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Abstract

This paper investigates how Transformer lan-
guage models (LMs) fine-tuned for accept-
ability classification capture linguistic features.
Our approach uses the best practices of topolog-
ical data analysis (TDA) in NLP: we construct
directed attention graphs from attention matri-
ces, derive topological features from them, and
feed them to linear classifiers. We introduce
two novel features, chordality, and the match-
ing number, and show that TDA-based clas-
sifiers outperform fine-tuning baselines. We
experiment with two datasets, COLA and RU-
COLA,1 in English and Russian, typologically
different languages.

On top of that, we propose several black-box
introspection techniques aimed at detecting
changes in the attention mode of the LMs dur-
ing fine-tuning, defining the LM’s prediction
confidences, and associating individual heads
with fine-grained grammar phenomena.

Our results contribute to understanding the be-
havior of monolingual LMs in the acceptabil-
ity classification task, provide insights into the
functional roles of attention heads, and high-
light the advantages of TDA-based approaches
for analyzing LMs. We release the code and
the experimental results for further uptake.2

1 Introduction

Language modelling with Transformer (Vaswani
et al., 2017) has become a standard approach to
acceptability judgements, providing results on par
with the human baseline (Warstadt et al., 2019).
The pre-trained encoders and BERT, in particu-
lar, were proven to have an advantage over other
models, especially when judging the acceptabil-
ity of sentences with long-distance dependencies
(Warstadt and Bowman, 2019). Research examin-
ing linguistic knowledge of BERT-based language

1Arugula or rocket salad in English
2https://github.com/upunaprosk/la-tda

models (LMs) revealed that: (1) individual atten-
tion heads can store syntax, semantics or both kinds
of linguistic information (Jo and Myaeng, 2020;
Clark et al., 2019), (2) vertical, diagonal and block
attention patterns could frequently repeat across the
layers (Kovaleva et al., 2019), and (3) fine-tuning
affects the linguistic features encoding tending to
lose some of the pre-trained model knowledge (Mi-
aschi et al., 2020). However, less attention has been
paid to examining the grammatical knowledge of
LMs in languages other than English. The existing
work devoted to the cross-lingual probing showed
that grammatical knowledge of Transformer LMs
is adapted to the downstream language; in the case
of Russian, the interpretation of results cannot be
easily explained (Ravishankar et al., 2019). How-
ever, LMs are more insensitive towards granular
perturbations when processing texts in languages
with free word order, such as Russian (Taktasheva
et al., 2021).

In this paper, we probe the linguistic features
captured by the Transformer LMs, fine-tuned for
acceptability classification in Russian. Following
recent advances in acceptability classification, we
use the Russian corpus of linguistic acceptabil-
ity (RUCOLA) (Mikhailov et al., 2022), covering
tense and word order violations, errors in the con-
struction of subordinate clauses and indefinite pro-
noun usage, and other related grammatical phenom-
ena. We provide an example of an unacceptable
sentence from RUCOLA with a morphological vio-
lation in the pronoun usage: a possessive reflexive
pronoun ‘svoj’ (oneself’s/own) instead of the 3rd
person pronoun.

(1) * Eto byl pervyj chempionat mira v svoej
kar’ere. (“It was the first world champi-
onship in own career.”)

Following the recently proposed Topological Data
Analysis (TDA) based approach to the linguistic
acceptability (LA) task (Cherniavskii et al., 2022),
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we construct directed attention graphs from atten-
tion matrices and then refer to the characteristics
of the graphs as to the linguistic features learnt by
the model. We extend the existing research on the
acceptability classification task to the Russian lan-
guage and show the advantages of the TDA-based
approach to the task. Our main contributions are
the following: (i) we investigate the monolingual
behaviour of LMs in acceptability classification
tasks in the Russian and English languages, using a
TDA-based approach, (ii) we introduce new topo-
logical features and outperform previously estab-
lished baselines, (iii) we suggest a new TDA-based
approach for measuring the distance between pre-
trained and fine-tuned LMs with large and base
configurations. (iv) We determine the roles of at-
tention heads in the context of LA tasks in Russian
and English.

Our initial hypothesis is that there is a difference
in the structure of attention graphs between the
languages, especially for the sentences with mor-
phological, syntactic, and semantic violations. We
analyze the relationship between models by com-
paring the features of the attention graphs. To the
best of our knowledge, our research is one of the
first attempts to analyse the differences in monolin-
gual LMs fine-tuned on acceptability classification
corpora in Russian and English, using the TDA-
based approach.

