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Abstract

Automatic Speech Recognition (ASR) in med-
ical contexts has the potential to save time,
cut costs, increase report accuracy, and reduce
physician burnout. However, the healthcare
industry has been slower to adopt this technol-
ogy, in part due to the importance of avoiding
medically-relevant transcription mistakes. In
this work, we present the Clinical BERTScore
(CBERTScore), an ASR metric that penalizes
clinically-relevant mistakes more than others.
We collect a benchmark of 18 clinician prefer-
ences on 149 realistic medical sentences called
the Clinician Transcript Preference benchmark
(CTP) and make it publicly available1 for the
community to further develop clinically-aware
ASR metrics. To our knowledge, this is the first
public dataset of its kind. We demonstrate that
our metric more closely aligns with clinician
preferences on medical sentences as compared
to other metrics (WER, BLUE, METEOR, etc),
sometimes by wide margins.

1 Introduction

Clinicians in a number of disciplines work in an
overburdened healthcare system that leads to dif-
ficult working environments and an epidemic of
physician burnout (Dzau et al., 2018). AI-related
technologies have the potential for improving ef-
ficiency on repetitive tasks, therefore increasing
both patient throughput and decreasing physician
burnout. For example, physicians in a number of
disciplines spend as much time doing paperwork as
with patients (Tai-Seale et al., 2017). However, the
adoption of speech technology in the medical com-
munity has been slow (Latif et al., 2021), and there
are a number of speech technologies that could
improve efficiency.

Speech technology can be applied to a number
of medical problems including transcribing patient-
physician conversations (Shafran et al., 2020), help-
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ing dysarthric patients communicate (Shor et al.,
2020), and diagnosing medical conditions from
speech (Shor et al., 2022; Shor and Venugopalan,
2022; Peplinski et al., 2021; Venugopalan et al.,
2021). In this work, we focus on the task of gener-
ating a report after a colonoscopy procedure.

One of many reasons for the lower adoption of
time-saving speech transcription technologies is
that the ASR systems often don’t perform as well in
real-world clinical settings as they do on evaluation
benchmarks. The most common metric for mea-
suring ASR performance, Word Error Rate (WER),
has significant practical drawbacks (Wang et al.,
2003; Morris et al., 2004; He et al., 2011). First,
all mistakes are treated equally. In clinical set-
tings, however, medical words are more important
(e.g. "had complete resection" → "had complete
c-section" is a worse mistake than → "has com-
plete resection", but both have equal WER). Sec-
ond, some mistakes affect the overall intelligibility
more than others (e.g. "was no perforation" →
"was no puffer age" vs "was not any perforation").
Although researchers have proposed alternatives
to the WER, no metric combines medical domain
knowledge with recent AI advances in language
understanding.

In this work, we make the following contribu-
tions:

1. Generate a collection of realistic medical sen-
tences and transcripts with plausible ASR errors
and collect preferences from 18 clinicians on
149 sentences. We publicly released this dataset
for reference and future studies. This is the first
public dataset of its kind.

2. Present the Clinical BERTScore (CBERTScore)
and demonstrate that it more closely matches
clinician preferences on medical transcripts than
other ASR metrics (WER, BLEU, METEOR,
BERTScore).

3. Demonstrate that CBERTScore does not per-
form worse than other metrics on non-medical
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transcripts.

2 Related work

There are a number of ways to evaluate transcript
quality. The Word Error Rate (WER), is the sim-
plest to compute and most common. It counts the
number of insertions, deletions, and substitutions
between two text strings, and normalizes by the
length of the reference string. The Bilingual Eval-
uation Understudy (BLEU) (Papineni et al., 2002)
measures the amount of n-gram overlap between
two text strings (where n is often 4). It captures the
intuition that groups of words are important in addi-
tion to individual words. METEOR (Banerjee and
Lavie, 2005) focuses on unigrams, but computes an
explicit alignment between two strings and takes
both precision and recall into consideration. While
these techniques are cheap to compute, they pri-
marily focus on character or string similarity, not
semantic similarity.

Our work most closely follows the BERTScore
(Zhang et al., 2019). This metric computes a neural
word embedding for each word in the reference
and candidate. Embeddings are matched using
cosine distance instead of string similarity, and the
final score takes precision and recall into account
(see Fig.1). This method takes semantic similarity
into account, but not that some words are more
important to preserve in clinical contexts.

Structured graphs are one way to encode real-
world knowledge in a machine-readable format.
The Knowledge Graph (KG) (Singhal, 2012) is a
publicly available structure that encodes medical
knowledge. Previous work has used the medical
subset of the KG to learn medical entity extraction
(Shafran et al., 2020). We primarily follow this
approach to determine which words are clinically
significant.

