 4- and 5-
constituent words, we sample 10 head instances
with equal amounts of DOMAIN/WIKI samples
(cf. App. C for further details).

We obtain the aggregated top-5 predictions for
vehicle components from each model. For Basilisk,
we sample up to five answer options whenever
more than five entries are extracted for a given com-
ponent. To minimize annotator bias, we compile a
set of up to 18 materials for each vehicle compo-
nent while keeping track of prediction origins. This
way, annotators see each evaluated component only
once and rate all predictions from all models for

6We make the list of evaluated components available here.
7A 1-constituent word is a simplex word.
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Model IAA A1::A2 A2::A3 A3::A1

Vanilla RB 0.85 0.89 0.81 0.86
DOM. RB 0.79 0.85 0.74 0.78
WIKI RB 0.81 0.86 0.74 0.83
Basilisk 0.79 0.79 0.74 0.83
DOM. DistilRB 0.82 0.88 0.78 0.81

Table 3: Averaged (left) and pair-wise (right) IAA on
material predictions.

each vehicle component without potential uncon-
scious comparison to previously seen predictions
from another model. In the majority of cases, the
models suggested materials either as a singular or
as a plural form (e.g., metal and metals); for the
few cases were we are faced with both versions,
we decide to not merge the model predictions and
ask the annotators to tick both options if both are
considered plausible.

Evaluation Setup We present each component
instance with corresponding materials to three ex-
perts8 from the vehicle repair domain. The anno-
tators are asked to rate the plausibility of material
predictions for each vehicle component, by ticking
the correctly identified materials. They are also
provided the options “none of these” if no mate-
rial is plausible, and “I do not know the answer” if
this is the case. Inter-annotator agreement (IAA)
is shown in Table 3, with overall average IAA on
the left and IAA calculated for each annotator pair
on the right. All IAA scores indicate substantial
agreement. Further details on the annotation setup
and on inter-annotator analyses on both material
and component level are provided in App. C.2.

7 Results and Discussion

Table 4 presents results on model performances.
On the left, we show accuracy on component level
across n annotators. Accuracy is defined as the
proportion of components for which at least one of
a model’s top-5 material predictions is rated plausi-
ble by the annotators. On the right, we display ac-
curacy on material level where accuracy is defined
as the proportion of plausible material predictions
among a model’s top-5 predictions, as rated by n
expert annotators.9

8The participating annotators are not affiliated with the
company providing the Vehicle Component Dataset.

9Material accuracy is naturally lower than component ac-
curacy, as we evaluate five material predictions per component.
Hence, achieving perfect agreement for material predictions
is more difficult than perfect agreement for components.

COMPONENTS MATERIALS

Model ě1A 3A ě1A 3A

Vanilla RB 0.87 0.68 0.49 0.24
DOMAIN RB 0.93 0.73 0.62 0.28
WIKI RB 0.91 0.66 0.56 0.24

Basilisk 0.73 0.40 0.45 0.14
DOMAIN DistilRB 0.87 0.69 0.53 0.23

Table 4: Model performance. COMPONENT accuracy:
proportion of components for which at least one mate-
rial among a model’s top-5 predictions is rated plausible
by n expert annotators nA. MATERIAL accuracy: pro-
portion of material predictions among a model’s top-5
predictions rated plausible by n expert annotators nA.

Domain-Adaption Approaches: Vanilla,
DOMAIN, and WIKI RoBERTa RoBERTa
adapted to the domain using a small high-quality
corpus (DOMAIN RB) beats all other models with
an accuracy of 0.93, and RoBERTa adapted to the
domain using a customized portion of the English
Wikipedia (WIKI RB) is similarly successful
(0.91); in comparison, Vanilla RoBERTa reaches
an accuracy of 0.87. With perfect agreement
among annotators (i.e., 3A), DOMAIN RB is still
able to reach an accuracy of 0.73, in comparison
to 0.66 for WIKI RB and 0.68 for Vanilla RB.
The top results on material level resemble those
for component accuracy: DOMAIN RB (0.62)
outperforms all other models, followed by WIKI
RB (0.56). In contrast to the component level,
Vanilla RB is no longer on par with the smaller but
domain-adapted DOMAIN DistilRB, while still
outperforming Basilisk. The differences between
the three resource-intense approaches (Vanilla RB,
DOMAIN RB and WIKI RB) are not significant10

on component level for nA. On material level,
however, differences are significant between PLMs
(incl. DOMAIN DistilRB) for ě1A, but not for
3A. All approaches significantly outperform the
resource-lean Basilisk on both levels for all nA.

