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Abstract

The success of large language models (LMs)
has also prompted a push towards smaller mod-
els, but the differences in functionality and en-
codings between these two types of models
are not yet well understood. In this paper, we
employ a perturbed masking approach to inves-
tigate differences in token influence patterns on
the sequence embeddings of larger and smaller
RoBERTa models. Specifically, we explore
how token properties like position, length or
part of speech influence their sequence embed-
dings. We find that there is a general tendency
for sequence-final tokens to exert a higher in-
fluence. Among part-of-speech tags, nouns,
numerals and punctuation marks are the most
influential, with smaller deviations for individ-
ual models. These findings also align with
usage-based linguistic evidence on the effect of
entrenchment. Finally, we show that the rela-
tionship between data size and model size in-
fluences the variability and brittleness of these
effects, hinting towards a need for holistically
balanced models.

1 Introduction

Recent years have witnessed an exponential growth
in the size of language models, which has led to sig-
nificant improvements in their performance on var-
ious natural language processing tasks. However,
the reasons behind the remarkable success of LMs
remain elusive, and it is questionable whether fur-
ther growth will enhance their performance (Hong
et al., 2022). More recently, it has been shown that
small models can potentially learn linguistic struc-
ture equally well (Warstadt et al., 2020b; Zhang
et al., 2021; Huebner et al., 2021). Because of
neural network’s opaque functionality, the reasons
for these similarities and differences are not yet
well understood. While grammatical evaluation
suites (Warstadt et al., 2020a; Huebner et al., 2021;
Newman et al., 2021) focus more on model output,
evaluation approaches from the field of BERTology

(Rogers et al., 2020) try to address this problem by
studying the model’s internal representations and
mechanics. The present paper employs a perturbed
masking approach (Wu et al., 2020) to study the
influence of syntactic and constructional factors on
lexical influence in sentence embeddings, and their
differences between smaller and larger models.

To investigate these differences, we propose an
approach inspired by usage-based linguistics. In
the usage-based view, grammar is seen as emerg-
ing from language use and domain-general learning
mechanisms (Diessel, 2019). Constructions, form-
meaning pairings on all levels of linguistic analysis,
are seen as the essential building blocks of language
(Fillmore, 1988; Goldberg, 2003). Domain-general
processes that influence such construction gram-
mars are highly dependent on frequency effects in
the input. For example, repeated use of a linguis-
tic structure leads to it becoming more entrenched,
more unit-like, in a speaker’s “cognitive organiza-
tion” (Langacker, 1987, 59). As artificial neural
networks are domain-agnostic, statistical learners
that create their linguistic systems through repeated
use in the learning process, such effects attested
in human language users should also be present
in artificial learners. Consequently, usage-based
approaches should be able to provide new insights
on understanding the linguistic capabilities of lan-
guage models, and the differences between large
and small models (with different amounts of input)
in particular.

Within our usage-based framework, we explore
the influence that individual tokens have on the
embeddings of their sequence. In opposition to
grammatical test suites that challenge LLMs’ abil-
ities on very specific phenomena and structures,
we aim to explore and analyze the linguistic abil-
ities of LMs in terms of general positional and
constructional factors and influences in their rep-
resentations. Furthermore, by comparing these as-
pects for models trained on different amounts of
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linguistic data, we aim to find out whether, and
if so, how fast constructional entrenchment and
generalizations may arise. Because their repre-
sentations are shaped by less input data, smaller
models may exhibit less entrenchment effects, and
be thus more brittle and sensitive. By comparing
the most influential parts of speech for the mod-
els and construction types, we aim to find out on
which grammatical categories the sequence embed-
dings depend the most and whether this is changed
through the amount of training data. Finally, the
frequency and information effects should affect the
representations diametrically. The present analysis
will tell if any effect is stronger in larger LMs.

Generally, we find that LMs of all sizes have
a bias towards attributing more weight/influence
to tokens at the end of a sentence, which aligns
with the information-driven aspect of the linguistic
theory. However, although there are construction-
dependent differences, this effect does not vary sys-
tematically between the construction types. This is
surprising, considering their differences in lexical
specificity. Furthermore, we find that this bias is
influenced by model size, but not in a linear fashion.
Finally, we find that all models assign the highest
importance to lexical words, especially nouns. In
this sense, our results suggest that entrenchment
as a property of statistical learners does indeed
map from usage-based theories to artificial learners.
Yet, its interplay with model structure and learn-
ing processes remains complex and not completely
transparent.