2 Related Work

Acceptability Classification. First studies per-
formed acceptability classification with statistical
machine learning methods, rule-based systems, and
context-free grammars (Cherry and Quirk, 2008;
Wagner et al., 2009; Post, 2011). Alternative ap-
proaches use threshold scoring functions to esti-
mate the likelihood of a sentence (Lau et al., 2020).
Recent research has been centered on the ability of
omnipresent Transformer LMs to judge acceptabil-
ity (Wang et al., 2018), to probe for their grammar
acquisition (Zhang et al., 2021), and evaluate se-
mantic correctness in language generation (Batra
et al., 2021). In this project, we develop accept-
ability classification methods and apply them to
datasets in two different languages, English and
Russian.

Topological Data Analysis (TDA) in NLP. Re-
cent work uses TDA to explore the inner work-
ings of LMs. Kushnareva et al. (2021) derive
TDA features from attention maps to build artifi-

cial text detection. Colombo et al. (2021) introduce
BARYSCORE, an automatic evaluation metric for
text generation that relies on Wasserstein distance
and barycenters. Chauhan and Kaul (2022) develop
a scoring function which captures the homology of
the high-dimensional hidden representations, and
is aimed at test accuracy prediction. We extend the
set of persistent features proposed by Cherniavskii
et al. (2022) for acceptability classification and
conduct an extensive analysis of how the persistent
features contribute to the classifier’s performance.

How do LMs change via fine-tuning? There
have been two streams of studies of how fine-tuning
affects the inner working of LM’s: (i) what do sub-
word representation capture and (ii) what are the
functional roles of attention heads? The experi-
mental techniques include similarity analysis be-
tween the weights of source and fine-tuned check-
points (Clark et al., 2019), training probing clas-
sifiers (Durrani et al., 2021), computing feature
importance scores (Atanasova et al., 2020), the
dimensionality reduction of sub-word representa-
tions (Alammar, 2021). Findings help to improve
fine-tuning procedures by modifying loss functions
(Elazar et al., 2021) and provide techniques for ex-
plaining LMs’ predictions (Danilevsky et al., 2020).
Our approach reveals the linguistic competence of
attention heads by associating head-specific persis-
tent features with fine-grained linguistic phenom-
ena.

3 Methodology

We follow Warstadt et al., 2019 and treat the LA
task as a supervised classification problem. We fine-
tune Transformer LMs to approximate the function
that maps an input sentence to a target class: ac-
ceptable or unacceptable.

3.1 Extracted Features

Given an input text, we extract output atten-
tion matrices from Transformer LMs and follow
Kushnareva et al., 2021 to compute three types of
persistent features over them.

Topological features are properties of attention
graphs. We provide an example of an attention
graph constructed upon the attention matrix in Fig-
ure 1. An adjacency matrix of attention graph
A = (aij)n×n is obtained from the attention matrix
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[SEP] 
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Figure 1: An example of an attention map (a) and the corresponding bipartite (b) and attention (c) graphs for the
COLA sentence “John sang beautifully”. The graphs are constructed with a threshold equal to 0.1.

W = (wij)n×n, using a pre-defined threshold thr:

aij =

{
1 if wij ≥ thr

0 otherwise,

where wij is an attention weight between tokens i
and j and n is the number of tokens in the input
sequence. Each token corresponds to a graph node.
Features of directed attention graphs include the
number of strongly connected components, edges,
simple cycles and average vertex degree. The prop-
erties of undirected graphs include the first two
Betti numbers: the number of connected compo-
nents and the number of simple cycles. We pro-
pose two new features of the undirected attention
graphs: the matching number and the chordality.
The matching number is the maximum matching
size in the graph, i.e. the largest possible set of
edges with no common nodes.