As a particular example to illustrate the positive
impact of domain adaptation, we inspect results for
the vehicle component engine valves rocker arm
from our introductory example (cf. Fig 1). Vanilla
RB results include [wood, metal, steel, bones, legs],
where the predictions bones and legs refer to (parts
of) an extremity of an animate being instead of a
vehicle component. The materials [wood, metal,
steel, joints, aluminium] as obtained from WIKI
RB instead encompass the material aluminium as

10Significance tests apply χ2, p ă 0.05.
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well as joints which refer to connections between
body parts as well as vehicle parts. Finally, DO-
MAIN RB results comprise all plausible materials
predicted by the other models, namely [steel, metal,
parts, aluminium, plastic]. Moreover, the results
feature the additional in-domain material plastic,
while not including out-of-domain predictions such
as wood anymore. We note that annotators are quite
likely to rate one of the top-5 predictions for the
same component as plausible, however, material
prediction accuracy values indicate that the likeli-
ness to also agree on this specific material drops
with an increasing number of annotators.

The findings from these results are twofold. Do-
main adaptation of a given model results in a clear
increase of plausible materials for items within
a given domain. Second, if no highly domain-
specific and well-curated corpus is available, do-
main adaptation using WIKI leads to very viable
results and therefore represents a strong alternative.

Resource-Lean Approaches Results for the
pattern-based algorithm Basilisk significantly un-
derperform all other models for both component
(0.73) and material (0.45) accuracy. In contrast,
the domain-adapted resource-lean DistilRoBERTa
(DOMAIN DistilRB) is on par with Vanilla RB
and WIKI RB. Manually analyzing predictions for
our example discussed earlier, i.e., the component
engine valves rocker arm, we find that the Basilisk
results [structures, glass, core, steel, plating] are
potentially within the domain, but often neither
a material (structures, core) nor rated plausible
for the respective target component (glass, plat-
ing). Results for DOMAIN DistilRB, in contrast,
include [steel, metal, parts, plastic, aluminium] and
basically equal DOMAIN RB predictions.

The comparison of larger vs. leaner and smaller
approaches by the examples of the well-established
classic Basilisk and the transformer-based Distil-
RoBERTa model thus clearly demonstrates a pref-
erence for the latter.

Compositionality of Domain-specific MWEs
Results regarding the assumption of composition-
ality on domain-specific MWEs are presented in
Fig. 5. While accuracy values are lower when using
the right-most head instead of the full multiword
component (exception: Basilisk), the average dif-
ference is only 0.07 and 0.01 for component and
material prediction accuracy, respectively. Note,
however, that IAA differs especially on material

Figure 5: Comparison of full and head component per-
formance on component (full: x/59, head: x/40) and
material (full: x/395, head: x/200) accuracy level.

level with an average agreement of 0.44 using full
and 0.32 drawing on head components. This in-
dicates that predictions for full component names
tend be more clearly connected to this very item
than predictions retrieved for a head.

We further analyse model performance regarding
the influence of MWE constituent number. The re-
sults indicate that specificity beats brevity when
learning plausible materials for vehicle compo-
nents. However, our analysis also point towards
a threshold separating a beneficial number of con-
stituents (2) from a number pointing towards a detri-
mental degree of specificity (3+, cf. App. D.2 for
further details).

Our findings suggest that domain-specific mul-
tiword components are largely compositional and
therefore justify a simplified meaning representa-
tion via head constituents.

The Influence of Cloze Queries To shed more
light on the impact of using cloze query templates
for material prediction, we examine whether the
number of queries triggering predictions11 for a
given component correlates with component ac-
curacy. We find moderate-to-strong correlation
values for all our PLMs, thus suggesting that a
high number of queries yielding the same predic-
tion indicates the prediction’s plausibility. We also
test whether this correlation is directed and fit a
corresponding linear regression model. However,
the resulting significant R2 values, ranging around
0.25, are relatively weak and leave us with a mixed
picture regarding a directed relationship between
the number of queries and component accuracy (cf.
App. D.1 for further details).