2 Motivation for usage-based approaches
to LMs

Established evaluation suites for grammatical abili-
ties (Warstadt et al., 2020a; Huebner et al., 2021;
Newman et al., 2021) often work by focusing on
models’ preferences for grammatical utterances
over their ungrammatical counterparts. These tech-
niques are inspired by a rather strict generative
view of language, which assumes a pre-endowed
human language faculty that generates grammat-
ical strings of words from a hypothesized men-
tal hierarchical structure (Chomsky, 1957, 1965).
If the goal of neural language modelling was to
recreate this, then only testing on phenomena like
binding or filler-gap relations would be sufficient.
However, alternative approaches to linguistic the-
ory question these notions. The usage-based ap-
proach sees grammar as a fuzzy mental model of

language that is constantly shaped and re-shaped
by domain-general cognitive mechanisms, such as
automatization, entrenchment or analogy, through
input and usage (Tomasello, 2003; Diessel, 2019).
The resulting mental representations in the form
of linguistic constructions are influenced by fre-
quency effects. For example, forms that are per-
ceived and produced more often are more deeply
entrenched in mental grammar (Schmid, 2015). On
the syntactic level, such effects have syntagmatic
and paradigmatic dimensions. The syntagmatic
dimension refers to which elements occur sequen-
tially, whereas the paradigmatic dimensions is con-
cerned with the variation possible for certain po-
sitions/slots in syntagms. Constructions exhibit
different levels of such variation. For example, wh-
questions like Where is the butter? only have a lim-
ited number of options for the question word (first
slot) or the auxiliary (second slot), whereas the last
slot can be filled by any noun. These variation ef-
fects manifest in different phenomena. Research
from child-directed speech shows that spoken lan-
guage is organized around lexical frames, lexically
restricted sentence beginnings that occur with a
much higher frequency than their lexically diverse
counterparts, and which differ for syntactic con-
struction types (Cameron-Faulkner et al., 2003).
While the possible linguistic variation in language
production is quasi-infinite, speakers rely on highly
frequent, mentally automatized combinations to
initiate utterances. This preference is commonly
related to ease of production, a factor that is also
realized in phonetic reduction or syntactic contrac-
tion of high frequency units (Bybee and Thompson,
1997). Such producer-oriented factors grounded in
automatization and entrenchment are, however, not
the only usage-based variables shaping variation in
utterance production. For example, the information
weight principle (Behaghel, 1930; Quirk, 1972;
Arnold et al., 2000) posits that new information
and longer, “heavier” constituents in English are
commonly placed at the end of utterances, which fa-
cilitates communicative ease from a hearer-oriented
perspective. Such aspects only play a very minor
role in current approaches to evaluating the gram-
matical abilities and behaviour of LMs, although
they share many underlying concepts these models.
Consequently, a new, usage-based paradigm to the
evaluation and analysis of LLMs is needed, as it
enables new insights that are not derivable from
current approaches.
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3 Related work

Although perturbed masking, the analysis of model
architecture or size, and contructionist/usage-based
approaches to NLP have had little to no overlap
in previous research, they have been used for in-
sightful analyses on their own. The following para-
graphs offer a short review of the current literature
in these research directions.

Perturbed masking Wu et al. (2020) show that
perturbed masking can be used to retrieve depen-
dency trees, constituency trees and document-level
discourse structures by inducing tree structures
from influence matrices, based on tokens connected
by higher influence values. While not as exact
as other parsing approaches, they showed that
BERT-based representations already encode syn-
tactic structure. Taktasheva et al. (2021) investigate
the influence of syntactic perturbations through po-
sition shifts of syntactically grouped n-grams and
clauses inside sentences for English, Swedish and
Russian BERT models. They find that the pertur-
bation patterns vary for languages with different
degrees of word order flexibility and that syntac-
tic representations can be better restored from lan-
guages with fixed word order (e.g. English). In
an earlier approach, the NLIZE (Liu et al., 2019a)
system visualized perturbation-based changes in
attention heads and output weights for natural lan-
guage inference tasks. The approach has not yet
been used for construction-oriented analyses or the
investigation of smaller models.