Consider an attention matrix depicted in Fig-
ure 1a and a simple undirected attention graph (Fig-
ure 1c) constructed based on the bipartite graph
(Figure 1b) with a threshold of 0.1. The matching
number of that attention graph is equal to two. One
example of a maximum matching in that graph is
a set of edges: {(John - sang), ([SEP] - [CLS])}.
That matching is maximum because there are no
more edges that are not incident to the already
matched 4 nodes (tokens). The chordality is a bi-
nary feature showing whether the attention graph
is chordal; that is, whether the attention graph
does not contain induced cycles of a length greater
than 3. For example, the plotted graph in Figure 1c
is chordal because it does not contain induced cy-
cles with more than 3 edges. If there were no dotted
edges (chords) in the graph, there would be a cycle
[SEP]-beautifully-sang-[CLS]-[SEP] of length 4,

meaning that the graph is not chordal.
We expect these novel features to express syntax

phenomena of the input text. The chordality feature
could carry information about subject-verb-object
triplets. The maximum matching can correspond to
matching sentence segments (subordinate clauses,
adverbials, participles, introductory phrases, etc.).

Features derived from barcodes include de-
scriptive characteristics of 0/1-dimensional bar-
codes and reflect the survival (death and birth) of
connected components and edges throughout the
filtration.

Distance-to-pattern features measure the dis-
tance between attention matrices and identity ma-
trices of pre-defined attention patterns, such as at-
tention to the first token [CLS] and to the last
[SEP] of the sequence, attention to previous and
next token and to punctuation marks (Clark et al.,
2019). We use a publicly available implementation
to compute features.3

3.2 Experimental Framework

Data We use two publicly available LA bench-
marks in two typologically different languages:
Russian (RUCOLA; Mikhailov et al., 2022) and
English (COLA; Warstadt et al., 2019). Both se-
lected corpora consist of in- and out-of-domain
data and contain sentences collected from linguis-
tics publications; each is marked as acceptable or
unacceptable. Unacceptable sentences are anno-
tated with syntactic, morphological and semantic
phenomena violated in them. RUCOLA, in addi-
tion, covers synthetically generated data by gen-
erative LMs. We provide examples of acceptable
sentences from observed corpora (2a, 3a) along

3https://github.com/danchern97/tda4atd
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with sentences with semantic violations (2b, 3b).

(2) a. The dog bit the cat.

b. * The soundly and furry cat slept.

(3) a. Koshki byli svyashchennymi zhivot-
nymi v Drevnem Egipte. (“Cats were
sacred animals in ancient Egypt.”)

b. * Bliz kresla na nebol’shom kovrike
lezhala koshka. (“Outside of an arm-
chair on a small rug a cat was lying.”)

Table 4 (Appendix A) reports statistics of the
used corpora. For per-category evaluation, we use
RUCOLA error annotations, and for COLA, we
use minor grammatical phenomena annotations to
group erroneous sentences. We provide more de-
tails in Table 5 (Appendix A).

Models Our baseline model architectures, fine-
tuning and evaluation scripts are taken from the
Transformers library (Wolf et al., 2020). We use
the following case-sensitive monolingual Trans-
former LMs for the experiments: (1) base size
En-BERT4 (Devlin et al., 2019) and Ru-BERT,5

(2) large size En-RoBERTa6 (Liu et al., 2019) and
Ru-RoBERTa.7 To estimate the effect of fine-
tuning, we compare two types of models: pre-
trained LMs with frozen weights (frozen) and fine-
tuned LMs on the training sets. Transformer LMs
are fine-tuned for 5 epochs on in-domain train-
ing data, with a batch size of 32 and an optimal
set of hyper-parameters determined by the authors
of the datasets. To mitigate class imbalance, we
use weighted cross-entropy loss. We provide fine-
tuning details in Table 6 (Appendix A).

TDA Classifiers We extract a range of persis-
tent (TDA) features listed in Section 3.1 from
Transformer LMs and refer to them as training
features fed to a linear classifier. We reduce the
feature space dimensionality with principal com-
ponent analysis (PCA). Next, we train Logistic
Regression classifiers with adjusted class weights
on the reduced feature space. We iterate over a
range of inverse regularization parameter values
C ∈ {10−3, 10−2, 0.1} and the number of prin-
cipal components #PC ∈ [10, 20 . . . 200]. We
choose the value 200 as the upper bound of the PC
grid to ensure that the number of latent features is

4hf.co/bert-base-cased
5hf.co/sberbank-ai/ruBert-base
6hf.co/roberta-large
7hf.co/sberbank-ai/ruRoberta-Large

at least two times less than the size of the in-domain
development (IDD) or out-of-domain development
(OODD) sets. We tune hyper-parameters to maxi-
mize the classifier performance on the IDD set. We
compare the performance of two feature sets, by
reporting results of classifiers trained on (i) basic
TDA features by Kushnareva et al., 2021 (dubbed
as TDA) and (ii) TDA features with two novel fea-
tures added (dubbed as TDAext).