When zooming into each template part, we find
the adverb GENERALLY outperforming the other ad-

11An average number of 718 queries is activated for each
component across models, with numbers of queries ranging
from a minimum of ă250 and a maximum of ą1.200 queries
activated per component.
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verbs. Concerning quantifiers, we observe MANY

yielding the most activated queries across models,
followed by MOST and ALL. Among contexts, we
identify WHEN USED IN VEHICLES,... demon-
strating best performance. When inspecting the
impact of our domain-specific verb relations, we
find mostly distinctive groups of verbs accumulat-
ing at the extremes of the curve, e.g., build with,
consist of, made up of and involve, made of, include
yielding maximum and minimum numbers of plau-
sible predictions across models and singular/plural
variants, respectively. While overall observations
suggest that templates in the passive voice produce
more plausible predictions overall, examples such
as consist of underline the importance of a well-
rounded template set that is successful as a whole.

To further explore the impact of designing high-
quality query templates for automatic query con-
struction, we perform the following experiment.
We take the five most frequent main verbs make,
say, go, use, take from ENCOW16AX (Schäfer,
2015) that are considered to be not directly related
to describing what material an item is made of.
We construct a set of cloze queries to probe our
best-performing domain-adapted PLM DOMAIN
RB and aggregate predictions as described in §4.1.
We analyze the final top-5 material predictions and
find only 9 correct materials. Instead, we observe a
small number of types being predicted for many of
the sampled components, as well as a small number
of component-specific predictions that might be se-
mantically related, but are no material, e.g., top-5
predictions for the component fuel tank include
[sense, noise, hydrogen, oil, cold]. These findings
emphasize that using a set that is (i) comprehensive,
(ii) domain-specific, and (iii) syntactically diverse
is crucial in order to avoid distortion of results.

Exploring Prediction Pool Size Finally, we ex-
plore whether aggregating results from a larger
pool of predictions obtained from the model bene-
fits our goal of learning all plausible materials for a
component. For this, we use our original set of 504
cloze queries per component to obtain the top-10 in-
stead of previously top-5 predicted tokens from the
PLM Vanilla RB, resulting in a set of 5040K pre-
dictions per component. We aggregate this doubled
amount of predictions as explained in §4.1 and an-
alyze the final top-5 predictions as outlined in §4.1.
While component accuracy differs by only 1% (in
favor of a smaller pool), drawing from a larger
pool seems to benefit learning plausible materials

with an 5% increase of correct predictions when
using top-10 model predictions for aggregation (cf.
App. D.3 for details). We attribute these gains to
the increase in relevant material predictions that
are appropriately aggregated using PREVALENCE,
thus displacing, for example, non-relevant material
predictions such as wood from top-k positions.12

8 Conclusion

We tackled the task of learning domain-specific
plausible materials for components in the vehicle
repair domain from a novel perspective by probing
SOTA language models in a cloze task style setting
to overcome the lack of annotated datasets. Based
on a diverse set of semi-automatically constructed
cloze queries combined with a suitable aggrega-
tion method, we presented a new method to effi-
ciently extract knowledge regarding vehicle com-
ponents and their materials as acquired by a PLM.
While showing that domain-adaptation using either
a small, high-quality or a customized Wikipedia
corpus boosts performance, we also demonstrated
the power of resource-lean alternatives such as the
PLM DistilRoBERTa, and found that the bottle-
neck for domain-adaptation with respect to our task
might not be model size but rather corpus quality
and suitability. Finally, we successfully exploited
the compositionality assumption for our domain-
specific multiword expressions as a way to address
data sparsity.
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Limitations

When learning plausible materials for components
in the vehicle repair domain, we build a varied
set of query templates to probe PLMs and seek to
aggregate obtained predictions in an optimal way.
We are, however, fully aware that a set of queries
that is optimal for machines is not necessarily the
set that also makes perfect sense to humans.

As far as the transfer of the suggested approach
to languages other than English is concerned, we
call attention to the potential need to adapt the
query templates, e.g., when working with lan-
guages that allow for more flexibility in word or-
der such as Polish, Turkish, German, Hindi, or
Finnish. Further, while it might be difficult to find
well-curated domain-specific corpora in some lan-
guages, we show that using a customized version
of Wikipedia of moderate size (approx. 225K sen-
tences) in a given language represents a very viable
alternative. Additionally, researchers could use a
multilingual model or an adapter-based approach to
navigate in-/output in other or multiple languages.