Model size Differences between smaller and
larger models have only begun to get systemati-
cally investigated, and existing studies have arrived
at somewhat contradictory conclusions. Warstadt
et al. (2020b) trained a variety of RoBERTa models
with growing amounts of data, ranging from 1M to
1B tokens. They show that only larger models be-
gin to exhibit preferences for linguistic generaliza-
tions over surface generalizations. The additional
amount of data appears crucial for this difference.
In contrast, the BabyBERTa model (Huebner et al.,
2021) restricts the model size, number of inter-
mediate layers and attention heads. Its training
data is comparably small and was sampled from
child-directed speech from the CHILDES corpora.
Despite these limitations, its performance across
their own evaluation suite, Zorro, is similar to the
much larger RoBERTa-base model, questioning if
ever larger amounts of data are actually needed, or

whether the combination of hyperparameters and
training data is actually responsible for emergent
generalizations.

Construction grammar More recently, LLMs
have also begun to be investigated from a construc-
tion grammar viewpoint. Tayyar Madabushi et al.
(2020) show through a series of probing experi-
ments that BERT embeddings already contain in-
formation that could be seen as constructionist, for
example by being able to successfully determine
whether two sentences with little to no lexical over-
lap instantiate the same grammatical construction.
Tseng et al. (2022) fine-tune a BERT model for a
cloze completion task on open slots in Taiwanese
Mandarin constructions and show that it improves
performance. Moreover, sentences that instantiate
the same construction tend to be spatially closer in
the vector space than sentences with different con-
structions but the same main verb (Li et al., 2022).
However, it remains questionable how applicable
such knowledge is, as Weissweiler et al. (2022)
find that LLMs fail to deduce conclusions from
the comparative correlative construction in an infer-
ence task. Finally, Weissweiler et al. (2023) sum-
marize the previous line of constructionist inquiry
into LLMs. They find that current research has
focused on only a very limited set of constructions
and that there are differences in what is assumed
to be evidence for the presence of constructionist
information in LLMs. Consequently, they call for a
diversification of constructionist research in terms
of data sources and methodology. The present pa-
per responds to this call by investigating construc-
tions as processing units and their influence on se-
quence embeddings. By employing constructions
as an additional analytical factor, not as the end
point of the analysis, we expand on this previous
research.

4 Methods

4.1 Perturbed masking
We use Wu et al.’s (2020) perturbed masking ap-
proach to calculate the influence of a token x on its
sequence. This approach is adequate as a measure
of influence because it captures the global influence
patterns between all token pairs in a sequence, and
not only the influence of one token on the entirety
of a sequence.

1. For each other token y in the sequence:

(a) y is replaced with the <mask> token
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i can see two of the books over there
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Figure 1: Influence heatmap for the sentence I can see
two of the books over there encoded with roberta-base

(b) the sequence embedding sy with masked
y is computed

(c) x is additionally replaced with the
<mask> token

(d) the embedding sx,y for the sequence with
both x and y masked is calculated

(e) the vector distance d between sy and sx,y
is calculated to measure the influence of
x on the embedding of y

2. By averaging the distances d between token
x and all other tokens y, an average influence
value of x on the sequence is acquired

We use the penultimate layer of the BERT mod-
els as the source of our embeddings, as Devlin
et al. (2019) report that these embeddings perform
consistently well across a variety of tasks.

By examining how certain tokens impact their
embeddings more significantly, we can assess the
degree to which these tokens become deeply em-
bedded (or entrenched) in the learning model. To-
kens with a stronger influence on their embeddings
are indicative of greater entrenchment, reflecting
their increased importance and resistance to modi-
fication within LMs.

4.2 Test data
We chose naturally occurring sentences from the
CHILDES family of corpora (MacWhinney, 2000)
as the basis of our analysis. They are especially
suited to this experimental setup, because the vo-
cabulary of child-directed speech is restricted to
fairly frequent words that should be present in all
models’ training data, and the individual sentences
are rather short and syntactically not overly com-
plex, yet grammatical. Due to the uniform nature
of child-directed speech, we also control for the

influence of highly unusual or infrequent words
that could disproportionately affect the perturba-
tion data.

We sampled a data set of 3.000 test sentences
from the English section of CHILDES – 1.000 sen-
tences per construction type of interest. They were
retrieved from the corpus through pattern matching
on part-of-speech-tagged data. We annotated the
CHILDES data with 14 different construction types
inspired by Cameron-Faulkner et al. (2003) with
a construction parser that operates on word class
patterns. We chose three focus constructions1 –
imperatives, wh-questions and transitive sentences.
We decided on these construction types because
they differ in their word order (and its strictness), as
well as in their lexical variation (Cameron-Faulkner
et al., 2003). While transitives, for example, have
a near-infinite amount of possible beginnings, wh-
questions are constrained to the word class of in-
terrogatives. This variation in syntactic and lexical
patterns should shed additional light on positional
and other entrenchment effects – focusing on one
construction type only could taint the results by
being biased from these factors.