3.3 Evaluation
Performance Metrics Following Warstadt et al.,
2019, we measure performance with Accuracy
(Acc.) and Matthews Correlation Coefficient
(MCC). MCC is used as the main performance met-
ric for finding hyperparameters, evaluating trained
models, and adjusting the decision threshold.

Fine-tuning Effect We estimate changes in at-
tention weights between pre-trained and fine-tuned
LMs with two methods. First, we follow Hao et al.,
2020 and employ Jensen-Shannon (JS) divergence:

DJS(Mt||M0) =
1

N

1

H

N∑

n=1

H∑

h=1

1

W

K∑

i=1

DJS(W
h
t (tokeni)||W h

0 (tokeni))

where Mt and M0 are fine-tuned and frozen mod-
els respectively, N is number of sentences, H is
a number of attention heads (H = 12 for base-
configuration LMs, H = 24 for large LMs), K
is the number of tokens in the sentence n, and
W h

t (tokeni) is an attention weight of attention
head h at token i in model Mt.

Second, we estimate the difference between at-
tention graphs as an average correlation distance be-
tween the TDAext features across attention heads:

DTDA(Mt,M0) =
1

H

H∑

h=1

1

F

F∑

f=1

Dcorr(V
h
tf , V

h
0f )

where F is the number of features, V h
tf are values

of the feature f , computed over attention matrix
W h

t , extracted from the model Mt.

4 Results

4.1 Acceptability Classification
Table 1 reports LA classification results. Linear
classifiers trained on the TDA features boost Trans-
former LMs performance; that trend is consistent
across all models, with the MCC score gain of
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Model
Fine-tuned LMs Frozen LMs

IDD OODD IDD OODD
Acc. MCC Acc. MCC Acc. MCC Acc. MCC

RUCOLA

Ru-BERT 80.3 0.420 75.1 0.438 62.4 0.079 54.7 0.112
+ TDA 80.1 0.440 75.1 0.447 76.5 0.314 62.3 0.253
+ TDAext 80.1 0.478 73.2 0.440 76.7 0.331 62.6 0.270

Ru-RoBERTa 83.5 0.530 79.3 0.530 72.8 0.313 58.1 0.241
+ TDA 85.0 0.581 81.0 0.584 77.0 0.374 64.7 0.343
+ TDAext 85.7 0.594 80.1 0.558 77.2 0.391 64.2 0.358

COLA

En-BERT 85.0 0.634 82.0 0.561 62.6 0.039 64.3 0.124
+ TDA 85.6 0.649 81.4 0.548 77.0 0.484 68.4 0.335
+ TDAext 88.2 0.726 81.0 0.556 81.4 0.543 73.1 0.369

En-RoBERTa 87.3 0.692 84.9 0.637 74.0 0.317 75.0 0.362
+ TDA 86.3 0.680 83.5 0.620 81.2 0.543 78.5 0.464
+ TDAext 87.3 0.695 83.1 0.604 83.1 0.604 77.3 0.476

Table 1: Acceptability classification results of mono-
lingual LMs and linear classifiers trained on the sets
of features by the benchmark. IDD=in domain devel-
opment set. OODD=out of domain development set.
TDAext=TDA features+chordality and the matching
number. The best score is in bold, and the second-best
one is underlined.

+0.252 at most for the Russian LMs and a more
substantial +0.504 increase falling on En-BERT.
Proposed chordality and matching number features
are beneficial and help improve performance, prov-
ing that they capture linguistic information.

Unlike base LMs, large frozen LMs exhibit
grammatical knowledge even before fine-tuning.
Base LMs’ MCC scores fluctuate around zero,
while large LMs achieve at least 0.3 MCC.

That observation aligns with the recent works
showing that pre-trained large En-RoBERTa can
achieve competitive scores without further fine-
tuning in tasks such as lexical complexity predic-
tion (Rao et al., 2021).

