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Abstract

This study, submitted to the BUCC2023 shared
task on bilingual term alignment in compa-
rable specialised corpora, introduces a super-
vised, feature-based classification approach.
The approach employs both static cross-lingual
embeddings and contextual multilingual em-
beddings, combined with surface-level indi-
cators such as Levenshtein distance and term
length, as well as linguistic information. Re-
sults exhibit improved performance over pre-
vious methodologies, illustrating the merit of
integrating diverse features. However, the error
analysis also reveals remaining challenges.

1 Introduction

The current contribution represents a submission to
the BUCC2023 shared task on bilingual term align-
ment in comparable specialised corpora1, specif-
ically for the English-French language pair. The
task can alternatively be phrased as bilingual lexi-
con induction (BLI) for terminology. It holds sig-
nificant potential: it can benefit end-users with ad
hoc bilingual terminology construction from rel-
atively easily available comparable corpora, and
offers researchers a probing task to assess the cross-
lingual lexico-semantic knowledge of language
models.

This complex task encompasses many current
challenges in natural language processing. First,
there are the challenges related to the data. With
parallel corpora, identifying an equivalent term in
the aligned sentence is, if not simple, at least a
task with limited possible answers. With compara-
ble corpora, the task becomes exponentially harder.
There is no straightforward place in the corpus to
start looking for equivalents, and no guarantee that
there will be a valid cross-lingual equivalent for

12023 Building and Using Comparable Corpora shared
task website: https://comparable.limsi.fr/bucc2023/bucc2023-
task.html

each term. This makes it difficult both to construct
a gold standard dataset and to automate the task.
For the shared task, the former issue was addressed
by creating comparable corpora based on paral-
lel corpora (Adjali et al., 2022b). Moreover, the
shared task starts from a predefined list of candi-
date terms, so the focus is only on the cross-lingual
alignment, and not term identification. Besides
the data-related challenges, there are conceptual
challenges. Terminological equivalence must be
defined (Should terms and meanings be considered
in context? How close does the meaning have to
be, for a term to be considered valid? Do equiva-
lents need to have the same syntactic function or
can, e.g., an adjective be a valid equivalent for a
noun?). This issue is circumvented in the shared
task because the dataset was created based on par-
allel data, where the equivalence can be defined in
context. As will be seen in the error analysis, this
also means there are remaining questions as to the
equivalence of, for instance, false positives. A final
challenge concerns the choice of lexical items, in
this case: single- and multi-word terms. Popular
embedding-based approaches still struggle with ac-
curate representations for multi-words. Including
multi-words alongside single-words, with pairs of
different lengths, forces participants to develop a
methodology that handles both. For instance, the
French equivalent for train station is gare, and for
database it is base de données. Additionally, ter-
minology is typically not as common as general
vocabulary, so methodologies need to be more ro-
bust for smaller datasets and lower frequencies.

This paper starts with information on the shared
task dataset and setup, and a section on related
research. Next, the methodology is described, fol-
lowed by the results and a brief error analysis, be-
fore summarising the findings and looking ahead
in the conclusion.
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2 Dataset and Task

This year’s shared task uses an identical setup and
dataset to that of last year, so detailed information
on the dataset and shared task rules can be found in
last year’s overview paper (Adjali et al., 2022a). As
this was the only submission to this year’s shared
task, there is no separate overview paper this year,
but additional information can be found on the web-
site (see footnote 1). Shared task participants re-
ceived a comparable corpus in source and target
language, as well as lists of terms in source and tar-
get language. For the English-French language pair,
a gold standard list of equivalents was provided as
training data. Thus, the focus of this task is on the
cross-lingual alignments. Not all terms in the lists
of source and target language terms are present in
the cross-lingual gold standard, and some terms
have multiple correct equivalents.

