
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 89–105
December 7, 2023. ©2023 Association for Computational Linguistics

89

Self-Consistency of Large Language Models under Ambiguity
Henning Bartsch*

Independent Researcher
bartsch.henning@gmail.com

Ole Jorgensen*
Imperial College London

okj22@ic.ac.uk

Domenic Rosati*
Dalhousie University

domenic.rosati@dal.ca

Jason Hoelscher-Obermaier
PIBBSS fellow

jason.hoelscherobermaier@gmail.com

Jacob Pfau
New York University
jp6263@nyu.edu

Abstract

Large language models (LLMs) that do not give
consistent answers across contexts are prob-
lematic when used for tasks with expectations
of consistency–e.g. question-answering, ex-
planations, etc. Our work presents an evalua-
tion benchmark for self-consistency in cases
of under-specification where two or more an-
swers can be correct. We conduct a series of
behavioral experiments on the OpenAI model
suite using an ambiguous integer sequence
completion task. We find that average con-
sistency ranges from 67% to 82%, far higher
than would be predicted if a model’s consis-
tency was random, and increases as model
capability improves. Furthermore, we show
that models tend to maintain self-consistency
across a series of robustness checks, includ-
ing prompting speaker changes and sequence
length changes. These results suggest that self-
consistency arises as an emergent capability
without specifically training for it. Despite this,
we find that models are uncalibrated when judg-
ing their own consistency, with models display-
ing both over- and under-confidence. We also
propose a nonparametric test for determining
from token output distribution whether a model
assigns non-trivial probability to alternative an-
swers. Using this test, we find that despite
increases in self-consistency, models usually
place significant weight on alternative, incon-
sistent answers. This distribution of probability
mass provides evidence that even highly self-
consistent models internally compute multiple
possible responses.

1 Introduction

Language model pre-training approximates a dis-
tribution generated by many speakers. As a re-
sult, LLMs learn to express inconsistent beliefs
drawn from distinct groups of people (Santurkar
et al., 2023). Recent work has investigated the
consistency of LLMs variously as: a logical valid-
ity check on model claims (Fluri et al., 2023), an

explanatory validity check on the simulatability of
models’ explanations (Chen et al., 2023), and a tool
to identify LLMs representations of truth (Burns
et al., 2023). All of these works rest to some degree
on the contention that fine-tuned LLMs can be un-
derstood as holding beliefs, an assumption which
has recently come under scrutiny (Levinstein and
Herrmann, 2023).

Consistency is particularly of interest in cases
of ambiguity. Recent work has evaluated LLMs’
ability to identify linguistic and classification-task
ambiguity (Liu et al., 2023; Tamkin et al., 2023).
Our work brings together these threads of research,
examining how model explanations can be exam-
ined via self-consistency checks.

We offer a case study on ambiguity in an arith-
metical setting. We ask language models from
OpenAI for a continuation of an integer sequence
having multiple possible continuations. We then
separately ask the models for the formula that gen-
erated the initial sequence, which we refer to as the
explanation. Finally, we evaluate whether model-
generated continuations are consistent with model-
generated explanations (§3). We present the model
with the full set of sequence generating functions
so that ambiguity is, in principle, recognizable by
the model.

We find the following across evaluations
using davinci (GPT-3), text-davinci-003,
gpt-3.5-turbo, and gpt-4:

1. Models (with greedy decoding) improve in
cross-context consistency rapidly with increas-
ing scale and capabilities (§4). This holds
across prompting strategies and data perturba-
tions (§4.1).

2. Models are not well-calibrated and incapable
of self-assessing the consistency of their own
answers (Figure 1).

3. Even a model (text-davinci-003) that

90

chooses relatively consistently among sev-
eral correct answers across contexts still as-
signs non-trivial probability to other correct
answers (§5).

4. Models can generally verbalize alternative an-
swers in cases of ambiguity, but there is no
clear effect of capability increase on this ver-
balization task (§5.2).

2 Dataset: Ambiguous Integer Sequences

In order to evaluate self-consistency, we created
and open-sourced a dataset of ambiguous integer
sequences.1. Integer sequences were chosen be-
cause we can readily identify sequences that have
multiple valid completions. This allows us to in-
troduce tasks with ambiguity for measuring proper-
ties like model self-consistency. Previous work on
self-consistency considered open-ended question
answering or knowledge probing (Raj et al., 2022;
Elazar et al., 2021) which makes measuring con-
sistency difficult (rendering unclear the space of
possible answers, and what constitutes distinct an-
swers), whereas in our setting the space of possible
answers is rigorously defined via an enumeration
of generation functions.

Our dataset was created as follows: We gen-
erate integer sequences, e.g., 7, 11, 15, drawn
from a fixed set of generating functions, e.g.,
lambda x: (4 * x) + 3. Table 1 illustrates
some examples drawn from our dataset. The un-
derlying function is referred to as the rule or ex-
planation of the sequence, and the next integer
as the completion. Our experimental settings are
mostly based on two fundamental tasks: (1) se-
quence completion and (2) sequence explanation.
For completions, we query models for the next
item in a given integer sequence. For explana-
tions, models are prompted for the underlying func-
tion that generated the given sequence. In our ex-
periments, models should return explanations in
the form of Python lambda functions whose form
is demonstrated through few-shot examples (see
Appendix B). Models are informed of the func-
tion space ahead of time by being presented with
the possible generating functions in the instruction
prompt.