At the same time, TDA classifiers outperform
fine-tuned models by a minor margin enhancing
scores by at best +0.064 MCC for Russian and
+0.092 MCC for English. We believe that fine-
tuning may cause the LM to lose general grammat-
ical skills and forget language phenomena that are
not present in the fine-tuning set (Miaschi et al.,
2020). Thus, the features extracted from the fine-
tuned models may require a thorough feature se-
lection with non-linear models to mitigate feature
redundancy issues. TDA classifies for RUCOLA
achieve scores on par with the baseline LMs. How-
ever, for COLA, the TDAext classifier coupled with
En-RoBERTa outperforms the baseline. We report
classification results on OOD test data in Table 7
and Table 8, Appendix B.1.

4.2 Sensitivity to Violation Categories
Next, we analyze gains in recall by TDA classifiers
with respect to violation category. Table 2 reports
scores of Ru-BERT and En-BERT baselines and
TDA classifiers averaged between IDD and OODD
sets with respect to 5 grammatical violations. TDA
classifiers outperform LMs in unacceptable sen-
tences; that uptrend holds for both languages, while
there is a drop for acceptable sentences.

In contrast to English, the TDAext classifier
trained on Ru-BERT features is more sensitive to
syntactic violations reaching the overall 76.6 recall;
that is, the increase in the score is around 20 re-
call points, compared to fine-tuned Ru-BERT. As
for the rest grammar categories, the TDAext clas-
sifier outperforms the fine-tuned Ru-BERT by a
large margin, especially in sentences with word-
level morphological violations, where the recall of
Ru-BERT is more than doubled.

Next, we manually analyze the errors of the
fine-tuned Ru-BERT and our classifier TDAext in
OODD sentences in Russian. First, we compare
the unacceptable sentences, which are misclassi-
fied by Ru-BERT but correctly classified by the
TDAext classifier. We find that the error span in
OODD sentences is relatively short, with at most
three tokens. In particular, in these sentences, such
violations as non-existing words are most often
encountered, the misuse of which is quite com-
mon among native speakers (4a, word formation
error ‘ekhaj’), local inverse word order (4b), or
nonsense (4c). Common false predictions of both
models include long sentences that mix grammat-
ical phenomena, contain long-distance agreement
violations and complex errors in punctuation.

(4) a. * A ty ekhaj pryamo k direktoru
teatrov. (“You should gotta to the di-
rector of theatres.”)

b. * V etom lesu vodyatsya volki.
(“There are in this forest wolves.”)

c. * Oni chitali moi zhaloby na sebya.
(“They read my complaints onto them-
selves.”)

The domain shift from ID to OOD introduces
new types of unacceptable phenomena are not
present in ID data. Overall, the scores for OOD
data are lower than for ID data (Table 2, Table 9,
Appendix B.1). Hence LMs do not generalize well
to unseen unacceptable phenomena and have little
knowledge about the unseen linguistic properties.
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Model Acceptable Hallucination Morphology Semantics Syntax

Ru-BERT 92.1 53.9 20.0 25.0 55.7
+TDAext 80.6 73.9 53.9 46.6 76.6

En-BERT 94.3 68.5 69.4 63.0 55.6
+TDAext 84.5 78.8 82.5 76.3 73.0

Table 2: Overall per-category recall by the benchmark.
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Figure 2: Per-layer feature distance and JS divergence of attention scores between the frozen and fine-tuned
Ru-BERT and En-BERT.

4.3 Fine-tuning Effect

We investigate the dynamics of LM fine-tuning and
measure per layer distance between TDAext fea-
tures extracted from frozen and fine-tuned LMs on
OODD subsets (§3.3). Figure 2 illustrates layer-
wise feature distance and JS divergence for Ru-
BERT and En-BERT (Figure 3, Appendix B.2 for
large models). Overall, we find that the distance
between features rises steadily from the bottom to
higher layers, whilst for English LMs, the most
noticeable changes occur only in the last four lay-
ers. That observation implies that there is a notice-
able difference in fine-tuning dynamics between
En-BERT and Ru-BERT.

For both languages, the feature distance trend
differs from JS divergence, especially in the first
six layers. This indicates that the TDAext features
can be used to detect minor changes in the lower
layers that are poorly expressed when using the JS
divergence. For example, TDA-based distance is
sensitive to small changes in the attention weights
at lower predefined thresholds where large attention
weights remain unchanged. JS divergence is not

capable of capturing such cases.
The distance between features is uniform with

respect to the violation category. The trends for
acceptable and unacceptable sentences almost co-
incide, albeit there are noticeable differences in JS
divergence. For Russian models, JS divergence in
sentences with syntactic violations and hallucina-
tions is more evident in higher layers compared
to other categories. In turn, the JS divergence for
English shows that the attention mode is more con-
sistent with the frozen En-BERT on the sentences
with semantic and syntactic violations; for accept-
able and other sentences, the peak is reached at the
penultimate layer. Similar to LMs with the base
configuration, there is a steady increase in feature
dissimilarity across all the layers, while for English,
the main changes appear in higher layers.