3 Methods

3.1 Clinical BERTScore
Our proposed metric, the Clinical BERTScore
(CBERTScore), combines the BERTScore (Zhang
et al., 2019) and the medical subset of the Knowl-
edge Graph (Shafran et al., 2020).

BERTScore is a relatively novel language gener-
ation evaluation metric proposed in (Zhang et al.,
2019) based on pre-trained BERT contextual em-
beddings. It is designed to capture semantic sim-
ilarity between two sentences, instead of sim-
ple string matching. Given a reference sentence

x = ⟨x1, ..., xk⟩ and a candidate sentence x̂ =
⟨x̂1, ..., x̂l⟩, we first represent each token by a con-
textual embedding, and then calculate the cosine
similarities between the tokens. Each token in the
reference sentence is matched to the most similar
token in the candidate sentence, and vice versa.
The former is used to compute the recall RBERT,
and the latter to compute the precision PBERT. Pre-
cision and recall are then combined into a single
score BERTScore as follows:

RBERT =
1

|x|
∑

xi∈x

max
x̂j∈x̂

xT
i x̂j ,

PBERT =
1

|x̂|
∑

x̂j∈x̂

max
xi∈x

xT
i x̂j

BERTScore = 2
PBERT ·RBERT

PBERT +RBERT

Building on this, we define CBERTScore:
CBERTScore(x, x̂) =k × BERTScoremedical(x, x̂)+

(1− k)× BERTScoreall(x, x̂)

, where 0 ≤ k ≤ 1

BERTScoreall is computed over all words in the
sentences, and BERTScoremedical is computed over
a subset of them that are medically relevant. If
there are no medical terms in either the reference
or candidate sentence, we define the CBERTScore
to be the standard BERTScore (on all words), i.e.,
k is set at 0.

We inject medical information into this metric in
two ways. First, we compute a weighted score on
a subset of words involving medical terms, as de-
termined by the Knowledge Graph (Shafran et al.,
2020). Second, we tune the weight of the clinical
term penalty to best match a clinician transcript
dataset (CTP) that we collected. We describe our
method for determining k in Sec. 3.1.2.

3.1.1 Medical Entities
Similar to (Shafran et al., 2020), we de-
rive roughly 20K medically relevant words
from Google’s Knowledge graph (Singhal,
2012). These words come from entities
with properties such as “/medicine/disease",
“/medicine/drug", “/medicine/medical_treatment",
and “/medicine/medical_finding". We also include
numbers for the CBERTScore algorithm, since
numerical accuracy is important in medical
contexts.

3.1.2 Tuning the medical entities weight factor
CBERTScore has a parameter controlling the
weight of the clinical component. To determine
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Figure 1: Left: Background of the clinicians who were surveyed to create the Clinician Transcript Preference (CTP) dataset.
Right: Some examples of triplet medical sentences, which transcript clinicians prefer, and which transcript scores better based
on different metrics.

this factor, we picked the best performing k on
the training subset of the Clinician Transcript Pref-
erence (CTP) dataset (Sec. 3.2). We evaluated k
using 11 points evenly spaced between 0 and 1, and
performed the evaluation methodology in Sec. 3.2
for each. We then used this value for all subsequent
results and analyses.

3.2 Clinician Transcript Preference (CTP)
Dataset

In order to compare CBERTScore’s agreement with
human preference, we sent out a Qualtrics survey
to elicit judgment specifically from clinicians2. We
call this dataset the Clinician Transcript Preference
dataset (CTP), and we make it publicly available
on the Open Science Framework (OSF). To our
best knowledge, this is the first publicly available
dataset with clinician preferences of transcript er-
rors.

We collected data on 150 sentences. They were
divided into three groups, each containing 50 trials.
18 subjects with clinical backgrounds responded
to more than half the questions. Fig. 1 (left)
describes clinician backgrounds. Each participant
was randomly assigned to a group to ensure ap-
proximately uniform response coverage. For each
trial, participants are given a ground truth sentence
and two “transcripts" and asked to select the less
useful one or to indicate the two are about the
same. An example of such a triplet is as follows:

“Patient elects to go under Propofol sedation."
#1: Patient elects to go under Prilosec sedation.
#2: Patient selects to go under Propofol sedation.

The survey was designed to take no more than 20
min to minimize the cognitive strain on partici-
pants. One sentence was malformed, resulting in
149 sentences for the final dataset.

2Broadly defined as a person with extensive clinical experi-
ence or from a clinical research background, for our purpose.

3.2.1 Constructing the CTP triplets
To generate the triplets of (target, transcript #1,
transcript #2) used in the survey, we started by
downloading publicly available YouTube videos on
colonoscopies created by GI physicians and edu-
cational institutes. The target sentences were tran-
scribed by Google’s publicly available Speech-to-
Text medical dictation model (Soltau et al., 2021)
and manually checked for accuracy. Filler words
such as “uh" and repeated words were edited out.
Sentences longer than 30 words or less than 5 were
discarded.