Ambiguous sequences are sequences for which
there are multiple generating rules which differ in

1https://github.com/JacobPfau/introspective-self-
consistency

Sequence Completion Rule

4, 6, 8 10 lambda x: x + 2
7, 11, 15 15 lambda x: (3 * x) | 3
7, 11, 15 19 lambda x: (4 * x) + 3

Table 1: Example of integer sequences that are either
unambiguous or ambiguous given a specific set of gen-
erating rules (enumerated in Table 4).

their continuation of the sequence. Unambiguous
sequences are sequences which have only one valid
completion within our function space. Appendix A
describes our algorithm for mining for ambiguous
sequences as well as the parameters of the func-
tion space we searched over. The function space
consists of eight function templates, each with two
constant arguments. We generate functions from
those templates by setting the constant terms in the
range [0, 4], resulting in 197 possible functions on
which Algorithm 1 is used. Our dataset consists
of 140 unambiguous sequences and 57 ambiguous
sequences.

3 Methodology: Evaluating Consistency

We measure consistency by comparing responses
from the completion task to responses from the
explanation task, which we call cross-context be-
cause the model sees each task in a separate context
window. Each prompt uses eight demonstrations
showing the model how to complete the sequence
or explain the sequence using a Python function.
The demonstrations are drawn randomly2 from the
same function space as the ambiguous and unam-
biguous functions. Examples of these prompts are
presented in Appendix B.

The models chosen for evaluation were
text-davinci-003, gpt-3.5-turbo, and
gpt-4.3 While we are not entirely sure how
these models are trained, these models were
chosen because they are commonly used by both
researchers and the public, and they represent
a sequence of capability increases through data
quality improvement, annotations, and innovation
in training and inference techniques (see OpenAI
(2023)).

In the below experiments, greedy sampling

2To control for the effect of these random sequences on bi-
asing consistency, we report results aggregated from multiple
runs

3https://platform.openai.com/docs/models. For gpt-4, we
use the gpt-4-0314 version. For gpt-3.5-turbo, we use the
model that was available from March to June 2023.

https://github.com/JacobPfau/introspective-self-consistency
https://github.com/JacobPfau/introspective-self-consistency
https://platform.openai.com/docs/models.

91

(temperature set to 0) is used throughout. This
choice lets us conduct a best-case analysis of self-
consistency: studying whether a model is capable
of self-consistency when the sampling strategy is
advantageous. In §5, we move on from greedy
decoding and examine what the full output distribu-
tion implies about the possible continuation space
of models. 4

3.1 Explanation and completion accuracy

Before considering cross-context consistency, we
first benchmark these models’ accuracy on se-
quence completion or sequence explanation in un-
ambiguous cases. For the completion case, we
present the models with a sequence of four inte-
gers and evaluate its accuracy on generating the
next item in the sequence. For the explanation case,
we present the models with a sequence and eval-
uate the model’s accuracy on generating an exact
match of the Python function used to produce the
sequence.

Accuracy (%) %
Model Explanation Completion Valid

davinci 6.00 20.20 95.5
text-davinci-003 31.18 65.95 99.3
gpt-3.5-turbo 50.25 77.56 97.6
gpt-4 59.05 78.64 94.8

Table 2: Mean explanation and completion accuracy
scores in unambiguous cases, as well as fraction of
valid, parseable answers, for each model across three
runs. Accuracy increases with general model capability
and is higher for completion than for explanation.

Table 2 presents our capability results. We report
the average explanation and completion accuracy
scores across three runs. We also report the fraction
of valid answers (out of a total of 140 test cases, our
unambiguous functions) where the model provided
a valid parseable answer, such as a valid integer or
Python function. The results are largely intuitive:
as general model capacity increases, performance
on the explanation and completion tasks increases.
Note that the explanation task is generally harder
than the completion task. On both tasks, davinci
does poorly despite having a high number of valid
answers, so davinci was not used in subsequent
experiments.

3.2 Explanation and completion consistency

Our second set of experiments evaluates the con-
sistency of a given explanation for a sequence and
a completion for the same sequence when a model
is prompted separately for explanation and comple-
tion. We use a similar setup as the previous exper-
iment, including the explanation and completion
prompts used earlier. We measure the following
(see Appendix B for corresponding prompts):

• Cross-context consistency: whether the ex-
planation provided by the model generates
the given sequence, including the completion
provided separately by the model.

• Model-judged consistency: whether the
model, itself, judges the explanation (rule) it
provided and the completion it provided to be
consistent, i.e., the rule generates the sequence
with claimed completion (see Listing 5 for the
prompt used in these judgements).

Figure 1 illustrates the performance of each
model on the above scores when we vary the num-
ber of integers in the initial sequence from a length
of two to a length of four. Sequences with two ini-
tial integers have 196 ambiguous sequences, three
initial integers has 76 total ambiguous sequences,
and four initial integers have 140 ambiguous se-
quences. This variance allow us to understand the
behavior of models as the space of ambiguity varies.
The two main results are (1) model improve in con-
sistency as they improve in arithmetical capabil-
ity from text-davinci-003 to gpt-4, (2) models
tend to consider their answers consistent when they
are not, except for gpt-4 which underestimates its
own consistency. Result (2) is noteworthy because
calibration, or the ability of a model to express
accurate estimates of its own behavior, is an impor-
tant safety property of LLMs (Fluri et al., 2023; Lin
et al., 2022a). In domains where human evaluation
cannot be done, Fluri et al. (2023) identify model
self-evaluations of consistency as a primary method
useful for invalidating untrustworthy responses. A
well-calibrated model should have cross-context
consistency and model-judged consistency scores
as close as possible.

92

gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003
0

20

40

60

80

100
C

on
si

st
en

cy
sequence length = 2

gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

sequence length = 3

gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

sequence length = 4

Consistency measure
Cross-context consistency
Model-judged consistency

Figure 1: Cross-context consistency (orange). Model-judged consistency (blue); this drops drastically for gpt-4,
which underestimates the consistency across answers itself produced.

