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Abstract

In this study, we examine the benefits of incor-
porating discourse information into document-
level temporal dependency parsing. Specifi-
cally, we evaluate the effectiveness of integrat-
ing both high-level discourse profiling informa-
tion, which describes the discourse function
of sentences, and surface-level sentence po-
sition information into temporal dependency
graph (TDG) parsing. Unexpectedly, our re-
sults suggest that simple sentence position in-
formation, particularly when encoded using
our novel sentence-position embedding method,
performs the best, perhaps because it does
not rely on noisy model-generated feature in-
puts. Our proposed system surpasses the cur-
rent state-of-the-art TDG parsing systems in
performance.

Furthermore, we aim to broaden the discussion
on the relationship between temporal depen-
dency parsing and discourse analysis, given the
substantial similarities shared between the two
tasks. We argue that discourse analysis results
should not be merely regarded as an additional
input feature for temporal dependency parsing.
Instead, adopting advanced discourse analysis
techniques and research insights can lead to
more effective and comprehensive approaches
to temporal information extraction tasks.

1 Introduction

Temporal Information Extraction (TIE) is the task
of modelling the relative and/or absolute temporal
relations between all the temporal nodes in an ar-
ticle. A temporal node can be either an event or
a time expression (timex). TIE is a core compo-
nent task of text comprehension. Despite its impor-
tance, TIE remains one of the lowest performing
natural language understanding tasks. It is a diffi-
cult task, and the challenge is further compounded
when expanding it to the document level, as the
number of temporal relations scales quadratically
with the number of temporal nodes, and the requi-

site amount of reasoning must incorporate longer
spans of text.

To address these challenges, Kolomiyets et al.
(2012); Zhang and Xue (2018b); Yao et al. (2020)
proposed the use of temporal dependency struc-
tures to represent the overall temporal relational
structure within an article. This approach is based
on the phenomenon of temporal anaphora, where
the interpretation of the occurring time of one tem-
poral node depends on knowing the occurring time
of another temporal node. By modelling these tem-
poral dependency relations, the overall temporal
structure of an article can be obtained without the
need for exhaustively labelling every pair of tem-
poral nodes.

As a result, temporal dependency parsing not
only models the temporal relations between events
but also captures narrative and discourse structure.
There are striking similarities between temporal
dependency structures and the constituency dis-
course tree structures (Guz and Carenini, 2020)
used for discourse parsing in the context of Rhetor-
ical Structure Theory (RST; Mann and Thompson,
1988), and not just in their use of trees or graphs.
More importantly, temporal dependency relations
can be viewed as a specific type of anaphoric re-
lation that discourse analysis models attempt to
capture. This observation suggests a potential con-
nection between dependency parsing and discourse
analysis, warranting further investigation into their
relationship and potential synergies.

This connection between document-level tem-
poral structure and discourse structure was corrob-
orated by Choubey and Huang (2022), who dis-
covered that incorporating discourse profiling (DP)
information, specifically the functional role of each
sentence, could enhance the overall performance
of temporal dependency graph parsing (TDG; Yao
et al., 2020). Their evaluation may not have been
sufficiently comprehensive, however. TDG parsing
encompasses three distinct types of relation parsing:
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timex to timex (t2t), event to timex (e2t), and event
to event (e2e), each requiring a different prediction
mechanism. Upon a more detailed reexamination
of Choubey and Huang’s (2022) findings, DP in-
formation in fact does not consistently improve
performance across all three relation types; it re-
liably enhances e2e, but may lead to a decline in
performance for the other two.

We believe this is caused by two major limita-
tions of Choubey and Huang’s (2022) approach.
First, DP is a hard problem in its own right. The
state-of-the-art DP system (Choubey and Huang,
2021) only yields a 59.21% F1 performance.
This means TIE systems following Choubey and
Huang’s (2022) guidance will only have access to
noisy and inaccurate DP features. Second, sentence
function is a relatively high-level, descriptive type
of discourse structure. Temporal dependency struc-
ture, on the other hand, can also benefit from a lot
of simple surface-level discourse information, such
as precedence (Zhang and Xue, 2018a).

To address these issues, we have experimented
with incorporating surface-level sentence-position
information into a TIE system, and in two ways:
encoding absolute sentence-position by appending
the sentence number directly onto the context sen-
tences, following Choubey and Huang (2022), and
proposing a novel Sentence Position Embedding
(SPE) using a sinusoid. Our experiments demon-
strate that SPE could significantly enhance tempo-
ral dependency graph parsing performance across
all relation types, with the performance increase
being mostly greater or at least comparable to that
provided by DP information. The resulting TDG
parsing system1 with SPE obtains the state-of-the
art performance.