Number of: training test
tokens in src corp. 19,358,505 4,464,919
tokens in tgt corp. 21,378,916 14,158,415
GS term pairs 2,519 1,970
src terms 3,132 1,270
tgt terms 2,984 9,712
src terms not in txt 17 0
tgt terms not in txt 30 9

Table 1: Number of tokens and terms in source (src)
and target language (tgt) parts of the BUCC2023 dataset
(tokenisation with spaCy); GS=Gold Standard, txt=text

Looking at the sizes of the datasets (see Table 1),
a few things stand out. First, the corpora are quite
large, with a slightly larger training corpus than
test corpus. Though the source and target language
parts of the training corpora are very similar in size,
this is not the case for the test data, where the target
language part is over three times as large. A sec-
ond observation is that, for both train and test data,
more terms are provided in the target language.
However, this difference is once again much larger
in the test corpus, with over seven times as many
target language terms as source language terms.
Third, as indicated, not all terms are included in the
gold standard list of pairs. For instance, in the train-
ing data, around 80% of all source and target terms
occur in the list of gold standard term pairs. One
final difference between train and test data stands
out: the number of gold standard term pairs in rela-
tion to the number of terms in each language. The
number of gold standard term pairs is significantly

lower than the number of terms in each language in
the training data, whereas for the test data, there are
more gold standard term pairs than source language
terms. All of these differences between training
and test data will influence the performance of any
supervised system trained on this dataset.

All occurrences of all terms were identified in
the lowercased and tokenised corpora. Most, but
not all terms were found. In the training data, terms
that were not found did not appear in the gold stan-
dard list of term pairs. However, in the test data
some terms among the gold standard term pairs
were not found in the corpus. Therefore, with this
methodology, these terms could not be found by
the system either. This was only the case for four
pairs in the test data. There is a relatively even dis-
tribution between single- and multi-word terms in
all parts of the corpora: 41% and 61% single-word
terms in source and target training data; and 48%
and 44% in source and target test data respectively).

The corpora contain texts from many different
domains, and they are not very specialised. There
are many very general terms (e.g., water bottle,
slow, remarks, young adults), and much fewer spe-
cialised terms (e.g., sovereignty, probiotic, legal
person). In both train and test data, there are many
instances that would not conventionally be called
terms e.g., whosoever, very long time, necessarily,
mere, friendly atmosphere, etc. This is due to the
automatic creation of the dataset, based on auto-
matic term extraction with TermSuite (Cram and
Daille, 2016). This is not to say that TermSuite’s
performance is bad, but there will inevitably be
errors. Moreover, TermSuite is meant to work well
on domain-specific specialised corpora and, while
the BUCC corpora are somewhat specialised, they
cover many different domains.

A ranked list of term pairs for the test data had to
be submitted, with the most confidently predicted
pair at the top. Up to five submissions were allowed
per team. This list was evaluated through uninter-
polated average precision (AP), with an evaluation
script provided on GitHub2.

3 Related Research

Last year, two teams submitted three runs each to
this shared task (Adjali et al., 2022a). Team Jozef
Stefan Institute (JSI) (Repar et al., 2022) trained
an SVM binary classifier (Joachims, 2002), using
features based on both the shared task resources,

2https://github.com/PierreZweigenbaum/bucc2022
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and external (freely available) resources. They orig-
inally experimented with cross-lingual embeddings
and sentence transformers, but chose a feature-
based approach instead, due to unsatisfying results.
This approach was based on previous work (Repar
et al., 2021), where they incorporated “the cosine
similarity values of the crosslingual and sentence
transformer models into features of the machine
learning model” (Repar et al., 2022, p. 63). They
use four types of features. The “cognate-based
features” take into account the specific differences
between language. For instance, words ending in
-ology in English are likely to end in -ologie in
French. Their “dictionary-based features” rely on
GIZA++ word alignment (Och and Ney, 2003).
The “embedding-based features” use cosine simi-
larity scores from cross-lingually aligned embed-
dings and five language models. The final group
of “combined features” combines parts of all three
other groups.