30 40 50 60 70 80
Accuracy

68

70

72

74

76

78

80

82

C
on

si
st

en
cy

Cross-context consistency v accuracy

30 40 50 60 70 80
Accuracy

60

65

70

75

80

85

90

95
M

od
el

-ju
dg

ed
 c

on
si

st
en

cy

Model-judged consistency v accuracy

gpt-3.5-turbo-0301
gpt-4-0314
text-davinci-003
explanation
completion

Figure 2: Explanation and sequence completion accuracies plotted against cross-context consistency and model-
judged consistency (mean over sequence lengths). Further illustration of gpt-4’s inability to correctly assess its
own consistency despite being much more consistent.

3.3 Consistency and Capability

Figure 2 presents the results from §3.1 and §3.2
plotted together. This analysis investigates the de-
gree to which model capability relate separately
with cross-context consistency, and model-judged
consistency. We see as capability increases so does
cross-context consistency but, the most capable
model gpt-4 is worse evaluating its own consis-
tency.

Additionally, we compute expected consistency
if correct completion-explanation pairs were cho-
sen uniformly randomly at different capability
thresholds. Table 3 illustrates cross-context con-
sistency performance by our models and expected
random consistency based on the average perfor-
mance of each model on explanation and sequence

4Given the nature of black-box API-based evaluation, it
is possible greedy decoding doesn’t ensure determinism (e.g.
because of sparse mixture of experts routing considerations).

completion accuracy. This tells us how consis-
tent we should expect models to perform at differ-
ent capability levels if they chose their completion
responses independently from their explanations.
Note that a model could score perfectly on the ca-
pability evaluations and consistency evaluations
while having no self-consistency whatsoever. What
we find is that models approach perfect consistency
rapidly with capability increases.

Average consistency (%)
Model Actual Random

text-davinci-003 66.86 8.50
gpt-3.5-turbo 74.68 10.02
gpt-4 82.22 15.22

Table 3: Average cross-context (Actual) consistency
across settings in Figure 1 and consistency we’d expect
to see (Random) if valid answers were selected uniform
randomly given the average accuracy performance for
each model.

93

4 Robustness Checks for Consistency

We conducted further experiments to better under-
stand how robust these results were to changes in
experimental protocol by using a range of differ-
ent prompts. We consider: (1) speaker changes
in which we prompt the model as if the sequences
were generated by different speakers; (2) change of
base in which the sequence integers are presented
in base 2 instead of base 10; and (2) sequence
length changes. Full results are given in §C.

4.1 Consistency Across Speaker Changes

The first robustness experiment was designed to
investigate the robustness of self-consistency of
models when asked to simulate different speak-
ers. This was intended to investigate whether
models could be prompted to simulate more or
less self-consistent speakers, which would deter-
mine whether models should be expected to be
self-consistent by default or whether the previous
results were artifacts of arbitrary features of the
prompt.

To do this, we again conducted the same exper-
iments as §3, now varying the initial instruction
given to the model. These instructions were split
into two separate components which we varied in-
dependently: what task we wanted the model to
complete, and which speaker we wanted the model
to simulate completing that task. We used three
different task prompts, which one might expect to
correspond to three different levels of consistency:
the self-consistent prompts asked explicitly for a
pair of responses which matched each other; the
most likely prompts asked for the most likely con-
tinuation / explanation (most likely); and the ran-
dom prompt asked the model to choose responses
randomly when there was ambiguity about the cor-
rect answer. The prompts in full can be found in
Appendix B. For example, the random explana-
tion prompt was "Assume the sequence is gener-
ated by some deterministic function. If multiple
functions could generate the sequence, choose the
corresponding continuation randomly".

The first plot in Figure 3 shows representative
results when varying the task prompt on correct-
ness and consistency. If the models were capable
of computing multiple continuations, and merely
appeared self-consistent by dropping other possibil-
ities, then we might expect there to be variable self-
consistency, e.g., higher on the self-consistency
prompt, and lowest on the random prompt. Empir-

ically, we found that prompting the models with
these different tasks had little influence on the pro-
portion of answers that were self-consistent. This
was found both for sequences of length 4 and 2.
Even in the case where we were able to elicit a
high proportion of correct answers being incon-
sistent using the most likely prompt, we do not
see large changes in the number of inconsistent re-
sponses when varying the task prompt. This serves
as strong evidence that the relationship between
capability and consistency is unaffected by task
prompt.

4.2 Consistency Across Base Changes

In this robustness experiment, we investigate what
impact the base representation of functions and
sequences had on capabilities and consistency of
the models. This was intended to investigate the
relationship between model capability and self-
consistency while holding model type and training
constant. We hypothesised that bases besides base
10 would be more difficult for the model. We again
prompted the model to produce a continuation of
a sequence and an explanation for the sequence,
although the sequences were now in base 2, and
the functions were expected to output base 2 repre-
sentations of integers.

The second plot in Figure 3 presents a correla-
tion analysis for this experiment, considering both
base 10 and base 2 responses. It demonstrates a
very strong correlation between the model generat-
ing correct explanations and being self-consistent,
suggesting that this trend is robust across bases and,
thus, task difficulty.

5 Distributional Analysis of Model
Consistency

5.1 Models Do Not Converge to Calculating a
Unique Solution

In the analysis so far, greedy sampling was used
throughout. We now pose a follow-up ques-
tion: Given models increasingly converge to self-
consistency, preferring a unique answer, to what
extent do these models calculate representations
of other alternative answers? And, when models
place high probability on alternative answers, can
they verbalize these alternative solutions serially?