2 Temporal Dependency Parsing

TIE is the task of classifying the temporal relation
between two temporal nodes. A temporal node can
be either an event trigger (a.k.a. event mention)
that represents an event that exists in the narrative
of an article, or a timex that is a nominal descrip-
tion of a date or time. When treating a pair of
temporal nodes as either intervals or points on the
timeline, the temporal relation between temporal
nodes can be described by Allen’s (1983) tempo-
ral calculus. There are some variations between
different TIE annotation standards, but generally

1The code and data are publicly available online:
https://github.com/frankniujc/tdg-discourse.

“A 26 years [sic] old woman died early this week.
She fell roughly 30m down the Bergisel mountain
in Tyrol on Friday. Remaining conscious after the
fall, she had alerted her family via telephone who
in turn contacted emergency services.”

ROOT

DCT

early this week Friday

died fell fall alerted contacted
after overlap before before

Figure 1: An example of a TDG from (Yao et al., 2020).
In the example text (upper), event triggers are high-
lighted in green and timexes are highlighted in orange.
In the TDG (lower), different types of dependency rela-
tions have different edge colours (t2t, e2t and e2e). Each
arrow points from the parent node to the child node.

Docs Timex Event t2t e2t e2e
Train 400 1,952 12,047 2,352 15,369 8,725
Dev 50 325 1,717 375 2,136 1,298
Test 50 209 1,015 259 1,324 706
Total 500 2,486 14,779 2,986 18,829 10,729

Table 1: TDG corpus statistics.

speaking, temporal relations include links such as
BEFORE, AFTER and OVERLAP.

This pairwise annotation scheme, however, fails
to generalize to the document level. The number
of temporal node pairs is quadratic in the number
of temporal nodes (n), i.e.,

(
n
2

)
∈ O(n2). Yao

et al. (2020) pointed out that this quadratic increase,
together with the increase in the complexity and
number of vague relation links for annotators to
consider will, in practice, inevitably cause errors to
annotation.

To address this issue, Kolomiyets et al. (2012);
Zhang and Xue (2018b); Yao et al. (2020)
have advocated for using dependency structures
to represent document-level temporal relations.
Kolomiyets et al. (2012) annotated a children’s
story with temporal dependency trees. Each event
u only depends on one other event v iff the interpre-
tation of when u occurred requires knowing when
v occurred. Kolomiyets et al.’s (2012) temporal
dependency tree structure only includes events, but
this standard may yield disconnected structures.
Zhang and Xue (2018b) refined temporal depen-
dency tree structure to allow the inclusion of timex
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A woman died early this week
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Figure 2: An overview of the pairwise classification
model architecture.

vertices as well as two special vertices: a docu-
ment creation time (DCT) vertex and a ROOT ver-
tex. The inclusion of timex vertices allows for
capturing the missing events in timex (e2t) tempo-
ral dependencies and timex to timex (t2t) temporal
dependencies. The addition of the DCT and ROOT
vertices ensures each document is always parsed
into a valid TDT.

Both Kolomiyets et al. (2012) and Zhang and
Xue (2018b) assumed that each event or timex had
exactly one reference temporal node (to which the
dependency edge points), resulting in a tree struc-
ture. Yao et al. (2020), on the other hand, argued
that this assumption is overly stringent, and that it is
possible for an event to have both a reference timex
and an reference event. They therefore proposed
to characterise temporal structure with temporal
dependency graphs (TDG), in which each event
can have a timex parent, an event parent, or both.
As depicted in Figure 1, the event alerted depends
on both the timex Friday and the event fall. As a re-
sult, TDG is more expressive than the earlier TDTs.
In this work, we used the TDG corpus released by
Yao et al. (2020). Table 1 shows the statistics of
this corpus.2

3 Model Architectures

3.1 Pairwise Classification Model
Typically, TIE is formulated as a classifica-
tion task. Given a pair of temporal nodes

2There are some minor discrepancies between the statistics
reported by Yao et al. (2020) and the final released corpus.
We used the final version of the TDG corpus released at
https://github.com/Jryao/temporal_dependency_graphs_crowd
sourcing.

Softmax

0.10.1 0.10.4 0.10.2

Feed-Forward Scoring Layer

Figure 3: An overview of the joint ranking model ar-
chitecture. Given a temporal node s in the article, the
model predicts a scalar reference score for every can-
didate node (t1, . . . , t6). This reference score can be
considered as classification logits and later trained using
the cross-entropy loss.