Team CUNI (Požár et al., 2022) submitted
three different systems: one with cross-lingually
aligned static embeddings, one with contextual mul-
tilingual embeddings, and one with unsupervised
phrase-based machine translation. For the former,
they trained FastText embeddings (Bojanowski
et al., 2016) for both languages and aligned them
cross-lingually using the MUSE tool (Conneau
et al., 2018). For the contextual embeddings they
worked with multilingual BERT (Devlin et al.,
2019) and XLM (Conneau and Lample, 2019). Fi-
nally, they used the Monoses tool (Artetxe et al.,
2019) to train an unsupervised phrase-based ma-
chine translation model on the provided compa-
rable corpora. They also submitted a combined
approach using both the cross-lingually aligned
embeddings and phrase-based machine translation.

On the test set, the CUNI team obtained the high-
est uninterpolated average precision score (0.2816)
with their combined system, closely followed by
two of the submissions of JSI (0.2685 and 0.2674).
Team JSI concluded that “careful feature engineer-
ing could still produce better results than more
novel deep learning approaches”, though they
admit their system is “quite resource intensive”
(Repar et al., 2022, p. 64). Team CUNI concluded
that they were able to get the highest mean average
precision (MAP) on the train set with the XLM-
model, fine-tuned on the task dataset. The task
organisers noticed that 10.7% of the gold standard
term pairs were not found by any of the six submit-

ted systems. A recurring issue was when multiple
equivalents were present in the gold standard data,
and the systems did not find all options. Multi-
word terms were also found to be more difficult
(Adjali et al., 2022a).

Of course, there is other related research out-
side of the shared task, though rarely including
multi-words. Generally, it is interesting to see ex-
periments where the information from language
models is supplemented with additional (linguis-
tic) information. Researchers argue that ”there is
still room in the NLP toolbox for methods that
utilise discrete, symbolic linguistic knowledge; in
fact, the two paradigms can be successfully com-
bined for an amplified effect” (Majewska et al.,
2022). Specifically for BLI, there is also a call for
more rigour on the definition of the task and the
used datasets. Laville et al. (2022) address the
challenges related to evaluating BLI. Focusing on
the popular and valuable MUSE dataset (Conneau
et al., 2018), they identify several issues: there is
an overrepresentation of proper nouns, of graphi-
cally similar (or identical) word pairs, and of high
frequency words. A similar argument is made in
the work of Kementchedjhieva et al (2019), who,
additionally, talk about the gaps in the gold stan-
dard datasets. Some of these issues are notably
less present in the BUCC shared task dataset be-
cause it focuses on terminology, making it more
interesting and challenging. Nevertheless, the gold
standard data is still automatically generated, so
any research requires thorough evaluation that goes
beyond simple scores to identify system strengths
and weaknesses.

4 Experimental Setup

The methodology of this work is partly inspired by
last year’s submissions by team JSI (Repar et al.,
2022): it is also a feature-based classifier that com-
bines different types of features, including ones
based on embeddings. The provided training data
was used to train a supervised, binary classifier.
Besides the data provided by the shared task, the
methodology also relies on pretrained embeddings
(no embeddings were trained or fine-tuned on the
corpora from the shared task). Additionally, two of
the submitted systems were trained on a combina-
tion of the provided training data and a supplemen-
tary dataset: the Annotated Corpora for Term Ex-
traction Research (ACTER) (Rigouts Terryn et al.,
2020), specifically using the cross-lingual annota-
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tions in the domain of heart failure as described in
Rigouts Terryn et al. (2018). Contrary to the shared
task dataset, ACTER contains manual annotations,
both for term identification and cross-lingual term
alignment. It contains a mix of general and very
specific terms, and the corpus is much smaller than
that of the shared task (± 60k tokens per language).
The English-French part of the dataset contains
2455 term pairs. The monolingual annotations of
this dataset are publicly available3, but the cross-
lingual annotations require further validation be-
fore being released. Therefore, the methodology
does not rely heavily on this dataset, except to test
the impact of different training data.