4.4 Head Importance

We probe linguistic phenomena with the help of
persistent features: we exploit the learnt feature
weights in the linear classifiers (Appendix B.3).
The higher the weight of the feature, the more it
contributes to the final prediction. We aggregate
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Error type Sentence Feature Head

Morphology
Recept chipy s syrom, maniokom i yajcami.

cthr0.25 (9,5)
(“Recipe of cheps with cheese, maniokom and eggs.”)

Syntax
Bylo nachato stroit’ novyj rajon.

cthr0.1 (9,5)
(“Of new district building was started.”)

Semantics
Vchera v dva chasa magazin zakryt.

[CLS] (11,0)
(“The store closing at two o’clock yesterday.”)

Table 3: Examples of the most important Ru-BERT TDAext features for judging RUCOLA unacceptable sentences
by error type. c = the number of simple cycles in a graph, thr = threshold used for constructing attention graph,
[CLS] = distance-to-[CLS]-token.

features derived from each head: the importance of
the head is derived as a number of important fea-
tures. We define two types of heads: (1) heads that
contribute the most to true positive and true nega-
tive predictions (i.e. correct predictions), dubbed
as agreeing heads, and (2) heads that contribute
the most to false negative and false positive predic-
tions (i.e. classifier’s errors), dubbed as disagreeing
heads. First, we explore the importance of each in-
dividual head. Figure 4, Appendix B.4 shows how
important the head is for the final prediction. En-
BERT and Ru-BERT have similar patterns for the
heads of type (1) as the most useful features for
Ru-BERT are housed in middle to higher layers.
For En-BERT, these tend to be localized mostly in
the last two layers.

Next, we compute the feature importance with
respect to the violation category. Heads of mid-
dle layers contribute more to detecting syntactic
and morphology violations in English and Russian.
Heads of type (2) do not overlap with the heads
of type (1) with a few exceptions, which are head
10 and head 0 from the last layer of Ru-BERT and
En-BERT, respectively. Judging by the number
of type (2) heads Ru-BERT struggles the most to
distinguish sentences with hallucinations from ac-
ceptable sentences. This might be due to multiple
reasons: (i) hallucinated sentences are not seen dur-
ing training, (ii) hallucinated sentences are mainly
well-formed but semantically incorrect, so there
are no surface or syntactical clues to rely on.

Next, we determine the set of sentences that are
the most challenging for the TDA classifier and,
thus, the corresponding LM since TDA features
are extracted from its attention map. To do so, we
define the LM’s confidence as the sum of absolute
feature weights for predicting acceptable and un-

acceptable classes. The lower the score, the more
confused the LM is and the more attention heads
tend to disagree with the desired prediction. We
consider those sentences challenging that obtain
the lowest confidence scores. The most challeng-
ing sentences are long, consist of multiple clauses
and contain terms or named entities, see the unac-
ceptable sentence in 5 for example. For the sake
of completeness, we conduct the same analysis
for COLA sentences and provide an example of
the most confusing sentence for TDAext classifier
(6). The results align well. The most challenging
sentences contain long-distance dependencies and
named entities.

(5) * Eta gruppa obnaruzhila (nepravil’no)
chto severnyj predel Merrimak byl bliz
togo, chto teper’ izvestno kak ozero Vin-
nipesuki v N’yu-Gempshire.
(“This group found (poorly), that the
northern watershed of the Merrimack
was near what is now known as Lake Vin-
nipesaukee in New Gampshire.”)

(6) * Gould’s performance of Bach on the pi-
ano doesn’t please me anywhere as much
as Ross’s on the harpsichord.

Finally, we explore the feature contribution on
the sentence level. Our TDA-based approach al-
lows explaining predictions for every single sen-
tence. To this end, the contribution (=importance)
of each feature is the feature value multiplied by
the learnt weight of the linear classifier. We ob-
serve the following patterns across unacceptable
sentences in Russian and Ru-BERT:

1. Distance-to-pattern features appear to be use-
ful for classifying unacceptable sentences
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with word-level violations, including spelling,
punctuation, and agreement errors;

2. Topological features and features derived from
barcodes contribute equally to more compli-
cated grammatical phenomena.