Specifically for models that were fine-tuned with
RLHF (Christiano et al., 2017; Ouyang et al., 2022),
the output probabilities may not be well-calibrated
to the relative frequency of tokens if the objective

94

40 50 60 70 80 90
Explanation Correctness

30

40

50

60

70

80

90

Co
ns

ist
en

cy
sequence length = 2, base 10

gpt-4 Random Prompt
gpt-4 Most Likely Prompt
gpt-4 Self-Consistent Prompt
gpt-3.5-turbo Random Prompt
gpt-3.5-turbo Most Likely Prompt
gpt-3.5-turbo Self-Consistent Prompt

10 20 30 40 50 60 70 80 90
Explanation Correctness

10

20

30

40

50

60

70

80

90

Co
ns

ist
en

cy

sequence length = 4

20 30 40 50 60 70
Explanation Correctness

10

20

30

40

50

60

70

Co
ns

ist
en

cy

sequence length = 2

gpt-4 base 10
gpt-4 base 2
gpt-3.5-turbo base 10
gpt-3.5-turbo base 2

Figure 3: Cross-context consistency plotted against explanation correctness, varying either the role prompt (left-hand
side) or the base-representation of the integer sequences being evaluated on (middle and right-hand side).

of RLHF encourages models to allocate probabil-
ity mass narrowly (Kadavath et al., 2022). Hence,
models’ token probability distribution may not be
reflective of their credences. While the models
may be uncalibrated, we make a weaker assump-
tion below that model output probabilities are non-
parametrically calibrated: higher probability mass
implies higher credence.

Applying this assumption to our setting, given
initial ambiguous sequence, Sn, generating rules
{F}, we can determine whether a model has cal-
culated an alternative correct sequence completion,
c′, other than the modal greedy-decoded solution
by verifying that:

P (c′|Sn) > P (z|Sn) for all z ∈ N \ C (1)

where C is the set of correct continuations of Sn

and N is the set of all continuations.

4 6 8 10
Number of Shots

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

R
at

e

Rate for Correct Completions Assigned Consistently Non-trivial Mass

invalid func type
random
exclude_class
same_class

Figure 4: Rate at which correct completion alternatives
are assigned non-trivial probability mass by function
class sampled for few shot exemplars. Across sampling
methods, that rate is relatively high indicating a consis-
tent consideration of correct alternatives across contexts.

For input data, we use the full set of 40 func-
tions that generated ambiguous sequences (see Al-
gorithm 1). We prompt the model using the same

prompts for integer sequence completion as in §3.2
and determine whether alternative correct answers
rank higher than all incorrect answers. In the expla-
nation case, we change the prompt to be a multiple-
choice task so that only a single token is needed to
evaluate the above inequality. Despite this simpli-
fication, the rate at which high probability mass is
spread on alternatives is much lower, with the best
rate of 0.3. This indicates that correct alternatives
are not generally considered. This may be because
the computation of correct alternative explanations
is much more computationally intensive and more
difficult than the computation of correct alternative
sequence completions.

We use text-davinci-003 for our experiments
since it is the only model that has token log proba-
bilities accessible from the public API.5 Since the
API returns up to nlogprobs = 5 probabilities for
top output tokens, we assess if any incorrect answer
was listed and whether the correct all rank higher.
When a possible correct answer is not in the top
output tokens but an incorrect one is, we consider
the test failed. Finally, we control the sampling
methods for few-shot example: exclude_class
indicates that we exclude the sequence generating
functions that are from the same class (See classes
used here Table 4), same_class draws functions
from the same function class and random draws
those randomly across function classes. These con-
trols are designed to give us insight on whether the
class of functions used makes considering correct
answers over incorrect ones more challenging. The
evaluations are averaged over three runs.

Figure 4 illustrates that in the sequence com-
pletion case, text-davinci-003 almost always
assigns high probability to correct alternative an-

5https://platform.openai.com/docs/api-
reference/completions/create

https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create

95

swers. We only see small differences with function
class used for few-shot examples where the cases of
same_class and random functions appear to help
with computing correct alternative explanations as
the number of few-shot demonstrations is increased.
Sampling examples with exclude_class seems to
make it more challenging likely because functions
that explain the model completion have not been
seen before.6

35 30 25 20 15 10 5
Log Probability

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 D
en

si
ty

Distribution of Log Probabilities by Class Label for Completion (num_shots = 8)

class label
correct_and_not_pred
incorrect_and_not_pred
correct_and_pred
incorrect_and_pred

Figure 5: Distribution over output probabilities
for correct and incorrect completions for the sam-
pling function type random_class. Each histogram
is normalized by the data points of the corre-
sponding class label. With KL-divergences of
KL(correct_and_pred||correct_not_pred) = 1.71 and
KL(correct_and_pred||incorrect_not_pred) = 3.45
bits, the distributions of correct answers have higher
overlap.7

In Figure 5, the distribution over log probability
mass is shown for the sequence completion task
across four combinations over two variables: cor-
rectness and (greedy) prediction, i.e., whether the
response in question was predicted as the top-1
response. The distribution for predicted answers
look similar: correct and predicted answers (blue)
narrowly concentrate relatively large log probabil-
ities and a single peak for incorrect predictions
(red). For non-predicted answers, the distributions
are generally flatter and their mean shifted towards
comparatively smaller values.

For correct and non-predicted answers (green),
the distributions’ median at around -13.8 is much
larger than at -20.7 for incorrect answers. This

6Since we do not have access to the underlying pre-training
corpora distribution of the model, we cannot definitively rule
out higher probability mass being assigned to sequences due
to their frequency in the pre-training corpora.