4.1 Preprocessing

The first step in the methodology is the linguistic
preprocessing of the corpora, including tokenisa-
tion, part-of-speech tagging, lemmatisation, and
named entity recognition. This was performed us-
ing the English and French NLP pipelines of spaCy
(version 3.5.4, en core web lg and fr core new lg)
(Honnibal and Montani, 2017). Once the corpora
have been preprocessed, all terms in the term lists
are tokenised and mapped to the preprocessed cor-
pora. All data is lowercased, but otherwise only
exact matches are included. As discussed, not all
terms were found in the corpus (see Table 1), and
those that were not were excluded from this step
onwards. Next, features were calculated for each
possible term pair. With 3,115 English and 2,954
French terms remaining in the dataset, this meant
9,201,701 possible term pairs, with only 2519
(0.027%) positive (equivalent) instances. While
some basic filters were applied afterwards to re-
duce this size, calculating all features and training
remain computationally intense.

4.2 Features

cross-lingually aligned static embeddings (1)
The strategy for the alignment of the static em-
beddings was based on previous research (Singh
et al., 2022) on the improvement of domain-specific
cross-lingual embeddings. For the monolingual
embeddings, the same setup is used as in the pre-
vious study: FastText (Bojanowski et al., 2016),
pretrained on the Common Crawl corpus and
Wikipedia. “These models were trained using the
Continuous Bag of Words (CBOW) model with
position weights, a dimensionality of 300, charac-

3https://github.com/AylaRT/ACTER

ter n-grams of length 5, a window of size 5, and
10 negative samples” (Singh et al., 2022, p. 128).
The monolingual embeddings were aligned using
VecMap (Artetxe et al., 2018). As shown in the
study by Singh et al., cross-lingually aligned em-
beddings rely heavily on a relevant seed lexicon
for the alignment. In their study, the lexicon was
automatically constructed based on Wikipedia ti-
tles and the cross-lingual Wikipedia links. For the
shared task, this approach could not easily be used,
because the data is not limited to a single domain.
Nevertheless, it was felt that including more spe-
cialised vocabulary in the seed dictionary could
be beneficial. For the seed lexicon in the current
study, the MUSE dataset (Conneau et al., 2018)
was taken as a starting point. Though the quality
of the English-French MUSE dataset was found to
be high for the most frequent words, it was still
manually amended (no automatic filtering was per-
formed). This mainly meant removing some named
entities to balance out their overrepresentation, fo-
cusing on those named entities that would be much
more commonly used in English than in French,
such as the names of the US states. A few errors
were also removed. Starting from the MUSE list of
113,286 word pairs, 10,021 of the most common
pairs were maintained. Additionally, 600 medi-
cal single-word medical term pairs from the work
of Singh et al. (2022) were included. Finally, al-
most 1500 more single-word terms were manually
added from diverse domains, based on the follow-
ing online resources: Dictionnaire de l’Académie
Nationale de Médicine4 (379 term pairs), Anglais
Pratique5 (819 term pairs, including chemical ele-
ments and biological terms), and Lexique anglais-
français d’écologie numérique et de statistique6

(Legendre and Legendre, 1999) (285 terms from
statistics). This resulted in a seed lexicon of 12,104
word pairs in total.

In the training dataset, there were no out-of-
vocabulary terms; in the test dataset there were
seven in English and thirteen in French (a possible
indication that the test data is slightly more spe-
cialised than the training data). For multi-word
terms, the token embeddings were combined using
mean pooling, and only if at least half of the to-
kens were in-vocabulary. This was to avoid cases
where embeddings only existed for the common

4http://dictionnaire.academie-medecine.fr/
5https://anglais-pratique.fr/
6http://www.numericalecology.com/lex/index.html
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parts of the multi-word term, and not for the more
meaningful part(s). This could be especially im-
portant in French, where multi-word terms are reg-
ularly connected by prepositions or articles (e.g.,
environmental protection in French is protection
de l’environnement). FastText cosine similarity
score was included as a single feature. In the case
of out-of-vocabulary terms, average BERT cosine
similarity (see next section) was taken instead.