Table 3 provides examples of unacceptable sen-
tences along with the feature importance values.
Chordality, the matching number, the number of
simple cycles, and the average vertex degree de-
rived at thresholds 0.1 or 0.25 frequently become
important to predict unacceptable sentences in Rus-
sian. Similarly, the average number of vertex de-
grees has the most discriminative power for En-
glish and En-BERT. Important features are housed
across different layers in the LMs. For English, the
most important features are extracted from the last
layer, while for Russian, they appear at the earliest
at layer 6.

However, when it comes to the discrepancy in
attention graphs between acceptable and unaccept-
able sentences, we find the following common for
both languages. The number of connected com-
ponents in attention graphs for unacceptable sen-
tences is larger at the lowest and the highest thresh-
olds. At the highest threshold, these components
consist of one token; at the lowest one, they consist
of a few ones. It means that the values of atten-
tion maps in unacceptable sentences do not deviate
much from each other. On the contrary, for accept-
able sentences, there is a tendency to put the most
attention weight on a single token, which is usu-
ally the sentence’s head verb. In terms of the TDA
feature values, this effect can be seen as the sign
of the correlation coefficient between the feature
value and the target class correlation. Thus, there
is an obvious shift towards positive correlation at a
threshold of 0.5 for average vertex degree features
(Figure 5).

To sum up, such an analysis helps better explain
the classifiers’ prediction. Since persistent features
are attributed to individual heads, we can trace the
role and importance of each head. A fine-grained
annotation of language phenomena allows us to
associate specific linguistic skills with individual
heads.

5 Conclusion

In this paper, we adopt and improve methods for
acceptability classification by using best practices
from topological data analysis (TDA). We show-

case the developed methods in two typologically
different languages by using the datasets in En-
glish and Russian, COLA and RUCOLA, respec-
tively. In particular, we introduce two novel fea-
tures, chordality and the matching number, and
compare the performance of TDA-based classifiers
to fine-tuning. TDA-based classifiers boost the per-
formance of pre-trained language models.

TDA-based classifiers have advantages over LM
fine-tuning because they are more interpretable and
help to introspect the inner workings of LMs. To
this end, we introduce a TDA feature-based dis-
tance measure to detect changes in the attention
mode of LMs during fine-tuning. This distance
measure is sensitive even to small changes occur-
ring at the bottom layers of LMs that are not de-
tected by the widespread Jensen-Shannon diver-
gence. What is more important, we show how
TDA features reveal the functional roles of atten-
tion heads. We compare heads that contribute to
making correct and incorrect predictions based on
their importance. This way we discover heads that
store information about word order, word deriva-
tion, and complex semantic phenomena in unac-
ceptable sentences and heads that attend to accept-
able sentences.

Given the sentence, we evaluate the prediction
confidence based on the contribution of the features.
We determine the set of sentences in which LMs are
less confident and find that those sentences usually
consist of multiple clauses and frequently include
named entities. Finally, we find a distinct pattern
that is frequently present in the attention maps of
unacceptable sentences in English and Russian.

We hope that our results shed light on the per-
formance of LMs in Russian and English and help
understanding their fine-tuning dynamics and the
functional roles of attention heads. We are excited
to see the adoption of TDA by NLP practitioners
to other languages and downstream problems.

Limitations

Acceptability judgments datasets Acceptabil-
ity judgments datasets use linguistic literature as
source of unacceptable sentences. Such approach
is subject to criticism on two counts: (i) the reliabil-
ity and reproducibility of acceptability judgments
(Gibson and Fedorenko, 2013; Culicover and Jack-
endoff, 2010; Sprouse and Almeida, 2013; Linzen
and Oseki, 2018), (ii) representativeness, as lin-
guists’ judgments may not reflect the errors that
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speakers tend to produce (Dąbrowska, 2010).