Our parser retrieved the construction types with
an accuracy of over 93% compared against a manu-
ally annotated ground-truth data set. For each con-
struction type of interest, we then sampled 1.000
sentences randomly. To reduce variation intro-
duced by different sentence lengths or patterns of
clausal combination, only utterances with nine to-
kens or less were considered. The mean utterance
length lies a little below that (M = 5.84, SD = 1.38),
with wh-questions being the shortest (M = 5.20,
SD = 1.54), transitive sentences being the longest
(M = 6.28, SD = 1.25) and imperatives in between
(M = 6.06, SD = 1.06).

4.3 Models

To maintain comparability of model architecture,
we exclusively analysed models with RoBERTa ar-
chitectures. These include the two original roberta-
base2 and roberta-large (Liu et al., 2019b) models,
the distilled distilroberta-base (Sanh et al., 2020)
as well as models trained with different amounts
of input by Warstadt et al. (2020b). The model
properties are compared in Table 1. The training
data for all models was sourced from a combina-

1The respective patterns for the three constructions can be
found in appendix A.

2For the rest of this paper, we denote the models by their
lowercase names.
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Hidden layers Parameters Attention heads Embedding size Training data
roberta-base 12 125M 12 768 30B tokens
roberta-large 24 355M 16 1024 30B tokens
distilroberta-base 6 82M 12 768 30B tokens
roberta-med-small-1M 6 45M 8 512 1M tokens
roberta-base-10M 12 125M 12 768 10M tokens
roberta-base-100M 12 125M 12 768 100M tokens
roberta-base-1B 12 125M 12 768 1B tokens

Table 1: Hyperparameters of target models

tion of BookCorpus, English Wikipedia, CC-News,
OpenWebText, and Stories dataset, and sampled
down for the smaller models.

Although all of these eight models are large LMs,
some of them can be considered “small” for the
sake of the present analysis. roberta-med-small-
1M features a reduced architecture and smaller
dataset (1M tokens), whereas roberta-med-small-
10M only has a smaller dataset (10M tokens) but
no reduced architecture. Finally, distilroberta-base
has a smaller architecture that was later fine-tuned
to mirror the larger roberta-base (based on 30B to-
kens). Consequently, the first two models can be
considered small in terms of architecture and data,
whereas the latter are small in data or architecture.
BabyBERTa was excluded from the analysis be-
cause its training data contains a part of the test
data we used.

4.4 Experimental setup

For all 3.000 sentences and all 7 models, we per-
form perturbed masking with the transformers li-
brary (Wolf et al., 2020). Figure 1 shows the result
of one perturbation run on the sequence I can see
two of the books over there. The influencing words
are shown on the x-axis, the influenced words on
the y-axis. A higher numerical value, shown by
brighter-colored cells, stands for a larger vector dis-
tance between the once and twice masked sequence
embeddings. This indicates that the respective in-
fluencing word exerts a higher influence on the em-
bedding of the influenced word – it changes its nu-
merical values more strongly. As Wu et al. (2020)
note, these patterns often align with grammatical
relations. For example, books as the grammatical
object here exerts the most influence on I, see and
two – the subject and predicate in the sentence and
a numeral that defines it.

We average the influence values per column,
which gives a measure of the average influence
a token exerts on its sentence embedding. For each
token, we store this influence value together with

its part-of-speech tag, tagged with spaCy (Honnibal
et al., 2020). For all LMs, we fit a linear regres-
sion model for the influence value as a dependent
variable, with the following independent variables3

with statsmodels (Seabold and Perktold, 2010):

• Token position, to investigate whether a posi-
tion bias exists

• Token length (in characters), to see how differ-
ent parts of speech and/or higher information
content affect the influence

• Sequence length (number of tokens), to see
how longer sequences affect influence values

• Construction type, to see whether paradig-
matic and syntagmatic differences mediate
these effects

Furthermore, we calculate the average in-
fluence for part-of-speech categories for all
model/construction combinations.