multilingual contextual embeddings (5 or 3)
The contextual embeddings of choice were pre-
trained multilingual BERT embeddings (Devlin
et al., 2019), accessed through Hugging Face Trans-
formers (Wolf et al., 2020-07-13). Again, the mean
of the token embeddings is used for terms that con-
tain multiple tokens. Five contexts were selected
per term, evenly divided over the corpus. This strat-
egy was meant to increase the possibility of finding
the term in different informative contexts, without
increasing the computational load too much by get-
ting embeddings for all occurrences of all terms.
For each term pair, five cosine similarity scores
were calculated between the five embeddings for
source and target terms. The official submissions
to the shared task use these five features. How-
ever, it was then observed that including five cosine
similarity scores from randomly selected contexts
might not be ideal, as there is no telling which of
the five will be more informative. Therefore, for
subsequent experiments, the five original features
were turned into three more interpreted ones: mini-
mum, mean, and maximum cosine similarity scores
(out of the original five).

edit distance (1) For the English-French dataset,
edit distance could clearly be a relevant feature for
many (though certainly not all) term pairs. Only
Levenshtein distance (Levenshtein, 1966) was in-
cluded as a feature, but more advanced implementa-
tions, e.g., like the cognate-based features of Repar
et al. (2022), might be considered in the future.

frequency (6) Relative frequencies of the source
and target terms in the term pair were included as
well, with both the relative frequencies of the full
forms and the lemmas. Additionally, the differ-
ence between the relative frequencies for full forms
and lemmas was included as well, resulting in six
frequency-related features. These will be more rel-
evant for more comparable corpora, and less so for
corpora that are more different in each language.

length (8) The length of source and target terms,
measured in tokens and in characters, was included
as well, alongside features with the difference
(length source term minus length target term) and
ratio (length source term divided by sum of length
source term and length target term) between these
lengths. This results in eight length-related fea-
tures: four counting tokens, four with characters.

linguistic information (26) The most commonly
assigned (out of five contexts) part-of-speech pat-
tern (single tag in case of single-word terms) and
named entity recognition label was obtained for
each term. These were turned into numeric features
in several ways. For the part-of-speech patterns,
the five potentially most informative tags were se-
lected: adjective, adverb, noun, proper noun, and
verb. For all of these, the numbers of tokens with
that tag in source and target terms were added as
features, as well as the difference and ratio between
the counts for source and target terms. This means
that, for each of the five selected tags, four fea-
tures were calculated (number of tokens with tag
in source term, number of tokes with tag in tar-
get term, difference between these two, and ratio
between these two), adding up to twenty part-of-
speech features. Three additional part-of-speech
features were added: (1) whether or not the pattern
is identical for source and target terms, (2) whether
or not the tags (regardless of their order) are identi-
cal for source and target terms, and (3) how many
tags only occur in either source or target term. Fi-
nally, three more named entity recognition features
are added: the average number of tokens of the
source and target terms tagged as a named entity
(across five contexts), and the difference between
these averages for source and target terms. In total,
there are 26 linguistic features.

4.3 Filtering

The resulting term pairs with features were filtered,
e.g., removing any pairs with a FastText cosine
similarity below 0.1, an average BERT cosine simi-
larity below 0.1, or a very large difference in length
(e.g., over 30 characters). The filters were intention-
ally set very broadly, so that no positive equivalents
were removed from the training data. This means
a very large number remains for training and clas-
sification (8,391,279). These filters could be set
more strictly without losing (much) accuracy in the
training data. Even so, 19 equivalent term pairs
were removed from the test data with the broad
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submission Training data Scoring # predictions AP P R F1
1 BUCC-train + ACTER f1 weighted 790 .30 .82 .33 .47
2 BUCC-train + ACTER roc 1606 .42 .60 .49 .54
3 BUCC-train f1 weighted 785 .30 .82 .32 .46
4 BUCC-train roc 1205 .39 .71 .43 .54

Table 2: Details of the submitted systems, including the training data and scoring metric used for optimisation, as
well as official results in terms of uninterpolated average precision (AP), precision (P), recall (R), and F1-score (F1)

filter, further illustrating the differences between
the datasets.

