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Abstract

Meta-analysis of randomized clinical trials
(RCTs) plays a crucial role in evidence-based
medicine but can be labor-intensive and error-
prone. This study explores the use of large
language models to enhance the efficiency of
aggregating results from randomized clinical
trials (RCTs) at scale. We perform a detailed
comparison of the performance of these models
in zero-shot prompt-based information extrac-
tion from a diverse set of RCTs to traditional
manual annotation methods. We analyze the
results for two different meta-analyses aimed at
drug repurposing in cancer therapy and pharma-
covigilance in chronic myeloid leukemia. Our
findings reveal that the best model for the two
demonstrated tasks, ChatGPT, can generally
extract correct information and identify when
the desired information is missing from an arti-
cle. We additionally conduct a systematic error
analysis, documenting the prevalence of diverse
error types encountered during the process of
prompt-based information extraction.

1 Introduction

Meta-analysis is a statistical method that combines
and analyzes data from multiple studies to obtain
an overall effect size or estimate of treatment effect.
It is widely used in healthcare research, particularly
in clinical trials, to provide a comprehensive and ro-
bust summary of the available evidence (Gopalakr-
ishnan and Ganeshkumar, 2013).

The importance of meta-analysis lies in its abil-
ity to increase statistical power and reduce bias,
thereby improving the accuracy and reliability of
the findings. Meta-analysis also allows for the iden-
tification of important subgroups of patients and
provides insights into the potential sources of het-
erogeneity in the results of different studies (Sedg-
wick, 2013; Song et al., 2001).

In the context of clinical trials, meta-analysis
plays a crucial role in the evaluation of new treat-
ments and interventions (Heys et al., 1999; Al-

Karawi and Jubair, 2016; Henna et al., 2004; Boulé
et al., 2001). By combining data from multiple
studies, researchers can obtain a more precise esti-
mate of the effectiveness of treatment and identify
any potential adverse effects.

While clinical meta-analysis is essential to
establishing guidelines for clinical best-practice
(Stangl and Berry, 2000), curating data is time-
consuming for medical professionals. A recent
survey found that most clinical meta-analyses re-
quire 6-10 months of data gathering and analysis
for 5 individuals (Borah et al., 2017), which does
not account for research development time spent
before registering meta-analyses on PROSPERO
registry of systematic reviews (Booth et al., 2012).
Moreover, most meta-analyses seek to answer very
targeted questions about specific diseases or drugs,
making it difficult to adapt existing datasets for the
automatic or semi-automatic extraction of needed
data.

A recent review (Wornow et al., 2023) examined
founation models/large language models (LLMs),
such as ChatGPT, and opined that while there is
evidence that clinical foundation models improve
accuracy, there has been minimal work to validate
other potential benefits, such as reducing data la-
beling burden, enabling new clinical applications,
and offering novel human-AI interfaces. However,
foundation models also present significant risks,
including data privacy and security concerns, in-
terpretability challenges, high up-front costs, and
biases (Wornow et al., 2023).

This paper advocates for the development of new
evaluation tasks, metrics, and datasets to better un-
derstand how foundation models perform on clini-
cal tasks. To this end, it contributes the following
to the development and use of foundation models
in clinical and biomedical research:

• We present, to our knowledge, the first de-
tailed evaluation of how well generative foun-
dation models perform for extracting informa-
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Figure 1: Pipeline for zero-shot data extraction for Meta-Analysis using LLMs.

tion for clinical meta-analysis.

• We detail prompting and post-processing
strategies that can improve the performance
of prompt-based extraction and normalization
of clinical information.

• We present an error analysis systematically
cataloging the prevalence of various types of
errors encountered during prompt-based infor-
mation extraction and normalization.

2 Related Work

Recent surveys and case studies have shown that
natural language processing can powerfully accel-
erate the identification of candidates for drug re-
purposing (Subramanian et al., 2020) and the iden-
tification of adverse effects in pharmacovigilance
efforts (Bhatnagar et al., 2022). Substantial work
in clinical evidence extraction has been in the col-
lection of patients, interventions, comparators, and
outcomes (PICO) from clinical trials. Nye et al.
(2018) and Zlabinger et al. (2020) both present
a corpora with PICO annotations aimed at tag-
ging the high-level characteristics of clinical trials.
Biomedical transformer models are currently state-
of-the-art on PICO tagging (Alrowili and Shanker,
2021; Yasunaga et al., 2022; Tinn et al., 2021). Ad-
ditional improvements can be made by augmenting
PICO data with weak supervision from external dic-
tionaries and hand-crafted rules (Dhrangadhariya
and Müller, 2023).