5 Results

5.1 Regression analysis
Table 2 shows the linear models for each investi-
gated language model, reporting the intercept and
the regression coefficients for token position, word
length, sentence length, the construction type, and
the R2 for the respective regression. For the con-
struction type, imperative sentences form the base-
line, while the other two types were included as
categorical variables, which means that their corre-
sponding results signify their relative impact com-
pared to the influence values for the imperative
sentences. The test statistics of all models’ F-tests,
as well as those of the t-tests for all values, were
statistically highly significant (p < 0.001). We
acknowledge that this significance might also be
caused by the high number of data points available.

3Position, token length and sequence length were normal-
ized to values in the range [0; 1] before fitting the linear re-
gression models.
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Figure 2: Regression lines for token position, word length and sentence length (calculated independently), with the
influence value as the dependent variable

roberta-
med-small-
1M-1

roberta-
base-10M-
1

roberta-
base-
100M-1

roberta-
base-1B-1

roberta-
base

roberta-
large

distilroberta-
base

(intercept) 4.871 5.367 3.188 2.115 2.012 2.186 1.478
token position 2.351 1.225 0.373 0.557 1.009 1.818 0.675
word length 1.075 0.978 0.538 0.834 1.287 2.129 0.883
sentence length -0.932 -1.959 -1.210 -0.712 -0.550 -0.909 -0.402
cxn = wh-question 0.158 0.847 0.263 0.216 0.057 0.123 0.122
cxn = transitive 0.206 0.582 0.208 0.109 0.090 0.190 0.090
R2 0.372 0.506 0.388 0.264 0.373 0.409 0.428

Table 2: Summary of parameter estimates for the logistic regression models across RoBERTa models of different size
(column order roughly corresponds to model size). The response variable corresponds to the calculated influence
values per word. The baseline for the categorical variable “construction” (cxn) are the imperative sentences included
in the data set.

Across all models and constructions, the to-
ken position has a positive effect on the influence
value. The same can be said for word length. This
means that, for the current experiment, small and
large LMs have a clear and systematic preference
for putting more weight on sequence endings and
longer words. This effect, to the best of our knowl-
edge, has not been described before. Interestingly,
for the two smallest models, the regression coef-
ficient is larger for token position than for word
length, a relation that is reversed for all other mod-
els trained on more data. Sentence length has a
constantly negative effect on the influence value
– longer sequences thus lower the influence val-
ues of their contained tokens. The effects of con-
struction type on the influence value are generally
positive, which points towards individual words’
influence being higher in transitive sentences and
wh-questions, when compared to the baseline (im-
peratives). These tendencies with regard to con-
structions are stable across all models.

Figure 2 shows model-wise regression lines only
incorporating token position or word length or sen-
tence length. The two models trained with the least
amount of data (1M and 10M tokens) have the high-
est absolute influence values. This is also reflected

in the comparatively high intercepts reported in Ta-
ble 2. The other models’ values are roughly equiva-
lent. Interestingly, word length alone has a slightly
negative effect for the two smallest models (1M
and 10M). When incorporating all variables in the
regression model, as in Table 2, this tendency is re-
versed. It is plausible that other interaction effects
exist between the independent variables, which fur-
ther underlines the importance of accounting for
all of them in the regression model.

Finally, the R2-values as goodness-of-fit mea-
sures exhibit considerable variation between the
models. Training data and model size appear to
play a certain role, as roberta-base-10M, the model
with the least amount of data learned with a non-
reduced architecture, features the highest R2-value.
However, the 10M model also features (by far)
the largest regression coefficients for the construc-
tion types. Overall, the values range from 26.4%
for the roberta-base-1B model to 50.6% for the
10M model. This shows that, although position,
word length, sentence length and construction type
cannot function as the sole predictors of influence
values, they are influential variables under certain
circumstances, possibly mediated by architectural
factors beyond the scope of the present analysis.
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Crucially, there is no linear relationship between
the amount of training data, the model size and the
goodness-of-fit, hinting towards an interconnected-
ness and/or more or less “fitting” combinations of
internal factors like number of layers or attention
heads, and model size.

5.2 Impact of construction type on
part-of-speech influence

General overview In addition to the regression
analysis, we calculated the average influence val-
ues on the part-of-speech level. These values are
shown in Tables 3, 4 and 5, with the top three/four
highest values set apart in bold face. Across all
construction-model combinations, nouns, proper
nouns and punctuation symbols are consistently in-
fluential.4 For the models trained on more data,
verbs are quite influential as well (at least for
transitive sentences and wh-questions). For wh-
questions and imperatives, also numerals are spo-
radically in the top three. Overall, the three dif-
ferent construction types show a similar, but still
variable picture. Regarding model size, it is in-
teresting to note that the smallest and the largest
models (and distilroberta-base) tend to have their
own, fairly stable rankings, whereas the most out-
liers occur in the medium-sized models.