4.4 Classifier
The experiments were performed in Scikit-learn
(Pedregosa et al., 2011) with the Random For-
est Classifier (Ho, 1995). This choice was mo-
tivated by its relative efficiency, interpretability,
and the options to get probability scores for each
prediction and estimate the importance of each
feature. All features were scaled using the Stan-
dardScaler. Limited hyperparameter optimisation
was used for the systems submitted to the shared
task for the hyperparameters min sample leaf,
min sample split, and n estimators. For the remain-
ing experiments in this contribution, no more op-
timisation was used and hyperparameters were set
to: class weight=’balanced’, min samples leaf=5,
min samples split=5, n estimators=500. Optimisa-
tion was either based on weighted f1-score (f1 w),
or on Area Under the Receiver Operating Charac-
teristic Curve (roc).

4.5 Data for Experiments
Four systems were officially submitted with the
settings detailed in Table 2, and 47 features. These
systems were trained on either the provided training
data, or a combination of that training data with
the ACTER dataset. Predictions were sorted based
on the predicted probability of equivalence. Only
positively predicted pairs were included (predicted
probability of equivalence at least 50%), but this
threshold could easily be adapted to favour either
precision or recall.

Further experiments were performed after the
official submissions. These used the three adapted
features for cosine similarity from contextual em-
beddings (min, mean, and max cosine distance
based on five contexts) and no hyperparameter op-
timisation. A first batch of experiments used just
the BUCC training dataset, which was split into a
separate train and test set. This was done by split-
ting the gold standard into 80% training pairs and

20% test pairs, and then splitting off the term pairs
with features based on whether the source term was
in the test set. The final batch of experiments used
the same settings on the test data, which was made
available by the organisers.

5 Results

The official results for the shared task can be found
in Table 2. Though there were no other partici-
pants for a comparison this year, there is a con-
siderable improvement over last year’s top score
of 0.28 AP. The best results were obtained by a
system trained on a combination of the BUCC and
the ACTER datasets, and optimised for roc. The
addition of the ACTER dataset did not appear to
have a big influence on the scores, but optimising
for roc clearly worked better than optimising for
f1 weighted. Precision scores are much higher than
recall in all submitted systems, and many equiva-
lent pairs could still be found below the threshold of
50% predicted confidence of equivalence, meaning
that scores might be further improved by lowering
the threshold.

As described, further experiments were per-
formed to analyse the system and results in more
detail. The experiments focused on the impact of:
the scoring used for optimisation, the features, and
the threshold value (i.e., the minimum predicted
probability score for equivalence). Originally, this
threshold was always set at 50% (only pairs the
system actually predicted as equivalent), but since
it was observed that uninterpolated average preci-
sion could be further improved by lowering this
threshold, scores were also calculated at a cut-off
point of 25%. For each experiment, uninterpolated
average precision (AP) is reported as defined by
shared task, as well as precision (P), recall (R), and
F1-score (F1). Additionally, F1-score of the true
label in the classification task (F1 true) is included,
and the number of predicted equivalent pairs above
the threshold (#),

Concerning the features, experiments were per-
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train score features F1 threshold@50% threshold@25%
data true # AP P R F1 # AP P R F1

experiments on train data (80/20-split)
BUCC f1 w all .80 618 .82 .72 .88 .79 946 .86 .50 .94 .65
BUCC roc all .81 612 .82 .72 .88 .79 950 .87 .50 .94 .65
BUCC f1 w cos .71 647 .70 .62 .80 .70 958 .74 .45 .86 .59
BUCC roc cos .70 655 .70 .61 .80 .69 956 .73 .45 .85 .59
BUCC f1 w cos&lev .77 622 .77 .69 .85 .76 867 .80 .52 .89 .66
BUCC roc cos&lev .77 624 .78 .69 .85 .76 875 .81 .52 .90 .66
BUCC f1 w limited .83 599 .83 .75 .89 .82 864 .86 .54 .93 .69
BUCC roc limited .83 598 .84 .75 .89 .82 846 .86 .55 .93 .69

experiments on test data
BUCC+
ACTER

roc all .52 1177 .36 .69 .41 .52 2610 .46 .45 .60 .51

BUCC roc all .52 1127 .36 .71 .41 .52 2355 .46 .47 .56 .51
BUCC roc limited .52 1142 .37 .71 .41 .52 2065 .45 .52 .54 .53
BUCC roc cos .39 1009 .24 .58 .30 .39 2132 .29 .37 .40 .39