7To calculate the KL-divergence, we first obtained the den-
sity histograms for the same points nbins = 40 between the
minimum and maximum value of log probabilities. Addition-
ally, we applied Gaussian smoothing with σ = 1 to include
information where the quotient would otherwise have been
undefined.

difference indicates that the model allocates non-
trivial probability mass to those correct options.
Correct alternatives are calculated and represented
by the model internally. When normalizing the
distribution across all data points the probability
mass place on correct answers is relatively large
and narrow, even for non-predicted answers (see
Figure 7).

5.2 Verbalizing Alternatives
While inspecting the probability distribution over
answers gives insights into the potential consider-
ation of alternatives, we are further interested in
the extent to which models would verbalize those
alternatives if prompted. This is important because
outside of our simple sequence modeling cases, nat-
ural language questions will generally have distinct
answers which require multiple tokens to express,
making it impractical to directly read off answer
probability from logits.

In this experiment, we prompt the model to pro-
vide all possible answers for an ambiguous se-
quence task and compare those with the correct
options (prompt in Listing 12). We provide in-
context examples and consider only up to 5 alter-
natives. Precision and recall scores are calculated,
comparing verbalized answers with the valid con-
tinuations. For input data, we consider the default
ambiguous sequences (see Algorithm 1).

The high precision scores in Figure 6 show that
models do not tend to produce random, incorrect
answers. Recall scores are much lower, for comple-
tion reaching a maximum of 0.41 and for explana-
tion 0.49. Compared to precision this aligns with
our expectations that verbalizing all alternatives is
very difficult. However, the rapid increase in recall
with additional in-context examples implies that the
models adapt to include more correct alternatives.8

In contrast to our previous results, the performance
for the explanation tasks is similar to completion.
text-davinci-003 achieves the highest recall for
explanation despite being the generally less capa-
ble model, but likely preserving a wider options
space and multiple possible continuations due to
less RLHF fine-tuning. The low precision score in-
dicates that it thereby also produces false negatives.
The relatively high recall of gpt-4 for explanation
and completion tasks show its verbalization capa-
bilities. However, in the easier completion task,

8For nshots > 10, our prompt exceeds the token limit. De-
spite increasing recall scores, we were not able to investigate
the impact of few-shot examples further.

96

4 6 8 10
Number of Shots

0.4

0.5

0.6

0.7

0.8

S
co

re
precision

4 6 8 10
Number of Shots

0.30

0.35

0.40

0.45

0.50

S
co

re

recall

model
gpt-3.5-turbo
gpt-4
text-davinci-003

response_type
completion
explanation

Precision & Recall of Verbalized Alternatives by Model

Figure 6: Precision and recall scores of alternative an-
swers verbalized by different models compared to cor-
rect answers, up to 5 alternatives and only distinct values
were counted.

high recall scores would be expected if the model
considered more alternatives.

6 Related Work

Our work is motivated by previous research on
truthfulness. Approaches like Lin et al. (2022b)
directly tackle this problem by developing bench-
marks for truthfulness of LLMs across a range of
questions such as health, law, and politics. Detect-
ing inconsistencies is helpful, but not sufficient, for
evaluating the truthfulness of language models.

Evaluating model behavior under ambiguity
would shed some light on this question, as ex-
plored in Liu et al. (2023). Here, however, the
emphasis is on interpreting ambiguous natural lan-
guage sentences correctly, as opposed to making
the same judgment in a range of different contexts.
This means that failings might not be indications
of inconsistency but rather a poor understanding of
natural language.

Similarly, the approach towards consistency eval-
uations taken by Fluri et al. (2023) focuses on
whether different answers are logically consistent.
When a set of conditions over different inputs holds,
then conditions over corresponding outputs should

logically follow. For instance, forecasting world
records in 100m sprint should monotonically de-
crease over time. In contrast to our own work, the
investigations focus on scenarios without known
ground truth. Our focus on being consistent across
contexts tests for poor world models and extends
consistency checks to arithmetic reasoning tasks.

Tamkin et al. (2023) presents a novel benchmark
for studying how well models are able to detect
salient features of sentences where this salient fea-
ture is undetermined. This relates to our ambiguous
sequences setting, although the focus on interpret-
ing natural language means the evaluations will not
separate poor language understanding from inher-
ent inconsistency.

Self-consistency also relates to chain of thought
prompting (Wei et al., 2022), which may be used to
elicit truthful explanations of how models arrive at
claims. However, Turpin et al. (2023) demonstrates
that the given explanations can be misleading since
models can be biased to change their answers in a
way that is not reflected in their explanations–this
is a form of explanation inconsistency.

There has been recent progress on this from work
in interpretability. Burns et al. (2023) demonstrate
that directions in the latent space of networks can
be found that correspond to truthfulness better than
the outputs of models directly. Our approach could
complement techniques like this, providing new
phenomena to better understand the trustworthiness
of models.

A related investigation is into how language mod-
els respond to open-ended questions for which a
single correct answer does not exist (Yin et al.,
2023). Our work can be seen as considering the
related case where instead of there being no cor-
rect answer, there exist multiple possible correct
answers. Similarly, Raj et al. (2022); Elazar et al.
(2021) have focused on cross-prompt consistency
over knowledge-focused QA.