Wh-questions The data for the wh-question in
Table 3 is the least straightforwardly interpretable
– only proper nouns are consistently influential.
Apart from that, a contrast between the small-
est/largest models and the medium-sized ones is
noticeable. The smallest/largest models feature
nouns and punctuation marks as most influential,
whereas the medium models show larger influence
values for numerals, verbs, and also (once) for ad-
verbs and auxiliaries.

Transitive sentences For the transitive sentences
(Table 4), nouns and punctuation marks are con-
stantly among the most influential parts of speech.
Here, a division can be drawn between the smaller
and larger models. Whereas smaller models focus
more on proper nouns, the larger models feature
high influence values for verbs. For the roberta-
base-1B model, one outlier is the auxiliary tag al-
ready found in the wh-question data.

4The X tag for unknown part of speech was consistently
strong as well. A closer inspection of the dataset yields that the
respective tokens are family-internal onomatopoeia or similar
phonetic descriptions, which most probably are absent from
the training data and thus qua definitionem more influential.
Consequently, they were not set apart in bold face.

Imperatives The data for imperative sentences in
Table 5 once more features punctuation and nouns
as the most influential. Proper nouns are also highly
influential, except for the two medium-sized (100M
and 1B) models, where pronouns and auxiliaries
also play a role.

6 Discussion

The present analysis in section 5.1 has shown that
token position, word length and sequence length
strongly affect sequence embeddings in terms of
the influence of their lexical elements (viz. tokens).
The general effect of token position on token influ-
ence is positive and stable across seven different
RoBERTa models. All models exhibit a sequence-
ending bias for the influence values. However, the
effects exhibit variable strength. One reason for
this could lie in the model size (training data, hy-
perparameters and model internals) – the effects
(and the absolute influence values) are higher for
smaller models but also for the largest model.

Apart from the token position, word length also
has a constantly positive effect on the influence
value. Longer words are thus more influential. The
Zipfian law (Zipf, 1935) posits an inverse relation-
ship between word frequency and length. As the
most frequent words tend to be function words, the
positive effect of word length on the influence value
could also hint towards the higher informational
content of longer words. Piantadosi et al. (2011)
find a high correlation between word length and in-
formational content for words in English, Swedish
and German.

The negative impact of the sentence length could
be caused by more tokens having to “share” the in-
formational content of the whole sequence, which
is then divided between all of them. The positive
influence of the non-imperative sentences allows
a ranking of construction type influence, where
the effect is the weakest for imperatives, stronger
for transitives and the strongest for wh-questions.
From a linguistic point-of-view, the reasons for
this remain elusive. Wh-questions and impera-
tives have more syntactically and lexically-fixed
constructional schemas than transitive sentences.
There is a possible connection between the func-
tional aspects of imperatives and their reduced in-
fluence values, because they usually trigger real-
world actions. In contrast, the information-driven
functions of (information-demanding) questions
and (information-conveying) regular transitive sen-
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tences could impact their tokens’ influence values
positively.

When directly comparing the parts of speech,
construction types do not seem to hold much ex-
planatory value either. There is no systematic vari-
ation between their preferred parts of speech. In
contrast, nouns, proper nouns, numerals and punc-
tuation marks are consistently important across the
types. Outliers are sporadic, only the higher in-
fluence of verbs in transitive sentences embedded
through models with more training data is some-
what systematic. Importantly, including positional
information is an active research topic in contem-
porary NLP (see Dufter et al., 2022 for a survey).
The present results suggest that the token influence
patterns already encode positional information, al-
though transformers are theoretically invariant to
the reordering of tokens in a sequence.

Comparing the data from a model-oriented per-
spective yields interesting, although ambiguous and
inconclusive results. The smallest models (in terms
of architecture and training data), as well as the
largest models (in terms of training data) stabilize
in different ways with regard to their most influ-
ential parts of speech. The medium-sized models
(in terms of training data) exhibit more variation,
focus on more exotic parts of speech and the corre-
sponding linear regressions have a somewhat lower
goodness-of-fit as well as lower overall regression
coefficients. Crucially, it seems that for a stable and
predictable functionality, a certain match between
model size in terms of internal architecture (hidden
layers, attention heads, etc.) is needed. Small data
needs smaller models, and large data needs larger
models. If these factors do not match, the represen-
tations become brittle and potentially less useful for
downstream tasks. The concrete make-up of such
matching combinations still needs more empirical
scrutiny. For example, the model with the high-
est R2, roberta-base-10M, also features the highest
regression coefficients for the construction types.
This relationship does not stabilize across the other
model-data combinations, with no discernible rea-
sons identifiable from the present analysis.