Our work focuses on RoBERTa as a backbone
model, which has been shown to perform well in
cloze task style settings. We also carried out initial
experiments with newer models such as ELECTRA,
not yielding desired results. We also conducted ex-
periments with generative models such as GPT3.
However, the output contained a lot of noise that
did not aid our goals. Moreover, the focus in this
paper is devoted to the development of a novel con-
tribution regarding the prompting and aggregation
techniques as well as analyzing results rather than
benchmarking a wide variety of models using an
already existing method. While experiments with
a wider variety of models represent an interesting
future task, high-quality evaluation might be a bot-
tleneck due to the availability and cost factor of
domain experts.

Regarding our model predictions, we have not
yet attempted to detect and organize potential se-
mantic relations between predictions, such as hy-
pernym/hyponym relations between metal and alu-
minium. We leave organizing and utilizing such
relations as potentially relevant milestone for con-
necting and tracing symptoms back to a cause for
future work. Furthermore, material predictions are
not yet categorized along dimensions such as main
and auxiliary materials or surface and inner materi-
als, which might be of interest in the vehicle repair
and material science domains.

Finally, we would like to point out that all
tested models and algorithms struggle with predict-
ing plausible materials for intangible items which
might, however, be more prevalent in other do-
mains. Even if a model is able to predict correct
material predictions, rating the plausibility of pre-
dictions that are not tangible but rather abstract
materials such as data, parameters and functions
cannot be considered a trivial task for expert anno-
tators and needs corresponding guidance.

Ethics Statement

Two of the resources used in this work, the Vehicle
Component Dataset and one of the two domain-
specific corpora (DOMAIN) have been kindly pro-
vided to us. To provide insight into the nature
of the data and foster reproducibility using com-
parable data, we make a sample of the Vehicle
Component Dataset available (cf. §6). We also
investigated comparable publicly available alterna-
tives for DOMAIN and showed that leveraging a
portion of the English Wikipedia customized to the
domain of interest (WIKI) represents a viable sub-
stitute in case no custom corpus is available. Note
that Wikipedia text content including Wikipedia
dumps is licensed under both the Creative Com-
mons Attribution-ShareAlike 3.0 License and the
GNU Free Documentation License.

In the context of our evaluation task, we col-
lected plausibility ratings from human participants.
For this, the participants were provided an In-
formed Consent Letter with the name and the con-
tact of the principal investigators; the title, purpose
and procedure of the study; risks, benefits and com-
pensation for participating in the study; confirma-
tion of confidential anonymous data handling; and
confirmation that participation in the study is vol-
untary. The Informed Consent Letter was signed
by both the participant and the investigators before
the participants took part in the study.

We use and adapt PLMs as provided and licensed
under the Apache License 2.0 by huggingface
(Wolf et al., 2020). We acknowledge that material
predictions learnt using the outlined approach are
a product of unsupervised learning methods which
might be prone to error. We point out that predic-
tions should be approved by an expert or flagged
otherwise in case they are used in a downstream
application to avoid potential risks including harm
of objects or safety risks in case of incorrect repair
procedures.
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A Data

Dataset Distribution Fig. 6 shows the distribu-
tion of multiword component names in the Vehicle
Component Dataset with the absolute number of
vehicle components per number of constituent, e.g.,
the dataset comprises 1,563 multiword components
with 2 constituents.

Figure 6: Distribution of multiword components in the
Vehicle Component Dataset (in absolute numbers).

B Cloze Query Prediction and Processing

B.1 Cloze Query Templates

Verb Relation Variables consist of, comprise,
contain, be formed by, be formed of, be made up of,
be made up from, be made of, be made out of, be
composed of, be manufactured from, encompass,
entail, include, involve, incorporate, be build of, be
build with

Cloze Query Statements Table 1 presents an
overview of the defined cloze query templates and
provides an example of filled-in prompts for the
vehicle component lamp.

B.2 Post-Processing

PLM-based Predictions Having created a given
set of cloze queries, we feed the queries into a
PLM and obtain the top-5 predictions. Based on
our goals, we apply the following post-processing
steps. We lower-case the predictions and filter
out numbers, punctuation, 1-character tokens, as
well as a list of standard stopwords obtained from
spacy with nine customized stopwords including
non-informative tokens such as material and com-
ponent. Additionally, spelling variants such as alu-
minum and aluminium are merged. We make sure
that a predicted token does not equal the singular
or plural form of the full input component.