7 Conclusion

All tested models behaved more self-consistently
across contexts for ambiguous tasks than expected
if the models had randomly consistent behaviour.
This is surprising given models are not explicitly
trained for cross-context self-consistency. We also
found that model consistency grows with model
capability. We varied the task prompt, as well as
the difficulty of the task (using base-2 sequences
instead of base-10 sequences and varying the se-

97

quence length), and found that our findings are
robust with respect to these changes. Across all
evaluated models found that they are not well cali-
brated when it comes to evaluating their own con-
sistency. We also tested that even when a model
that chooses relatively consistent answers among
several correct answers across contexts, models
may still assign non-trivial probability to other cor-
rect answers. Asking the models to verbalize cor-
rect alternatives revealed high precision scores for
all models which discern between correct and in-
correct answers. In comparison, recall was rela-
tively low where text-davinci-003 surprisingly
achieved the highest recall, closely followed by
gpt-4, indicating they can retrieve alternative cor-
rect answers. The significance of our results is that
we shouldn’t assume the apparent consistency of
LLMs points to actual internal consistency due to
high probability mass placed on alternative answers
which may equally be picked using common sam-
pling techniques for natural language generation.
As a community we should also be wary of con-
sistency given our results on calibration that show
models across capability classes strongly over and
under estimate their own consistency.

8 Limitations

Ambiguous integer sequences is an idealized do-
main removing linguistic concerns and knowledge-
related complexities of natural language tasks.
Hence, results on this domain may not general-
ize. This is important because studies understand-
ing LLMs safety typically focus on model behav-
iors that have a direct impact on understanding
real-world risk, such as impact on socio-cultural
prejudice or factual accuracy, of their deployment.
Future work could investigate consistency in more
general linguistic domains using a similar frame-
work of ambiguity.

Our analysis of self-consistency was limited by
only having access to models through a public API.
In particular, we were only able to access the log
probabilities of one model under analysis, and at
the time of writing, this API is deprecated. Addi-
tionally, we did not include evaluation of available
open-source models, which could have provided
insightful comparisons with the OpenAI models
and possibility to test output behaviours more ex-
tensively. Future work may be unable to access
the log probabilities of these models to perform
similar analyses. Although we did use greedy de-

coding with zero temperature, the GPT model tend
to behave non-deterministically, which already in-
troduces an implicit inconsistency and dependence
on the few-shot examples. Reporting results av-
eraged over several runs aimed to mitigate this.
But controls for each experiments could have been
done in addition to that. Our experiments in 5
were limited by the availability of token probabili-
ties, so no scaling results are available in that sec-
tion. We chose popular LLMs used through public
APIs since we wanted to understand the behavior
of those particular models, but future work should
investigate open-source models that we are able to
fully inspect. In particular, we believe the observed
increase in cross-context consistency results from
RLHF and pre-training. However, given the closed
source nature of these models, it is possible that
GPT-series models were trained with cross-context
consistency objectives.

9 Acknowledgements

Thanks to Julian Michael and Miles Turpin for
feedback on a draft of this paper. This project has
benefited from financial support to Sam Bowman
by Eric and Wendy Schmidt (made by recommen-
dation of the Schmidt Futures program) and Open
Philanthropy. This material is based upon work sup-
ported by the National Science Foundation under
Grant Nos. 1922658 and 2046556. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s)
and do not necessarily reflect the views of the Na-
tional Science Foundation.

References
Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-

hardt. 2023. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh
International Conference on Learning Representa-
tions.

Yanda Chen, Ruiqi Zhong, Narutatsu Ri, Chen Zhao,
He He, Jacob Steinhardt, Zhou Yu, and Kathleen
McKeown. 2023. Do models explain themselves?
counterfactual simulatability of natural language ex-
planations.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,

https://openreview.net/forum?id=ETKGuby0hcs
https://openreview.net/forum?id=ETKGuby0hcs
http://arxiv.org/abs/2307.08678
http://arxiv.org/abs/2307.08678
http://arxiv.org/abs/2307.08678
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf

98

and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

Lukas Fluri, Daniel Paleka, and Florian Tramèr. 2023.
Evaluating superhuman models with consistency
checks.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know.

B. A. Levinstein and Daniel A. Herrmann. 2023. Still no
lie detector for language models: Probing empirical
and conceptual roadblocks.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022a.
Teaching models to express their uncertainty in
words. Transactions on Machine Learning Research.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022b.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr,
Peter West, Alexander Koller, Swabha Swayamdipta,
Noah A. Smith, and Yejin Choi. 2023. We’re afraid
language models aren’t modeling ambiguity.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Harsh Raj, Domenic Rosati, and Subhabrata Ma-
jumdar. 2022. Measuring reliability of large lan-
guage models through semantic consistency. CoRR,
abs/2211.05853.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo
Lee, Percy Liang, and Tatsunori Hashimoto. 2023.
Whose opinions do language models reflect?

Alex Tamkin, Kunal Handa, Avash Shrestha, and Noah
Goodman. 2023. Task ambiguity in humans and
language models. In The Eleventh International Con-
ference on Learning Representations.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuanjing Huang. 2023. Do large
language models know what they don’t know?

https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
http://arxiv.org/abs/2306.09983
http://arxiv.org/abs/2306.09983
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2307.00175
http://arxiv.org/abs/2307.00175
http://arxiv.org/abs/2307.00175
https://openreview.net/forum?id=8s8K2UZGTZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
http://arxiv.org/abs/2304.14399
http://arxiv.org/abs/2304.14399
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://doi.org/10.48550/arXiv.2211.05853
https://doi.org/10.48550/arXiv.2211.05853
http://arxiv.org/abs/2303.17548
https://openreview.net/forum?id=QrnDe_9ZFd8
https://openreview.net/forum?id=QrnDe_9ZFd8
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2305.18153
http://arxiv.org/abs/2305.18153

99

A Mining Ambiguous Sequences

Algorithm 1 describes how we find a set of ambiguous functions A given a set of function templates
Ftemplates and the parameters c : N and s : N which control the sequence of constants to use for filling a
set of templates and the number steps we must check that a pair of functions must match for.