Table 3: Results of further experiments on training data (80/20-split) and on test data

formed with: all described features (all: 45 fea-
tures), only the cosine similarity features and Lev-
enshtein distance (cos&lev; 5 features), only the
cosine similarity features (cos: 4 features), or a
limited set of features, including cos & lev, the
difference in frequency, the four combined length
features, the three part-of-speech features that are
not about specific tags, and the difference in the
average number of tokens recognised as named en-
tities (limited: 14 features). The latter was meant
to reduce some of the redundant information in the
features, as there were many with both separate val-
ues for source and target terms, as well as a feature
combining that information.

The results of these additional experiments can
be seen in Table 3. The minor difference in setup
for experiments with the test data as compared to
the submitted runs (different features for contextual
embeddings and no hyperparameter optimisation)
results in slightly different, but still similar, scores
for otherwise comparable experiments.

The first observation about the results in Table 3
is that all scores are much higher for experiments
on a train/test-split of the training data, than for
experiments trained on the training data and eval-
uated on the test data. While some deviation is to
be expected, as discussed, there are significant dif-
ferences between training and test datasets. Where
AP scores were up to 0.87 for the training experi-
ments, the highest score obtained on the test data is
significantly lower at 0.46. A similar drop is seen

for the F1-scores. For the experiments with thresh-
old 50%, recall is only half of what it was for the
training experiments. And though it is increased
with a lower threshold, it is nowhere near the very
high recall of 0.94 for the first experiments. Similar
differences with results were reported last year. De-
spite the lower scores compared to the experiments
on the training data, the top score of 0.46 AP is
much higher than the best score of .28 submitted
to the shared task last year.

The next observation is that a lower threshold
results in (much) higher scores for AP. For the ex-
periments on the training data, this improvement in
AP is due to an increase in recall (up to .94), but the
drop in precision results in a lower F1-score. For
the experiments on the test data, AP is also high-
est with the lower threshold thanks to an improved
recall, but in this case, the F1-scores are not much
affected. Lowering the threshold has a higher im-
pact on the number of predictions for the test data
experiments. For the training data experiments,
only 245 to 338 more pairs are extracted (+39%
to 55%), whereas for the experiments on the test
data, lowering the threshold results in up to 1433
more pairs, i.e., an increase of up to 122%. Being
able to easily adjust this threshold depending on the
requirements of the experiment is a considerable
advantage.

Conversely to the results of the officially submit-
ted runs, scoring used for optimisation has only a
very minor impact, so, for the experiments on the
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feature importance
cos. sim. FastText 0.373
max. cos. sim. BERT 0.229
mean cos. sim. BERT 0.152
min. cos. sim. BERT 0.104
same POS tags 0.042
Levenshtein distance 0.034
difference in POS 0.015
length tokens ratio 0.013
same POS pattern 0.011
length chars ratio 0.007
length tokens difference 0.006
length chars difference 0.005
frequency difference 0.005
named entity rec. difference 0.002

Table 4: Importance of features limited features

test data, all training was optimised with roc. Pre-
dictably, the features do influence results. Clearly
and unsurprisingly, the cosine features are most im-
portant, and results are not bad with just those fea-
tures. The addition of Levenshtein is, predictably,
an advantage for the English-French language pair
as well. Interestingly, the other features also add
relevant information, though the individual features
are much less important. The system with more
limited features appears to efficiently capture the
relevant information.

