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Abstract

As part of our participation in BioLaySumm
2023, we explored the use of large language
models (LLMs) to automatically generate con-
cise and readable summaries of biomedical re-
search articles. We utilized pre-trained LLMs
to fine-tune our summarization models on two
provided datasets, and adapt them to the shared
task within the constraints of training time
and computational power. Our final models
achieved very high relevance and factuality
scores on the test set, and ranked among the
top five models in the overall performance.

1 Introduction

Biomedical research articles are vital sources of
information based on latest scholarly findings in
the health domain, ranging from acute and chronic
health diagnoses, population health, advances in
cellular, molecular, and pharmaceutical technolo-
gies, and long-term impacts of recent global pan-
demics. However, due to the highly technical jar-
gon and professional language used in these ar-
ticles, it can be challenging for laypersons who
didn’t receive formal training in biomedical sci-
ences to understand the contents. Summarization
of biomedical text in layperson-friendly language
can provide a solution by automatically generat-
ing concise and readable summaries of technical
documents (Goldsack et al., 2023). These lay sum-
maries can be used to communicate the key find-
ings of a study to a broader audience, including
patients, their care partners, and members of the
general public.

Text summarization has been extensively stud-
ied by researchers in the past. There are two main
categories of text summarization techniques – ex-
tractive summarization and abstractive summariza-
tion (Widyassari et al., 2022). Extractive sum-
maries only include key phrases and sentences di-
rectly selected from the original text, while ab-
stractive summaries consist of new, generated sen-

tences that summarize the original content (Widyas-
sari et al., 2022). Although abstractive summa-
rization is more challenging and complex than
extractive summarization, it has the potential to
convey more information and better meet human
needs (Widyassari et al., 2022). In recent years,
most of the research on abstractive summarization
was inspired by the encoder-decoder architecture
of deep neural network models. This includes the
use of pre-trained encoders proposed by Liu and
Lapata (2019) and the development of multi-task
encoder-decoder models, as suggested by Xu et al.
(2020).

As part of our participation in the BioLaySumm
2023 shared tasks on lay summarization of biomed-
ical research articles, we investigated the use of
large language models (LLMs) to generate con-
cise, relevant, factual, and easily readable sum-
maries (Lee, 2023). We utilized existing LLMs,
including Bidirectional and Auto-Regressive Trans-
former (BART) (Lewis et al., 2019) and Long-
former Encoder-Decoder (LED) (Beltagy et al.,
2020), to train our summarization model on the
provided datasets. Despite having limited time
and computational resources, we investigated sev-
eral approaches to fine-tune the LLMs for this task.
Further, we retrained our model over the abstract
sections of articles in the PLOS dataset provided as
a reference to generate the technical abstracts for
the readability-controlled summarization task. Our
final summarization model achieved strong perfor-
mance in relevance and factuality, and was ranked
among the top five models for lay summarization
of biomedical literature.

2 Methods

2.1 Data Description

All registered participants in the BioLaySumm
2023 shared tasks were provided two datasets con-
taining biomedical research articles and expert-
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written lay summaries for Task 1, the Lay Summa-
rization task. The first dataset contained 24,773 arti-
cles from the Public Library of Science (PLOS) for
training and 1,376 for validation (Luo et al., 2022).
The median length of the articles in the PLOS train-
ing dataset was 6,577 words. The second dataset,
eLife, contained 4,346 articles for training and 241
for validation (Goldsack et al., 2022). The articles
in eLife training dataset were longer, with the me-
dian length of the articles as 9,837.5. Task 2 on
readability-controlled summarization utilized only
the PLOS dataset.

2.2 BART Model Training for Lay
Summarization (Task 1)

To generate lay summaries from long articles
for Task 1, we selected models that follow the
sequence-to-sequence (seq2seq) architecture. Af-
ter a comprehensive review of existing literature
on state-of-the-art seq2seq models, we chose the
Bidirectional and Auto-Regressive Transformer
(BART) model (Lewis et al., 2019). BART com-
bines a bidirectional encoder and an autoregres-
sive decoder. BART models have been shown to
perform exceptionally well when fine-tuned for
text generation tasks such as summarization and
translation, as well as language comprehension
tasks like text classification and question answer-
ing (Lewis et al., 2019). For this participation,
we used facebook/bart-large-xsum, the BART
model implementation variant that was pretrained
by Facebook/Meta specifically targeting text sum-
marization (Facebook, 2020). The model train-
ing and evaluation was conducted on one NVIDIA
GeForce RTX 4090 GPU with the mamory capacity
of 24GB.