A number of works have built models to im-
prove the screening and extracting evidence from
clinical trials for meta-analysis and systematic re-
view. Wallace et al. (2021) automatically constructs
a dataset focused on summarizing systematic re-
views using the “Conclusion“ section of structured
abstracts, and this work was extended in a recent

shared task on multi-document summarization for
scientific literature reviews (Wang et al., 2022). Al-
Hussaini et al. (2022) takes a different approach
by producing an end-to-end system for screening
and summarizing individual clinical cohort stud-
ies based on PICO elements and clinically-relevant
details annotated by epidemiologists during data
curation. Kang et al. (2023) creates a novel, hi-
erarchical framework for structuring evidence in
clinical trials for better usability and understanding.

While existing work offers many valuable re-
sources for evidence extraction across a diverse
array of tasks, it is limited to specific, narrowly-
scoped tasks and requires substantial annotation
efforts to work effectively. In contrast, many crit-
ical clinical meta-analyses answer very specific
clinical questions which are out of the scope of
existing data and require manual curation. This
work differs from existing work by evaluating the
effectiveness of foundation NLP models for zero-
shot extraction of information for highly-specific
clinical questions, enabling a much broader range
of applications.

3 Problem setup and methodology

Two prior works facilitated the development of this
zero-shot information extraction work, the Rem-
edy Database (Emory, 2023) and CML dataset
registered on PROSPERO for an ongoing meta-
analysis (Kronick et al., 2023). Each was created
through manual annotations of clinical trial and
cohort study articles. Lists of the data columns
included in each dataset are included in Tables 1
and 2.

3.1 Remedy Database

Repurposing drugs is the process of identifying
new therapeutic uses for existing drugs that have
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Data Field Definition

Study Type Study characteristics such as Phase II, open-label, placebo-controlled, etc.
Cancer Type What type of cancer did the study focus on?
Cancer Stage What stage(s) of cancer did the study focus on?
Drug Name What are the (non-cancer) drugs studied in this clinical trial?
Treatment Timing When was treatment given relative to other standard-of-care (SOC) treat-

ment?
Dosage What is the dosage of the drug(s) used in the study?
Concurrent SOC What is the standard of care (SOC) treatment is given to cancer patients in

this study?
Sample Size How many patients were enrolled in the study?
Summary Template-baased summary capturing information on intervention and

comparator groups, study outcomes, and the authors’ conclusions.

Table 1: Data fields of ReMedy dataset

already been approved for other indications. Clin-
ical trial articles provide valuable information on
the safety and efficacy of new treatments and in-
terventions. However, identifying and extracting
critical information from clinical trial articles is a
time-consuming and tedious process. ReMedy can-
cer database was built to address this issue (Emory,
2023). It provides a comprehensive and standard-
ized source of information for clinical trials, ob-
servational studies, and case reports data for re-
purposed drugs for cancer, thereby making the re-
purposed drug data easily accessible to physicians,
patients, and potential investigators. In this article,
we have focused mainly on extracting information
from clinical trial articles.

The current data extraction process is mostly
manual. The data extraction is divided into three
distinct categories: (i) Article identification, (ii)
Extraction of clinical data, and (iii) Creation of
structured article summary. Identification of the
articles is done manually by searching for repur-
posed drug articles in databases such as PubMed.
The screening process ensures that the identified ar-
ticles fit the inclusion criteria, such as study design,
intervention, and outcome measures.

Articles were included based on study type, inter-
ventional drug, and outcome measures. All articles
were required to evaluate the effect of a non-cancer
drug on cancer patient outcomes to be included.
Every clinical trial article entry in the Remedy
database is reviewed at least twice, and changes
are made to ensure accuracy.

The data elements included in the ReMedy
database are Pubmed ID (PMID), year of publica-

tion, study type, cancer stage, cancer type, cancer
sub-type, drug name, drug category, treatment tim-
ing, the dosage of the drug, the concurrent standard
of care, number of patients enrolled in the study,
clinical trial outcomes (primary and secondary) and
author’s conclusion. Data was curated by students
pursuing a masters of public health (MPH) degree
and takes between 60-90 minutes for an average
abstract.