For each target sentence, transcript #1 was gen-
erated by one of Google’s other, non-medical, pub-
licly available ASR models. Transcripts with an
edit distance(edi) outside [1, 3] were discarded.
This procedure generated 1220 candidate sen-
tences.

To ensure that the two transcripts were roughly
comparable in terms of fidelity, transcript #2 was
generated synthetically. We used a publicly avail-
able English word frequency dictionary(Goldhahn
et al., 2012) to select words in the target sentence
that were candidates for synthetic errors. Candi-
date words were at least 5 characters, appeared in
the 1M word dictionary fewer than 10 times, and
were not proper nouns. 486 candidate sentences
matched these criteria. Finally, transcript #2 was
generated by deleting the candidate word or manu-
ally substituting it with a phonetically similar word
or phrase3. We discarded similar sentences and se-
lected 150 triplets for the final survey. The ordering
of the two transcripts was randomized, and so were
the sentences.

3.2.2 Evaluating metrics on the CTP
To compare the ability of different metrics to agree
with rater preference from the CTP, we define a

3A Python fuzz search algorithm based on CMU Pronounc-
ing Dictionary was used for consistency.
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Figure 2: Comparison of different metrics’ agreement with human rater transcript preferences. Process of deriving a prediction
from metric values is described in Sec. 3.2. In all plots, "CBERTScore1.0“ is the performance from only the medical term
component (k = 1.0 in Sec. 3.1). "CBERTScore0.4“ uses the optimal value of k according to the train set. Left: Agreements
with clinicians on the CTP benchmark when labels are derived using majority voting. Center: Agreements with clinicians on the
CTP benchmark when restricted to questions with unanimous answers. Right: Agreement with speech pathologist raters on the
non-medical dataset, when restricting the data to cases where there is a fidelity difference between two candidate transcripts.

3-class classification problem as follows:

Predicted better transcript(M)(gt, t1, t2) =



t1 M(gt, s1)−M(gt, s2) > l

t2 M(gt, s1)−M(gt, s2) < −l

same else

where M is an evaluation metric, gt is the ground
truth sentence, and ti are the transcripts. Note
the predictions are reversed for the WER, since
lower values indicate higher fidelity. l is a free
variable, which we optimize separately for each
metric. We split the data into two halves, choose
the best performing l on one half, and report the
accuracy using that l on the second half.

3.2.3 Non-medical sentences

To demonstrate that CBERTScore doesn’t degrade
on non-medical speech, we compare the metrics’
agreement with rater preferences on a dataset with
annotations similar to (Tobin et al., 2022). Part of
this dataset consists of 5-tuples of (ground truth
sentence, transcript 1, transcript 2, assessment 1,
assessment 2), where the sentence assessments de-
scribe how much of the ground truth sentence’s
meaning is captured in the transcript. We used a
subset of 103 utterances from our annotated data
where the ratings were not the same, and at least
one transcript was rated as having “Major errors".
We report performance using a similar formulation
as on the CTP evaluation in Sec. 3.2.2: we frame
this as a 2-way classification problem (no cutoff is
needed since we exclude tuples that have the same
rating).

4 Results

4.1 Clinician responses

18 clinicians responded to a total number of 149
triplet questions. Each question had 5 or 6 re-
sponses. 78% of questions had more than half
agreement on which transcript was less useful and
42% had more than 80% agreement. Clinicians
thought transcripts were the same usefulness in
21% of cases.

4.2 Metric agreement on medical text

We report 3-way accuracy classification on the CTP
dataset using two labeling schemes (Fig. 2). In the
first, we only look at the questions where more
than half the respondents agreed. In the second, we
report accuracy on the questions where more than
4/5 of the respondents agreed. For both numbers,
we determine the cutoff from one half the data and
report accuracy on the second half.

First, the metric ordering by performance is
the same using both labeling schemes, and the
best CBERTScore medical weighting factor was
the same using both label schemes. Second,
BERTScore and CBERTScore are significantly
more closely aligned with clinician preferences
than other metrics. Third, CBERTScore weighted
entirely toward medical terms outperforms or ties
with BERTScore agreement. Fourth, the weighted
combination of medical and non-medical terms
outperforms other metrics in terms of clinician
agreement. Fifth, the medical component meaning-
fully improves the performance of CBERTScore
over BERTScore (75.9% vs 67.2% and 87.5% vs
84.4%).
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Figure 3: Fraction of cases where metric Y is correctly con-
ditioned on metric X and Y disagreeing. An indicator of how
similar the pattern of mistakes is between metrics.

4.3 Metric agreement on non-medical text

CBERTScore was the second best-performing met-
ric on non-medical text. Importantly, the addition
of the medical component did not degrade the per-
formance compared to BERTScore.