Basilisk-based Predictions We obtain n predic-
tions for each vehicle component using DOMAIN
or WIKI for the Basilisk algorithm, and apply post-
processing as described for the PLM predictions.

B.3 PLM and Basilisk Experiments:
Computing Infrastructure and Model
Information

As Vanilla RoBERTa model, we use the
roberta-base implementation from
huggingface (Wolf et al., 2020) that comes
with 125M parameters. We adapt this model to the
vehicle repair domain. As DistilRoBERTa imple-
mentation, we use the distilroberta-base
implementation from huggingface (Wolf et al.,
2020) which has 82M parameters. See the official
huggingface documentation for further details.
For all final experiments, including obtaining
predictions from the various models, we use a
single NVIDIA RTX A600 GPU. We adapted
our models once (DOMAIN RoBERTa, WIKI
RoBERTa, and DOMAIN DistilRoBERTa) and
used the best model according to validation set
performance, i.e. our domain-adapted models are
the product of a single fine-tuning run.

As a Basilisk implementation, we use the Java
source code as provided by Thelen and Riloff
(2002). We use spaCy (Honnibal et al., 2020)
for text preprocessing and dependency parsing.

C Evaluation

C.1 Sampling Vehicle Components

To test whether the head of a MWE preserves the
meaning of the full MWE in our domain-specific
data, we compare extracted material predictions us-
ing only the head of the MWE vs. all constituents
(full). To evaluate results, we apply the following
procedure when sampling vehicle components con-
sisting of 2+ words. Full components are sampled
as is along with the extracted results. Whenever
only the head of a component is used, the results for
only the head component are obtained. For the eval-
uation task, the head component is mapped back
to the original full component from the vehicle in-
formation dataset. For example, during sampling
the head component sensor gets mapped to the
full 2-constituent component pressure sensor. In
this way, we can evaluate whether results extracted
based on only the head sensor are rated as plausible
also for the more domain-specific full multiword
expression pressure sensor.
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For the Basilisk-based approach, no results are
extracted for one item of the 2-constituent full com-
ponents and five items of the 3-constituent full com-
ponents. These results were thus expanded with
head component extraction results. In one case,
stopword removal leads to an empty prediction list
(alternator start charge current reduction, [], us-
ing DOMAIN). The prediction is back-filled with a
randomly sampled token from WIKI-based results
for the head component (reduction, [lithium], using
WIKI).

C.2 Expert Evaluation

Evaluation Task Setup The evaluation task was
carried out in a remote setting using Google Forms.
Annotators were provided detailed written guide-
lines including example questions and borderline
decisions. In case of questions, annotators had the
option to contact the authors of the paper. The eval-
uation could be completed flexibly in the course
of a week. Annotators could take as much as time
as they needed for completing the evaluation (av-
erage time effort: ~1.5 hours). Our three recruited
annotators are based in Germany, male, and speak
German as their first language. All annotators have
10+ years knowledge and continued education and
training in English in general, as well as profound
work experience with vehicle repair domain data in
German and English. Annotators received a repre-
sentation allowance for their effort. Each annotator
submitted one unique set of answers.

The collected data does not include any infor-
mation that names or uniquely identifies individual
people or offensive content. We check for this by
(i) not giving out data to annotators containing such
information, and (ii) not asking for any of this infor-
mation when collecting ratings regarding plausible
material candidates for vehicle components, and
(iii) manually inspecting collected data to confirm
anonymity of annotators and potential other entities.
Letters of Consent (cf. §8) are signed before par-
ticipation and stored separately from the collected
ratings.

Evaluation Results Analysis We evaluate a total
of 2,342 material predictions from five different
models and algorithms on a set of 100 vehicle com-
ponents from the vehicle repair domain. For 99
components, we collect an average of 5.6 plausible
material predictions valid for one or more models.
For exactly one component, all annotators agree on
I do not know the answer.