Definition A.1 (Integer Sequence Ambiguity). A pair of integer sequence-generating functions can be said
to be ambiguous iff both functions generate the same sequence up to |S| but generate different integers at
step |S|+ 1. This property holds if functions begin generation at different offsets.

Ftemplates is a set of functions that have slots for constant terms used to construct the function space
we will search for ambiguity within. For the purposes of our experiments, we generated templates using
the function templates in Table 4 which consisted of templates with two constant term slots. We generated
functions using integer constants in the range [0, 4].

For our experiments, we checked ambiguity for sequences of length 4 and an offset maximum of 4.
Unambiguous sequences are the complement of A and can easily be found by modifying the algorithm
below to return sequences which are generated by only one function selected from the function space. It
is important to note that the sequence is only unambiguous with respect to the function space selected.

Type Template

arithmetic progression lambda x: ({} * x) + {}

geometric progression lambda x: ({} * x) * {}

exponential progression lambda x: ({} * x) ** {}

power progression lambda x: {} ** ({} * x)

bit or progression lambda x: ({} * x) | {}

modular progression lambda x: (x * {}) % ({}+1)

indexing criteria lambda x:
progression [i for i in range(100) if i % ({} + 1) or i % ({} + 1)][x]

recursive progression (lambda a: lambda v: a(a,v))
(lambda fn,x: 1 if x==0 else {} * x * fn(fn,x-1) + {})

Table 4: Function templates with two constant term slots that were used for mining ambiguous sequences. Note our
functions are indexed starting at one.

100

Algorithm 1 Mining Ambiguous Sequences

Require: Ftemplates ▷ Construct function space
Set c ∈ C is a set of constants to parameterize the function templates
for f ∈ Ftemplates do

for c1 ∈ C do
for c2 ∈ C do
Ffilled ← Ffilled ∪ f [c1; c2]

end for
end for

end for
Require: P : Ffilled ×Ffilled ▷ Check ambiguity

Set S is a set of steps to check for ambiguity
Set O us a set of offsets to check starting and ending positions
Set A is the set of ambiguous functions
for f1, f2 ∈ P do

for o1 ∈ O do
for o2 ∈ O do

Set seqa is a temporary set for keeping track of the output from f1
Set seqb is a temporary set for keeping track of the output from f2
for s ∈ S do

seqa ← f1(s+ o1)
seqb ← f2(s+ o2)
if seqa ̸= seqb then

break
end if
if s = |S| then

seqa ← f1(s+ o1 + 1)
seqb ← f2(s+ o2 + 1)
if seqa ̸= seqb then
A ← A∪ f1, seqa, f2, seqb

end if
end if

end for
end for

end for
end for

Ensure: Return A is the set of ambiguous functions identified above

101

B Prompt Examples

Listing 1: System-level prompt. We prepend each context with minimal instruction and provide the valid space of
lambda functions to the model. For base 2 sequences the outputs are wrapped with the bin function.
You are helping with integer sequences like arithmetic or geometric sequences.

↪→ Sequences are not always 0 indexed , they may be offset by an arbitrary i-
↪→ index value. Progressions are written as Python lambda functions and you may
↪→ only respond in the same lambda -function format.

Valid lambdas:
- arithmetic -> lambda x: (a * x) + b
- geometric -> lambda x: (a * x) * b
- exponential -> lambda x: (a * x) ** b
- power -> lambda x: a ** (b * x)
- bitwise_or -> lambda x: (a * x) | b
- modular -> lambda x: (x * a) % (b+1)
- indexing_criteria -> lambda x: [i for i in range (100) if i % (a + 1) or i % (b +

↪→ 1)][x]
- recursive -> (lambda a:lambda v:a(a,v))(lambda fn,x:1 if x==0 else a * x * fn(fn,x

↪→ -1) + b)

Listing 2: Prompt for sequence explanation. We provide six few-shot examples before we prompt the model with
the test prompt (highlighted in beige).
For the sequence: 3,7
Give the code that generates the above sequence.
lambda x: (2 * x) | 3
For the sequence: 1,1,1
Give the code that generates the above sequence.
lambda x: (1 * x) ** 0
For the sequence: 18,162
Give the code that generates the above sequence.
(lambda a:lambda v:a(a,v))(lambda fn,x:1 if x==0 else 3 * x * fn(fn,x-1) + 0)
For the sequence: 4,7
Give the code that generates the above sequence.
lambda x: (3 * x) | 4
For the sequence: 1,1,1,1
Give the code that generates the above sequence.
lambda x: 5 ** (0 * x)
For the sequence: 3,5
Give the code that generates the above sequence.
lambda x: [i for i in range (100) if i % (3 + 1) or i % (3 + 1)][x]
For the sequence: 4,5
Give the code that generates the above sequence.

102

Listing 3: Prompt for sequence completion. We provide eight few-shot examples before we prompt the model with
the test prompt (highlighted in beige).
For the sequence: 2,3,4
Complete the next number and only the next number.
5
For the sequence: 0,1,2,3
Complete the next number and only the next number.
0
For the sequence: 0,0,0
Complete the next number and only the next number.
0
For the sequence: 9,12,15,18
Complete the next number and only the next number.
21
For the sequence: 4,6,7,8
Complete the next number and only the next number.
9
For the sequence: 3,8,26
Complete the next number and only the next number.
106
For the sequence: 4,5,7
Complete the next number and only the next number.
8
For the sequence: 2,6,24
Complete the next number and only the next number.
120
For the sequence: 12,15
Complete the next number and only the next number.