Feature importance scores of a system trained
with limited features and optimised with roc are
shown in table 4. FastText cosine similarity score
is the most important feature by some margin, fol-
lowed by the three BERT cosine features which,
together, are even more important. None of the
other features are very important by themselves.
Interestingly, the feature indicating whether source
and target terms have the same part-of-speech tags
(regardless of order) is more important than Leven-
shtein distance. In conclusion, these experiments
show very promising results, especially for systems
where training and test data are very similar.

6 Error Analysis

The output of the system trained on the shared task
training data and tested on the test data (including
all features) was analysed in more detail. Among
the most confidently predicted pairs, there is a good
mix of single- and multi-word terms, so not all
multi-word term pairs were difficult to predict cor-
rectly. At the top of this list, there are a lot of pairs

with a low Levenshtein distance, though not ex-
clusively. For instance, at rank 7 there is the pair
typical recipe and recette typique, and at rank 31
disabled children and enfants handicapés. The first
false positive is found at rank 74, where economic
difficulties is aligned with problèmes économiques
(literally economic problems). While a more lit-
eral equivalent is available, this pair could certainly
be considered equivalent in many contexts. This
is seen for many of the highly ranked false posi-
tives: they either could be equivalent in certain con-
texts, or they should have been considered equiv-
alents in the first place, e.g., strategic game and
jeu stratégique, and direct taxes and taxes directes.
Out of 1127 ranked equivalents, there were 325
false positives and 58 of those could be considered
equivalent in many contexts, with an additional 33
deemed strongly related or potentially equivalent in
some contexts. While these results require a more
thorough analysis (with inter-annotator agreement),
these numbers are an indication of the importance
of a nuanced definition of equivalence and a thor-
ough error analysis.

Naturally, some terms are also clearly mis-
aligned. One of the, probably less serious, common
misalignments is between terms with a different
number. For instance, the singular tumor is aligned
with the plural tumeurs, and the reverse is done
for wine bottles and bouteille de vin. There are
also a few false positives due to different parts-
of-speech, for instance, infected was matched to
infection. However, this only occurred eight times,
so the part-of-speech features may have already
prevented some of these mismatches. Multi-word
terms with relatively general words were also found
to be difficult. The term access control system was
linked to 16 different French terms with a probabil-
ity of at least 25%. A couple of other categories of
terms that cause multiple false positives are: num-
bers, family relations, and colours. For instance,
eighth is most confidently correctly aligned with
huitième, but then also (with much lower prob-
ability) to dix-septième (seventeenth). Similarly,
aunt is correctly matched to tante with a 94%
probability, but then also to oncle (uncle) (91%),
mère (mother) (86%), père (father) (71%), neveu
(nephew) (69%), and so on. Similar issues are
found for colours. Sometimes cultural differences
play a role, for instance when pound is wrongly,
but understandably, matched to kilo. While per-
formance on multi-word terms was not especially
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bad, the rather simplistic approach of averaging
embeddings has clear downsides. This can be seen
in misalignments where word order plays a role,
e.g., wine bottles is misaligned to vin en bouteille
(botteled wine), and product safety to produits de
sécurité (safety products).

7 Conclusion

This contribution to the BUCC2023 shared task
on bilingual term alignment in comparable spe-
cialised corpora presents a supervised approach
with a feature-based classifier that combines fea-
tures from embeddings with other information, in-
cluding edit distance and linguistic characteristics.
Results are promising and the system outperforms
those from last year’s submissions. Though the effi-
cient random forest classifier is used, preparing the
experiments is, admittedly, computationally expen-
sive, since all source language terms are matched
with all target language terms, and contextual fea-
tures are calculated for each pair. However, it also
provides interesting insights, for instance showing
the relative importance of the various features. The
error analysis illustrates various challenges, both in
terms of the dataset and in terms of system weak-
nesses. Future research is planned to look into rich
datasets for BLI from specialised corpora, to fa-
cilitate more thorough work on this task. Further
experiments will include more features and com-
pare different embeddings, as well as experiments
with different types of classifiers. A more elaborate
error analysis and the inclusion of more language
pairs could further improve our understanding of
the cross-lingual knowledge captured (or not) by
both static and contextual embeddings.
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