Pair-wise inter-annotator agreement (IAA) on
the level of vehicle components is shown in Table 5.
We calculate the percentage of components where
two given annotators agree on at least one material
being plausible (i.e. accuracy on inter-annotator
level) or where two given annotators agree that at
least one material prediction is not plausible. This
includes instances where up to four predictions
are not plausible as well as instances where all five
predicted material options are not rated as plausible
(none of these). We exclude instances where one
or both annotators agree on the answer option I do
not know the answer.

Model IAA A1::A2 A2::A3 A3::A1

Vanilla RB 1.00 1.00 1.00 1.00
DOMAIN RB 1.00 0.99 1.00 1.00
WIKI RB 1.00 1.00 1.00 1.00
Basilisk 0.93 0.97 0.91 0.91
DOM. DistilRB 1.00 1.00 1.00 1.00

Table 5: Proportion of components where two An agree
on at least one plausible material or where Ans agree
on at least one material prediction being not plausible.

D Results and Discussion

D.1 Statistical Analysis: Number of Cloze
Queries and Component Accuracy

We statistically analyze the relationship between
the number of cloze queries triggering predictions
for a given component and the actual accuracy val-
ues on component level.13 For this, we first perform
a correlation analysis to see whether the number
of activated queries is correlated to component ac-
curacy, i.e., whether 1+ of the predictions for this
component is rated plausible by 1+ expert annota-
tor. Results are reported in Table 6 with the investi-
gated models on the left and Pearson’s correlation
coefficients in the first column. The obtained re-
sults indicate that the relationship between the num-
ber of activated queries and observed component
accuracy is strongly correlated (coefficient ą0.5)
for the Vanilla and WIKI RB models, and moder-
ately correlated (coefficient ą0.3) for DOMAIN
RB and DOMAIN DistilRB.

To see whether these correlations are in fact
directed, we employ linear regression modeling
with the number of queries as predictor and com-
ponent accuracy as outcome variable. Results are
presented in Table 6 with investigated models on

13As no cloze queries are generated for the Basilisk algo-
rithm, we only investigate PLM results.
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Model Pearson’s Coefficients R2

Vanilla RB 0.51˚˚˚ 0.26˚˚˚
DOMAIN RB 0.49˚˚˚ 0.24˚˚˚
WIKI RB 0.58˚˚˚ 0.34˚˚˚
DOM. DistilRB 0.40˚˚˚ 0.16˚˚˚

Table 6: Pearson’s correlation coefficients for the num-
ber of activated queries and component accuracy. All
coefficients are significant with a p-value ă 0.01 (***).

the left and R2 values in the second column. The
relatively low R2 values suggest that the relation-
ship between the number of activated queries and
observed component (‰material) accuracy might
more strongly rely on other factors than the number
of queries activated for a given component.

D.2 n-Constituent Component Analysis

Results regarding MWEs with n constituents are
shown in Fig. 7.

Figure 7: Results regarding n-constituent performance
on component accuracy level (in %).

Model performance is presented on component
accuracy level. It can be observed that 2-constituent
components receive the highest number of plau-
sible material annotations, followed by simplex
components, consisting of only one constituent.
4-constituent components outperform the shorter
3-constituent and the longest investigated compo-
nents, namely 5-constituent components. The re-
sults indicate that (domain-)specificity beats brevity
when learning plausible materials for vehicle com-
ponents. However, our findings also suggest that
there might be a threshold separating a beneficial
number of constituents (2) from a number pointing
towards a detrimental degree of specificity (3+).

D.3 Prediction Pool Size Analysis

We present results regarding the size of the pool
from which predictions are drawn for aggregation
in Table 7. The percentage of correct predictions
per top-k predictions are depicted as Hits@1-5.
Here, using a larger pool leads to a gain of 18%
more plausible materials as the top-1 prediction.

Top-10 Pool Top-5 Pool

Hits@1 0.54 0.37
Hits@2 0.45 0.56
Hits@3 0.45 0.42
Hits@4 0.50 0.42
Hits@5 0.41 0.31

Comp. Acc@5 0.85 0.86

Total Hits@5 0.47 0.42

Table 7: Correct predictions (Hits@k) per top-k predic-
tions (x/100), component accuracy (x/100), and total
correct predictions per top-5 predictions (Total Hits@5).

While accuracy on component level stays basically
the same (top-10 pool: 0.85%, top-5 pool: 0.86%),
an increase of 5% can be observed when building
the final top-5 predictions from a larger pool of
predictions.
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