Listing 4: Prompt for sequence explanation. We provide six few-shot examples before we prompt the model with
the test prompt (highlighted in beige).
For the sequence: 3,7
Give the code that generates the above sequence.
lambda x: (2 * x) | 3
For the sequence: 1,1,1
Give the code that generates the above sequence.
lambda x: (1 * x) ** 0
For the sequence: 18,162
Give the code that generates the above sequence.
(lambda a:lambda v:a(a,v))(lambda fn,x:1 if x==0 else 3 * x * fn(fn,x-1) + 0)
For the sequence: 4,7
Give the code that generates the above sequence.
lambda x: (3 * x) | 4
For the sequence: 1,1,1,1
Give the code that generates the above sequence.
lambda x: 5 ** (0 * x)
For the sequence: 3,5
Give the code that generates the above sequence.
lambda x: [i for i in range (100) if i % (3 + 1) or i % (3 + 1)][x]
For the sequence: 4,5
Give the code that generates the above sequence.

103

Listing 5: Prompt for self-consistency. We provide six few-shot examples before we prompt the model with the test
prompt (highlighted in beige).
Is the following sequence: 1, 2, 3 consistent with the function lambda x: x + 1?
Answer (Y/N): Y
Is the following sequence: 3, 3, 4 consistent with the function lambda x: 3 * x + 2?
Answer (Y/N): N
Is the following sequence: 8, 18, 32 consistent with the function lambda x: 2 * x **

↪→ 2?
Answer (Y/N): Y
Is the following sequence: 256, 1024 consistent with the function lambda x: 4 ** x?
Answer (Y/N): Y
Is the following sequence: 7, 5, 12 consistent with the function lambda x: (3 * x) |

↪→ 4?
Answer (Y/N): N
Is the following sequence: 2, 3, 0, 1 consistent with the function lambda x: (x * 5)

↪→ % 4?
Answer (Y/N): Y
Is the following sequence: 2,3,4 consistent with the function lambda x: (2 * x) | 0?
Answer (Y/N):

Listing 6: Random prompt for explanations (preceded with few-shot examples). Note that "Sequences are not
always 0 indexed , they may be offset by an arbitrary i-index value" from Listing 1 is omitted for Listings 6-11.
Pick a function which generates the following sequence.
If there are multiple possible functions , choose randomly.
Assume the first number was generated by f(0), the second by f(1), and so on.
The function should output numbers in the same representation as the sequence.
Give the response in the format:
Explanation: <function >

Listing 7: Random prompt for continuations (preceded with few-shot examples).
Choose a continuation of the following sequence.
Assume the sequence is generated by some deterministic function.
If multiple functions could generate the sequence , choose the corresponding

↪→ continuation randomly.

Listing 8: Self-consistency prompt for explanations (preceded with few-shot examples).
Choose a function which generates the following sequence.
Note that you will be separately asked to choose a continuation of the sequence.
Please choose a function which is consistent with the continuation you will choose.
Assume the first number was generated by f(0), the second by f(1), and so on.
The function should output numbers in the same representation as the sequence.
Give the response in the format:
Explanation: <function >

Listing 9: Self-consistency prompt for continuations (preceded with few-shot examples).
Choose a continuation of the following sequence.
Note that you will be separately asked to choose a function which generated the

↪→ sequence.
Please choose a continuation which is consistent with the function you will choose.
Give the response as a number (with a base prefix if appropriate), with no

↪→ additional commentary.

104

Listing 10: Most-likely prompt for explanations (preceded with few-shot examples).
What is the most likely function which generated the following sequence?
Assume the first number was generated by f(0), the second by f(1), the third by f(2)

↪→ , and so on.
The function should output the number in the same representation as the sequence.
Give the response in the format:
Explanation: <function >

Listing 11: Most-likely prompt for continuations (preceded with few-shot examples).
What is the most likely continuation of the following sequence?
Give the response as a number (with a base prefix if appropriate), with no

↪→ additional commentary.

Listing 12: Prompt for verbalizing alternative completions.
For the sequence: 3,7
Complete the next possible number.
Consider up to 5 possible and valid answers separated by escape character '\n', as

↪→ determined by you , {model_name }.
4 \n 15 \n

For the sequence: 1,1,1
Complete the next number and only the next number.
Consider up to 5 possible and valid answers separated by escape character '\n', as

↪→ determined by you , {model_name }.

105

C Robustness Experiment Results

Model Base Length Correct Incorrect
Consistent Inconsistent Consistent Inconsistent

gpt-4 10 4 70 2 2 26
gpt-4 10 2 88 3 0 9
gpt-4 2 4 23 4 2 72
gpt-4 2 2 19 15 0 66
gpt-3.5-turbo 10 4 65 4 2 26
gpt-3.5-turbo 10 2 38 16 2 44
gpt-3.5-turbo 2 4 11 2 0 84
gpt-3.5-turbo 2 2 9 3 2 81

Table 5: The proportion of self-consistent continuation and explanation pairs (Consistent), alongside whether the
explanations are correct (Correct), for a given model (Model) on generated ambiguous sequences of length (Length),
represented in base (Base). Also tracks whether explanations or continuations are invalid (Invalid).

D Histogram of Log Probabilities for Alternative Completions of Ambiguous Sequences.

30 25 20 15 10 5
Log Probability

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

N
or

m
al

iz
ed

 D
en

si
ty

Normalized Distribution of Log Probabilities by Correctness for Completion (num_shots = 8)

incorrect
correct

Figure 7: Distribution over log probabilities by correctness with densities normalized across all data points. It shows
a narrow concentration of relatively large probabilities for correct answers and incorrect answers with relatively
small probabilities. The plot shows results for few-shots examples of random samples; distributions with different
few-shot sampling methods and number of shots look very similar.