To adapt BART for the specific task, we fine-
tuned the model using the following parameters:
we set the epochs to 3, number of beams to 4, max-
imum encoder length to 1024, maximum decoder
length to 512, minimum decoder length to 100,
length penalty to 2, learning rate to 1e-4, weight
decay to 0.01, evaluation strategy as “steps”, per-
device train batch size as 4, and per-device evalua-
tion batch size as 4. We employed several optimiza-
tion techniques to fit the model into the 24GB mem-
ory limit. First, we used mixed-precision training
with fp16 (16-bit floating point) to reduce memory
consumption and improve training speed. We lever-
aged NVIDIA’s Apex library as our fp16 backend,
which simplified mixed-precision training and of-

fered additional performance optimizations. We
set the “gradient accumulation steps” parameter to
4, which allows us to accumulate gradients from
multiple mini-batches before performing a single
optimization step. This technique helped reduce
memory usage by reducing the frequency of weight
updates. Finally, we employed “gradient check-
pointing”, which trades computation time for mem-
ory by storing only a subset of intermediate values
during the forward pass and recomputing them as
needed during the backward pass. This technique
further reduced memory usage, allowing the model
to fit within the memory size limit of 24GB.

To summarize, we fine-tuned the BART model
for generating lay summaries of both PLOS and
eLife datasets, employing optimization techniques
such as mixed-precision training, gradient accumu-
lation, and gradient checkpointing to accommodate
memory constraints. However, the BART model
had a significant limitation that it could only han-
dle input sequences up to 1024 tokens (Lewis et al.,
2019). As a result, the model considered only the
first 1024 tokens of each article and discarded any
remaining tokens. This might lead to a loss of
information needed for the optimal lay summary.

2.3 LED Model Training for Lay
Summarization (Task 1)

To overcome the limitations of the BART model
in generating lay summaries of biomedical re-
search articles, we also investigated the effective-
ness of Longformer models. Longformer (Beltagy
et al., 2020) is a transformer-based model designed
specifically to process long sequences. Unlike tra-
ditional transformer models that are limited to pro-
cessing only short sequences because the computa-
tional complexity scales quadratic with sequence
length, Longformer models introduce an atten-
tion mechanism that scales linearly with sequence
length, enabling them to handle documents with
thousands of tokens more efficiently (Beltagy et al.,
2020). This is achieved through a combination of
local windowed attention and task-motivated global
attention. The Longformer’s attention mechanism
can be used as a drop-in replacement for standard
self-attention in transformer models. Beltagy et
al. (Beltagy et al., 2020) pre-trained Longformer
models and fine-tuned them on various downstream
tasks, and observed that they consistently outper-
formed RoBERTa on long document tasks, and
set new state-of-the-art results on WikiHop and
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TriviaQA datasets. WikiHop (Welbl et al., 2018)
and TriviaQA (Joshi et al., 2017) are both reading
comprehension datasets used to train and evaluate
language models.

We further adapted Longformer models for
the lay summarization task by using the Long-
former Encoder-Decoder (LED) variant generated
by allenai/led-large-16384-arxiv. LED is
designed to support long text, generative, sequence-
to-sequence tasks and has proven to be effective on
the arXiv summarization dataset (Institute, 2023).
We configured the input token size to 8192, which
is 8 times larger that the BART model described in
Section 2.2. We used similar techniques and set-
tings as those described for the BART model above
to optimize memory usage. Due to the memory
limitation of our graphic card, we could only set
the batch size for the LED model to 1. Further, we
only trained the LED model on the PLOS dataset
because of time constraints.

2.4 BART Model Training for Technical
Abstract Generation (Task 2)

In Task 2, the goal was to generate both lay sum-
maries and technical abstracts for the articles in
the PLOS dataset. As Tasks 1 and 2 shared the
same PLOS dataset, we set about to test the gen-
erality of our proposed models for Task 2 as well.
First, we utilized the PLOS model trained in Task
1 as-is to generate both technical abstracts and lay
summaries in Task 2. After reviewing the results
of our initial submission, we developed a second
model by retraining the model with the abstract
sections of research articles in the PLOS dataset
as a reference. Due to limited time availability, we
only retrained the BART model for Task 2, since it
is more computationally efficient compared to the
LED model.

2.5 Summary of submitted runs

We selected the models for submission based on
their performance in the validation phase. To evalu-
ate each model, we gathered metrics including the
training loss, validation loss, Rogue-1, Rogue-2,
and Rogue-L with a min-max normalization (we
made the loss negative for this normalization be-
cause the better model had the lower loss). Then,
we assessed the validation performance by calcu-
lating a weighted sum of the following normal-
ized scores:0.1*training loss, 0.3* validation loss,
0.2*Rogue-1, 0.2*Rogue-2, and 0.2*Rogue-L.

Aspect Metric Task 1 Baseline Task 2 Baseline

Relevance

ROUGE-1 0.985 0.807 0.772 0.000
ROUGE-2 0.872 0.709 0.569 0.000
ROUGE-L 0.978 0.826 0.834 0.000
BERTScore 0.889 0.856 1.000 1.000
Rank 1 9 2 4

Readability
FKGL 0.521 0.264 0.619 1.000
DCRS 0.631 0.640 1.000 0.954
Rank 18 8 3 4

Factuality
BARTScore 0.906 1.000 0.857 1.000
Rank 2 1 2 1

Table 1: Performance of the final system on Task 1 and
2 after min-max normalization

We submitted two runs for Task 1. The first
submission was generated from the two fine-tuned
BART models. For the second (final) submission,
the lay summaries for the PLOS dataset were gen-
erated from a fine-tuned LED model and those for
the eLife dataset were generated from a fine-tuned
BART model. For Task 2, the first submission was
generated directly from the PLOS BART model
used in Task 1. For the second submission, we
retrained the PLOS BART model with the abstract
sections of articles in the PLOS dataset as a refer-
ence.