Also, as further empirical results show that
the processing in LMs mirrors traditional NLP
pipelines along the layers of linguistic process-
ing (Tenney et al., 2019), the value of LMs for
studies of linguistic processing has been put to
question (Linzen and Baroni, 2021; Warstadt and
Bowman, 2022). Pannitto and Herbelot (2022) ar-

gue that neural networks should also be used to
investigate usage-based theories of language. The
present study has added to this emergent field by
showing that findings from usage-based linguistics
on the importance of sequence order to language
use are indeed mirrored in transformer-based LMs.
However, the construction-level effects proposed
in linguistic literature could not be completely ver-
ified. This might be due to the very different na-
ture of language acquisition in humans and the
training procedure in ANNs. Training only mir-
rors the frequency-driven aspect of usage-based
linguistics. Other aspects like embodied cognition
or the functional dimension of language, which
can also be linked to construction types (e.g. in
Cameron-Faulkner and Hickey (2011)), are miss-
ing. Remarkably, function words are not as influen-
tial as lexical words. Their structural predictability
could be an influence factor in this case. Construc-
tions are usually conceptualized as structures with
open slots. Here, paradigmatic variation is much
higher for lexical words, which are also more in-
fluential for models. However, the great amount
of variation suggests that not all LMs learn the ex-
act same structures, with inadequate data/model
matchings leading to more brittle representations.
Dąbrowska (2012) argues that the grammatical sys-
tems of adult speakers do not completely align with
each other – they are only similar enough to enable
effective communication. Judging from our results,
the grammatical systems in language also feature
different sensitivities to factors like word length
or sequence length. This could point to learning
with fitting parameter combinations being more
human-adequate, as the linguistic and architectural
effects on LMs are gradient in nature (a feature they
share with human language processing and usage).
Most importantly, this analysis has shown that the
trade-offs between data size, model internals, and
stable performance deserve further recognition and
investigation, because mismatched combinations
may lead to unstable or brittle representations.

7 Conclusion

Our investigation shed light on the functionality
of LMs from a usage-based perspective, and has
shown that concepts from usage-based linguistics,
like entrenchment, can be used fruitfully in the anal-
ysis of such LMs. We discovered that frequency-
driven factors, as well as information weight, play
a significant role in these models’ encodings. No-
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tably, the models exhibit a bias towards the ends of
sequences, with the influence of tokens positively
correlated with their length and information-rich
parts of speech, such as nouns. However, these
effects weaken in longer sequences. The high vari-
ation across our statistical models’ R2-values hints
at additional factors beyond entrenchment being
at play when determining token influence on se-
quence embeddings. Still, our findings suggest
that human learners and artificial learners share
similarities, as both processes are influenced by
frequency and information effects. Significant dif-
ferences in influence values between construction
types indicate a need for further research to inter-
pret these differences linguistically. Additionally,
our study explored the similarities and differences
between models trained with varying amounts of
data. While general effects remain similar, there
is increased volatility, especially in preferred parts
of speech, with shrinking data size. A non-linear
relationship between the amount of training data,
model architecture, and effect sizes/goodness-of-fit
was observed. This highlights the need for deeper
investigations into the optimal combinations of data
and other hyperparameters.

Limitations

The present study is limited by the availability of
models with different, yet comparable (e.g. in
terms of training data or traceable stepwise adjust-
ment) training regimens. More empirical results
with regard to data size and model internals, investi-
gated in a systematic and controlled way, are clearly
needed. Furthermore, it would also be interesting
to additionally look into the perturbation patterns
for different layers in LMs, which could further
illuminate the ways in which structural sensitivity
mirrors the levels of human linguistic processing.
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B Full influence values for all construction types