5 Discussion

5.1 Knowledge Graph medical terms wins
and losses on the CTP

The CTP (Sec. 3.2) had 127 distinct words that
were the source of transcript errors, and 684 dis-
tinct other words. The medically-relevant terms
used in the CBERTScore algorithm, identified pri-
marily from the Knowledge Graph as described
in Sec. 3.1.1, intersected with 99 of the 127 tran-
script error words. By manual inspection, 25 of
the 28 transcript error words in the CTP not in-
cluded in the CBERTScore word list were used
in a medical context but were not only medical in
meaning (ex. “surveillance", “tethered", and “lon-
gitudinal"). 3 of the 28 missed words did have a
primarily medical meaning, but were not included
in the CBERTScore list either due to errors in the
KG or errors in the queries generating the list (“co-
loguard", “colonoscope", “protuberance"). Some
of the words have a clear meaning in a medical
context, and could be manually added to the list for
future applications (“snare", “suctioning", etc.).

The CBERTScore word list included 100 words
that weren’t selected for transcript errors. Many of
these are medical in nature, but were not selected
for synthetic transcript errors via the method de-
scribed in Sec. 3.2 (ex. “endoscope", “hypoplastic",
“lymphoma").

5.2 CBERTScore performance on the CTP

5.2.1 CBERTScore wins
Fig. 3 left shows the degree to which better-
performing metrics subsume other metrics, or make
a different pattern of mistakes. The plot shows
the (Metric Y correct)/(Metric X and Y disagree).
Metrics that have higher clinician agreement and a
high fraction on this plot are strictly better, whereas
metrics with higher agreement but a low value in
this plot indicate that another metric might have
an additional signal. We see that CBERTScore is
nearly strictly better than the other metrics, with
the possible exception of METEOR (when they
differ, METEOR gives the correct rating in roughly
a third of cases).

There were some triplets that CBERTScore got
correct that no other metric did. The improvements
over BERTScore always involved a medical term,
and sometimes involved encouraging the metric to
prioritize medical mistakes (ex. "Marked the site
with 5 cc's of indigo carmine.“ → "Marked the site
with 5 cici's of indigo carmine.“ vs "Marked the
sight with 5 cc's of indigo carmine.“)

There were thirteen triplets that the neural word
embeddings predicted correctly that other metrics
did not. Many of these wins came from the strength
of neural word embeddings penalizing less for se-
mantically similar mistakes (ex. "Small burst of
coagulation to create a darkish white ablation.“ →
"Small burst of coagulation to create a darkish
white oblation.“ vs "Small burst of coagulation
to create a dark white ablation.“). Furthermore,
BERTScore agreed with clinicians on some medi-
cal word mistakes, likely due to the BERT embed-
ding somewhat understanding when a transcript
error leads to a large semantic change in a medical
term (ex. "No ongoing infection or coagulopathy.“
→ "No on going infection or coagulopathy.“ vs
"No ongoing infection or glomerulopathy.“).

5.2.2 CBERTScore mistakes
Fig. 3 shows that METEOR made the most cor-
rect predictions when CBERTScore was incorrect.
Some mistakes are due to the KG medical list being
incomplete. For example, "longitudinal“ was not
included, but has medical meaning in clinical con-
texts (ex. "The longitudinal extent of the hot snare.“
→ "The long eternal extent of the hot snare.“ vs
"The longitudinal extend to the hot snare.“).

Another pattern of mistake is when a non-
medical adjective contains an error, but the ad-

5



jective modifies a medical term in an important
way. For example, "vessel“ is a medical term, but
"feeding“ is not (ex. "This polyp is at high risk of
bleeding, with multiple feeding vessels.“ → "This
polyp is at high risk of bleeding, with multiple
seeding vessels.“ vs "This polyp is at high risking
bleeding, with multiple feeding vessels.“). This
suggests that future work might include modifica-
tions and dependencies when calculating clinical
importance.

Finally, a third pattern of mistake involves the
fact that METEOR penalizes complex correspon-
dences between candidate and reference sentences,
while CBERTScore only considers the best pair-
wise word matches. One example in the CTP pre-
serves most of the words, but reorders them (ex.
"Inject into the head of the polyp, another 1 to 2
cc.“ → "Injectant the head of the polyp, another
1 to 2 cc.“ vs "Inject into the head of the polyp,
another 1 2 to cc.“).

6 Conclusions

We present CBERTScore, a novel metric that com-
bines medical domain knowledge and recent ad-
vances in neural word embeddings. We collect and
release a benchmark of clinician rater preferences
on transcript errors, demonstrate that CBERTScore
is more closely aligned with clinician preferences,
and release the benchmark for the research com-
munity to continue to improve ASR in medical
contexts.
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