2.6 Evaluation Measures

The submissions for the shared tasks are evaluated
on three aspects – relevance, readability, and factu-
ality. Relevance is assessed using Rouge-1, Rouge-
2, Rouge-L (Lin, 2004), and BERTScore (Zhang
et al., 2019) metrics. Readability is evaluated us-
ing two measures: Flesch-Kincaid Grade Level
(FKGL) (Kincaid et al., 1975) and Dale-Chall
Readability Score (DCRS) (Dale and Chall, 1948).
Factuality is measured using BARTScore that was
fine-tuned by the organizers (Koh et al., 2022). Bet-
ter systems have higher relevance and factuality
scores and lower readability scores.

3 Results

Task 1 The performance of the two submissions
for Task 1 were not significantly different from
one another. Table 1 shows the scores from the
second (final) submission for lay summarization
on the three evaluation aspects after min-max nor-
malization. The submitted run was ranked the best
system on relevance and the second best system
(following the baseline run) on factuality. Although
the readability score was not as high, the overall
score placed the model at fifth place among the 20
participants and the baseline.
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1st Submission 2nd Submission
Aspect Metric lay summ abstract lay summ abstract

Relevance

ROUGE-1 0.404 0.349 0.419 0.464
ROUGE-2 0.104 0.084 0.117 0.143
ROUGE-L 0.367 0.321 0.382 0.429
BERTScore 0.849 0.822 0.854 0.855
Rank Rank 2

Readablity
FKGL 2.194 3.402 2.369 2.158
DCRS 0.945 1.835 0.870 1.002
Rank Rank 3

Factuality
BARTScore -0.681 -1.023 -0.973 -1.307
Rank Rank 2

Table 2: Performance on Task 2, generating lay sum-
maries and technical abstracts, after min-max normal-
ization.

Task 2 While the final model performed very
well on the lay summarization task (Task 1), it
yielded relatively poor results in technical abstract
generation compared to other submissions. The
performance of our model significantly improved
compared to the first submission (Table 2). After
min-max normalization, the final scores for our
second (final) submission for Task 2 in the three
aspects are shown in Table 2. Our approach was
ranked a joint first in Task 2.

4 Discussion

We leveraged the capabilities of two transformer
based models – BART and Longformer – to create
high-quality lay summaries or technical abstracts of
biomedical research articles, and ensuring that our
approach can handle the challenges associated with
processing long, complex text. For Task 1, there
was no significant improvement in performance
after we changed the model from BART to LED.
The LED models were expected to perform better
because they can accept longer sentences, enhanc-
ing their ability to capture text features. However,
due to time and memory constraints, we used fewer
epochs and smaller batch sizes to train the LED
model, which might have resulted in its similar
performance to the BART model.

In Task 2, the model trained for lay summariza-
tion did not perform well in generating technical
abstracts. After retraining the model on PLOS ab-
stracts, the model was able to perform as well as
the previous model. This implies that adjusting the
parameters of the existing model alone does not
change the readability of the generated text. On the
other hand, retraining with the expected output as
a reference can improve the model performance.

5 Conclusion

In our participation in the BioLaySumm 2023
shared tasks, we were able to successfully utilize
pre-trained large language models – BART and
LED – to generate lay summaries and technical
abstracts. We did so by fine-tuning our summa-
rization models on two different datasets, PLOS
and eLife. Despite the limited time and computa-
tional resources, we were able to develop models
that performed well in the relevance and factuality
score of the summarizing tasks, and finally ranked
as the fifth best models in the overall performance.
The BioLaySumm tasks showed the potential of
lay summarization models in making biomedical
research accessible to a broader audience. We be-
lieve that the development of these models will
continue to play a critical role in advancing health-
care and empowering individuals to make informed
decisions about their health.

Limitations

Despite our efforts to enhance the efficiency and
minimize the memory cost of our models, large
language models still demand considerable time
and memory resources, which remains a limita-
tion of our work. Given sufficient time and com-
putational resources, we could explore the possi-
bility of increasing the batch sizes and running
additional epochs to further optimize the model’s
performance. While our final system excelled in
relevance and factuality aspects, it was relatively
poor on readability, which represents a potential
area for improvement. To improve the robustness
of the model, given additional time, we would use
a combination of machine learning and list-based
approaches to identify arcane words and techni-
cal terms and substitute them with their easy-to-
understand synonyms. With these procedures, we
believe that we can make our summaries more read-
able.

Ethics Statement

Large Language Models (LLMs), including BART
and LED, can implicitly learn biases from their
training dataset. In the biomedical fields, these bi-
ases potentially include exclusion of certain groups
of people who are underrepresented or misrepre-
sented in the training data. It is important to be
aware of this potential bias. Moreover, LLMs are
not always accurate and reliable. Inaccuracies in
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the generated summaries from LLMs could have
serious consequences and impact on health and
well-being of persons who trust the automated sum-
maries of biomedical research articles generated by
LLMs.
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