(n1, n2), the sentences containing the nodes
([t11, . . . , t1m], [t21, . . . , t2n]) are encoded into a
context vector e = [e11, . . . , e1m, e21, . . . , e2n].
Next, the event embedding pair [en1 ; en2 ] are con-
catenated and the classification task is performed
using a multilayer perceptron (MLP) layer. Where
a temporal node spans multiple tokens, we utilize
Lee et al.’s (2017) method for obtaining an attentive
span representation. Figure 2 depicts an overview
of this architecture. In this model, we deliberately
avoid jointly learning the pairwise model to ob-
serve the effects of different discourse information
on various relation types.

3.2 Joint Ranking Model

Neural ranking models (Zhang and Xue, 2018a;
Ross et al., 2020; Choubey and Huang, 2022) for-
mulate the task as a regression problem. For each
temporal node, the model predicts a scalar ref-
erence score for every potential parent node and
selects the edge with the highest reference score.
Therefore, this edge selection process can be formu-
lated as a classification task — the reference scores
can be considered as classification logits, and the
cross-entropy loss of the edge prediction can be
calculated. The three relation types (t2t, e2t, and
e2e) are trained jointly. Unlike the pairwise model
that uses the concatenation of the two event embed-
dings, we follow Choubey and Huang (2022), who
enclose both triggers in special symbols ($n1$ and
#n2#) and use the embedding of the [CLS] token
as the pair embedding en1,n2 = e[CLS].
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4 Discourse Analysis for TDG Parsing

Based on Dijk’s (1986) schemata of news content,
Choubey et al. (2020) proposed the task of dis-
course profiling (DP). The task is to classify each
sentence into one of eight content types (see ap-
pendix B). There are two ways of encoding DP
information, as proposed by Choubey and Huang
(2022). The first (DP Feature) appends the con-
tent type label directly, marked with a special to-
ken #. For instance, if the sentence represents a
main event, the label #M1# is appended to the sen-
tence. We obtained the same model-generated con-
tent type labels from Choubey and Huang (2022).
The second (DP Distillation) involves using model
distillation. In this approach, the model is equipped
with two decoders: one predicts the reference score,
while the other performs DP classification. The
training of both tasks occurs simultaneously, dis-
tilling the DP information into the underlying lan-
guage model.

4.1 Sentence Position Information
Sentence position information has proven valuable
in various tasks. For instance, the next sentence pre-
diction (NSP) task played a crucial role in training
BERT (Devlin et al., 2019), and similar techniques
have been shown to be effective for discourse anal-
ysis (Yu et al., 2022). In temporal dependency
parsing, previous work (Zhang and Xue, 2018a)
employed hand-crafted precedence features to en-
hance performance. In this study, we also present
two methods for encoding sentence position:

Sentence Position Feature (SPF) We experi-
mented with directly incorporating sentence posi-
tion information into the context sentence, in a man-
ner similar to the DP feature. For each sentence,
we prepend the context sentences with “Sentence
X:,” where X represents the sentence number.

Sentence Position Embedding Vaswani et al.
(2017) utilized sine and cosine functions with vary-
ing frequencies for token position encoding. We
extend this idea by proposing a sentence position
encoding (SPE; Equation 1), where pos denotes
the sentence number, i is the dimension, and dmodel
is the model’s dimension.

SPE(pos,2i) = sin(pos/100002i/dmodel)

SPE(pos,2i+1) = cos(pos/100002i/dmodel)
(1)

Since the SPE shares the same dimension as
RoBERTa’s word embeddings, they can be

summed. For the pairwise model, we add the SPE
of the event’s sentence to its event embedding. For
the joint ranking model, we directly add both SPEs
of both sentences to the pooler’s output. A post-hoc
classifier on RoBERTa itself serves as our baseline.

5 Experimental Results

5.1 Pairwise Prediction Results

The left side of Table 2 displays the performance
of the models with various types of discourse infor-
mation. Among the results, we can emphasize two
key comparisons. First, the addition of all kinds
of discourse information leads to a substantial
performance increase in the e2e parsing task;
however, it may result in a decline in performance
for the other two types. A contributing factor is
that the e2e task not only models temporal depen-
dency structure but also requires the model to learn
a shortcut heuristic that takes sequence length into
account. Upon closer examination, we discovered
that Yao et al.’s (2020) assumption that each event
can depend on at most one other event is not always
valid. It is common for an event to have multiple
parents. In such cases, the TDG annotation stan-
dard instructs the annotator to choose the event that
is closer in time. If this is not feasible, the annota-
tor should select the event that is closer in textual
order. Therefore, discourse information offers ex-
tra benefits for e2e parsing, regardless of the DP
encoding.