Computational complexity The computation
complexity of the proposed features is linear. For
chordality features, we rely on the implementation
of linear O(|E|+ |V |) time algorithm (Tarjan and
Yannakakis, 1984), where |E| and |V | are the num-
bers of edges and nodes, respectively. We use a
greedy algorithm with linear complexity O(|E|)
to find the maximum matching. When calculating
simple cycles with the exponential-time algorithm
(in the worst case), we use a constraint equal to 500
to do an early stopping. We suggest that simple
cycles features are less informative when that value
is exceeded. Kushnareva et al., 2021 discuss the
time complexity of the rest features.
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A Experiment Setup

COLA RUCOLA

Language English Russian
Data type Real Real, Synthetic
α 0.86 0.89
# Train sent. 8551 7869
# Dev sent. 527 983
# Test sent. 516 1804
% 70.5 71.8

Table 4: Statistics of language acceptability corpora. α = Average annotator agreement rate. % = Percentage of
acceptable sentences.

Grammatical feature Error type

Extra/Missing Word Hallucination
Semantic Violations Semantics
Infl/Agr Violations Morphology
Other Syntax

Table 5: COLA features aggregated by error type. Infl/Agr =Inflection and Agreement. Other=the rest of grammar
violation phenomena present in COLA annotation for unacceptable sentences.

Model Learning rate Weight decay

En-BERT 3 · 10−5 0.01
En-RoBERTa 2 · 10−5 10−4

Ru-BERT 3 · 10−5 0.1
Ru-RoBERTa 10−5 10−4

Table 6: Hyperparameter values used for finetuning transformers.
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B Experiment Results

B.1 Linguistic Acceptability Classification

Model Expert Machine
Acc. MCC Acc. MCC

Ru-BERT 77 0.37 75 0.44
+ TDAext 75 0.39 72 0.42

Ru-RoBERTa 84 0.55 80 0.56
+ TDAext 83 0.53 80 0.56

Table 7: Linguistic acceptability classification results of monolingual LMs and linear classifiers on RUCOLA out of
domain test set by source.8

Model MCC

En-BERT 0.509
+ TDAext 0.469

En-RoBERTa 0.608
+ TDAext 0.616

Table 8: Acceptability classification results of monolingual LMs and linear classifiers on COLA out of domain test
set (Alex Warstadt, 2018).

Model Acceptable Hallucination Morphology Semantics Syntax

RUCOLA IDD

Ru-BERT 93.9 - 12.5 24.0 56.0
+TDAext 86.2 - 56.2 45.0 75.4

Ru-RoBERTa 95.9 - 50.0 37.0 70.9
+TDAext 96.3 - 31.2 34.0 72.4

RUCOLA OODD

Ru-BERT 90.3 53.9 26.6 25.9 55.4
+TDAext 75.0 73.9 51.6 48.1 77.7

Ru-RoBERTa 90.9 64.3 54.7 42.0 75.5
+TDAext 89.9 63.9 53.1 39.5 71.4

COLA IDD

En-BERT 94.8 65.0 69.0 72.2 61.2
+TDAext 87.9 77.5 86.2 83.3 82.4

En-RoBERTa 94.8 72.5 88.9 75.9 64.7
+TDAext 87.3 75.0 79.3 88.9 70.6

COLA OODD

En-BERT 93.8 72.0 69.7 53.8 50.0
+TDAext 81.0 80.0 78.8 69.2 63.5

En-RoBERTa 93.5 76.0 87.9 76.9 56.2
+TDAext 83.1 80.0 81.8 92.3 63.5

Table 9: Per-category recall on the IDD and OODD sets by benchmark.

8https://rucola-benchmark.com
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B.2 Fine-tuning effect
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Figure 3: Per-layer feature distance and Jensen-Shannon divergence of attention scores between the frozen and
fine-tuned Ru-RoBERTa and En-RoBERTa.

B.3 Feature Importance
Consider a linear classifier with L1 regularization, then the output probability for the sentence i is:

pi ∼ exp(XT
0iC

Tw + c),

where X0i are the input TDA features, C is the principal component matrix, wT is a vector of PCs
coefficients in the decision function, and c is the added bias. CTw is the feature contribution to prediction.
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B.4 The Roles of Attention Heads
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Figure 4: Mean feature weights in TDAext classifiers with respect to the dataset. TDAext are extracted from
fine-tuned Ru-BERT and En-BERT, respectively. Features of an agreeing head contribute to correct prediction.
Features of an disagreeing head contribute to incorrect prediction. Brighter colors stand for higher mean feature
weights.
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Figure 5: Correlation coefficients between average vertex degree features and target labels for frozen and fine-tuned
Ru-BERT by the threshold used to construct attention graph.
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