part of
speech

roberta-
med-small-
1M

roberta-
base-10M

roberta-
base-100M

roberta-
base-1B

roberta-base roberta-
large

distilroberta-
base

ADJ 5.4 5.78 3 2.47 2.69 3.62 1.96
ADP 5.28 5.09 2.9 2.32 2.42 3.12 1.85
ADV 5.66 5.64 3.24 2.47 2.68 3.54 1.97
AUX 5.45 5.62 3.06 2.81 2.52 2.88 1.8
CCONJ 4.47 4.25 2.07 1.05 1.26 1.39 0.94
DET 4.56 4.97 2.76 2.1 2.06 2.45 1.58
INTJ 4.13 4.35 2.42 1.22 1.45 1.44 1.19
NOUN 5.71 5.77 3 2.4 2.76 3.66 2.03
NUM 5.7 5.88 3.17 2.56 2.66 3.74 1.95
PART 5.47 4.65 2.63 2.09 2.21 2.87 1.65
PRON 4.64 5.44 2.82 1.98 2.08 2.26 1.6
PROPN 6.37 6.57 3.46 2.56 2.76 3.73 2.14
PUNCT 8.27 6.74 3.1 2.46 2.73 3.56 2.07
SCONJ 4.12 4.89 2.63 1.32 1.76 1.41 1.42
VERB 5.54 5.85 3.11 2.6 2.77 3.6 1.98
X 7.15 6.96 3.36 3.09 3.16 3.92 2.29
(mean) 5.50 5.53 2.92 2.22 2.37 2.95 1.78

Table 3: Average influence values for wh-questions

part of
speech

roberta-
med-small-
1M

roberta-
base-10M

roberta-
base-100M

roberta-
base-1B

roberta-base roberta-
large

distilroberta-
base

ADJ 5.93 5.36 2.79 2.26 2.57 3.35 1.9
ADP 5.59 4.64 2.65 2.04 2.32 2.99 1.79
ADV 5.85 5.25 2.78 2.25 2.47 3.15 1.83
AUX 5.71 5.24 2.77 2.31 2.28 2.89 1.7
CCONJ 4.62 4.48 2.4 1.23 1.39 1.55 1.09
DET 5.34 4.68 2.63 2.02 2.12 2.64 1.6
INTJ 4.55 4.49 2.4 1.36 1.53 1.57 1.23
NOUN 6.38 5.69 2.91 2.3 2.8 3.54 2.03
NUM 5.86 5.3 2.69 2.26 2.52 3.18 1.81
PART 5.33 4.18 2.39 1.85 2.09 2.49 1.65
PRON 5.32 5.07 2.68 1.96 2.24 2.49 1.56
PROPN 6.6 6.02 3.09 2.23 2.61 3.2 1.91
PUNCT 6.44 6.13 3.09 2.16 2.66 3.41 1.92
SCONJ 4.52 4.36 2.44 1.47 1.67 1.63 1.29
VERB 5.59 5.36 2.92 2.46 2.65 3.42 1.92
X 7.19 6.1 2.98 2.41 2.88 3.6 2.11
(mean) 5.68 5.15 2.73 2.04 2.30 2.82 1.71

Table 4: Average influence values for transitive sentences



37

part of
speech

roberta-
med-small-
1M

roberta-
base-10M

roberta-
base-100M

roberta-
base-1B

roberta-base roberta-
large

distilroberta-
base

ADJ 5.87 5.25 2.93 2.32 2.75 3.44 1.93
ADP 5.74 4.86 3.03 2.36 2.55 3.36 1.87
ADV 6.03 5.4 3.05 2.35 2.64 3.36 1.88
AUX 5.72 5.26 2.69 2.08 2.24 2.81 1.68
CCONJ 5.16 4.74 2.65 1.83 1.92 2.44 1.35
DET 5.52 4.8 2.89 2.3 2.33 2.85 1.71
INTJ 4.99 4.76 2.5 1.55 1.73 1.89 1.37
NOUN 6.73 5.71 3.06 2.43 3.09 3.89 2.16
NUM 5.96 5.45 2.92 2.47 2.73 3.57 1.9
PART 5.44 4.33 2.61 1.94 2.12 2.48 1.54
PRON 5.67 5.23 2.91 2.43 2.56 3.22 1.78
PROPN 6.89 5.96 2.94 2.34 2.9 3.66 2.05
PUNCT 6.75 6.19 3.22 2.29 2.76 3.57 1.98
SCONJ 5.26 4.77 2.75 2.17 2.48 3.07 1.75
VERB 4.91 5.15 2.95 2.17 2.29 2.57 1.67
X 7.6 6.26 3.45 2.79 3.15 4.03 2.36
(mean) 5.89 5.26 2.91 2.24 2.52 3.14 1.81

Table 5: Average influence values for imperatives