Second, SPE is the only information that leads
to performance improvements across all three
relation types, and it also yields the most signif-
icant performance increase. As previously dis-
cussed, DP information that is model-generated is
noisy. Moreover, the discourse structure of TDG
news articles is relatively simple. Surface-level sen-
tence position can be considered a reliable proxy
for the article’s discourse structure. For instance,
every news article in the TDG corpus begins with a
timex indicating the publication date of the article.
Additionally, the majority of the articles follow the
publication time with the lead sentence of the ar-
ticle. Directly incorporating the sentence number
into the article, however, does not produce the same
level of performance improvement. This outcome
is also expected, as a BERT-based language model
struggles with representing numbers (Wallace et al.,
2019).
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Model Pairwise Model Joint Ranking Model
Relation t2t e2t e2e t2t e2t e2e overall
Baseline 94.72 74.07 60.59 93.82 78.72 70.37 77.94

DP-F 94.55 76.64 70.79 94.59 76.91 70.99 77.15
DP-D 92.87 73.71 67.72 91.12 77.97 73.20 78.07
SPF 94.53 71.41 70.74 92.66 76.83 71.78 77.05
SPE 95.37 77.69 72.19 91.12 79.10 72.73 78.64

Table 2: Performance on different settings. Top performance of each segment is highlighted in bold.

5.2 Ranking Model Results
The right side of Table 2 presents the performance
of the ranking models. Once again, SPE achieves
the highest overall performance, showcasing the
effectiveness of this approach. Similar to the pair-
wise results, all models surpass the baseline for the
e2e task. Interestingly, with only a few exceptions,
the e2t and t2t performance of each model declines.
In addition to the previously mentioned reasons,
one contributing factor is the imbalanced distribu-
tion of the three relation types. The TDG corpus
contains 2,486 timexes and 14,779 events, resulting
in 20,862 t2t, 63,065 e2t, and 233,065 e2e potential
pairs in the training set. When all three types are
trained jointly, the model overfits on the e2t and
e2e relations, leading to performance disparities
across the three relation types.

Despite the issue of data imbalance, the bene-
fits of joint learning are substantial. All models
exhibit better performance on the e2t and e2e tasks
compared to their pairwise counterparts. The three
relation types are not disconnected; for instance,
events that depend on the same timex are likely to
depend on each other. Without joint learning, this
valuable TDG structural information is lost. There
are moreover several ways to better model struc-
tural information, such as the application of GNNs
(Ji et al., 2019), as well as methods to address the
data imbalance issue. We leave these topics for
future research.

6 Discussion

Before Choubey and Huang (2022), the relation-
ship between discourse and TIE had not been ex-
plored, and indeed our own experiments corrobo-
rate the value of their insight to incorporate dis-
course information into constructing document-
level temporal structures. Merely using the out-
put of a discourse system as an additional input
feature for document-level TIE may not be the
most effective strategy, however. A very superficial,

but novel sentence position embedding effectively
encodes surface-level sentence-order information,
and seems to be more reliable as a proxy for the dis-
course structure of news articles. Incorporating this
information leads to state-of-the-art performance
in TDG parsing.

The success of sentence-position embedding of-
fers a significant opportunity to bridge discourse
analysis and document-level temporal dependency
parsing. It suggests that we should not naïvely rely
on discourse information as a separate, modular
input source. Instead, the similarities between the
two tasks indicate that various techniques and in-
sights can be transferred and applied across both
domains, leading to more effective models and a
deeper understanding of the relationship between
discourse analysis and temporal dependency pars-
ing.
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Limitations

In accord with Choubey and Huang (2022), our
study focuses solely on the unlabelled performance
of TDG parsing. This implies that our evaluation is
limited to identifying reference temporal relations
without considering the classification of relation
types. We plan to explore the labelled TDG parsing
task in future research.
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Owing to resource constraints, our experiments
were conducted using only one type of language
model, RoBERTa-base. However, other models
such as BERT (Devlin et al., 2019), DeBERTa (He
et al., 2021), and ERNIE (Zhang et al., 2019) have
demonstrated impressive performance across var-
ious natural language understanding benchmarks.
We aim to evaluate these models in future research,
and we encourage other researchers to reproduce
our work using these alternative models.
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A Training Details

We follow Choubey and Huang’s (2022) experi-
ment setup. We first conducted a hyperparamter
search on learning rate using the baseline models.
In particular, we used 1e-5 for the t2t pairwise mod-
els, 3e-5 for the e2t and e2e pairwise models, and
8e-5 for the joint ranking models. We train each
model for 15 epochs, and report the test set perfor-
mance on the model with the highest development
set performance. RoBERTa-base is used as the
encoder for all the experiments. For the pairwise
model, we down sampled e2e labels by a factor of
10.

B DP Content Types

Choubey et al. (2020) specified eight DP content
types: Main event (M1), Consequence (M2), Previ-
ous Event (C1), Current Context (C2), Historical
Event (D1), Anecdotal Event (D2), Evaluation (D3)
and Expectation (D4).
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