3.2 CML Database
Chronic myeloid leukemia, or CML, is a relatively
rare form of leukemia characterized by the presence
of a Philadelphia chromosome, which results from
the fusion of BCR and ABL1 genes (Jabbour and
Kantarjian, 2018). Though once highly lethal, the
development of a tyrosine-kinase inhibitor (TKI)
drugs dramatically improved long-term CML sur-
vival (Minciacchi et al., 2021). This dataset was
developed for a meta-analysis to examine the hema-
tological adverse events (HAEs) associated with
TKI use. Examined HAEs include anemia, throm-
bocytopenia, neutropenia, aplastic anemia, pancy-
topenia, and myelosuppression. Data extraction
followed a procedure close to the one described
in (Mohanavelu et al., 2021). All articles were se-
lected to include at least one TKI and were filtered
to exclude combination therapies with non-TKI
drugs. Articles were identified using searches in
Pubmed and ClinicalTrials.gov.

The following data fields are included for each
article: Source (PMID or National Clinical Trials
(NCT) number), TKI name, number of patients
under treatment, number of patients experiencing
included HAE, condition grade (if available), and
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Data Field Definition

All TKIs List of tyrosine kinase inhibitors administered to patients in the study/trial
All Phases List of phases of chronic myeloid leukemia of patients at time of treatment.
All HAEs List of all hematological adverse events experienced by patients in the

study/trial.
HAE Grade Whether or not the trial lists all HAEs or only severe HAEs (i.e. grade 3 or 4).
Num. Treated For each combination of (TKI, CML phase) in the trial, how many total patients

were treated?
HAE Counts For each combination of (TKI, CML phase) in the trial, how many patients

experienced a particular HAE?

Table 2: Data columns of CML dataset

CML phase (if available). Quality control was con-
ducted by an independent team on the extracted
data. The total number of articles listing each HAE
as follows: aplastic anemia:3; anemia: 50; neu-
tropenia: 55; thrombocytopenia: 61; myelosup-
pression: 13; and pancytopenia:16.

4 Methods

4.1 Models

Our selection of models sought to balance perfor-
mance and cost for applicability to an extensive
range of researchers. Balancing these criteria, we
selected two models, GPT 3.5 Turbo (Ouyang et al.,
2022) (also known as ChatGPT) and Together’s
GPT-JT (Together, 2023) for use. ChatGPT was
chosen due to its well-known human-like perfor-
mance across a wide range of tasks and its ability to
follow detailed instructions. GPT-JT, an open, fine-
tuned extension of GPT-J (Wang and Komatsuzaki,
2021) has also shown state-of-the-art performance
across a range of prompt-based tasks despite using
up to two orders of magnitude fewer parameters
(6B vs. up to 530B) (Together, 2022). All outputs
for GPT-JT were obtained via the Manifest wrapper
for the API (Orr, 2022).

4.2 Prompt Creation and Tuning

Prompts were created and refined using an itera-
tive, human-in-the-loop creation process. Initial
prompts were created for each dataset in collab-
oration with one of the original curators of the
database. Prompts for multiple-choice or select-all-
that-apply study characteristics were often (but not
always) provided with a list of possible values to
guide model outputs.

The “article summary” column from ReMedy
follows a template to ensure that human curators

gather all relevant epidemiological data for a drug-
repurposing meta-analysis. To produce these sum-
maries, we provided models with a similar tem-
plate, augmented with instructions on what data to
put in each field. The full text of each summary
was generated in a single shot for each article.

The CML dataset required the extraction of quan-
titative information about each hematological ad-
verse event (HAE) listed in each paper. This extrac-
tion was needed for each stage of CML and each
TKI analyzed in the study. We extracted this in-
formation by first prompting the model to provide
a list of all TKIs, CML phases, and HAE listed
in each study. After normalizing the outputs for
each category (see below), we iterated through each
(TKI, phase, HAE) model identified in the paper
and extracted the count and/or percentage of each
adverse event. We additionally attempted to extract
this information using a one-shot templated sum-
mary but found the model output too inconsistent
to reliably parse the desired quantitative data.

A list of prompts used for ReMedy are given in
Table 3 and prompts for CML are given in Table 4.

4.3 Data Extraction and Postprocessing
Outputs from generative LLMs were often noisy
and required significant normalization to be usable.
For example, outputs of GPT-JT consistently began
generating additional questions after each output
was extracted, so outputs had to be split by newline
character, and everything after the first newline was
thrown away. Outputs of categorical columns (sin-
gle and multi-label) were normalized to acceptable
values using fuzzy string matching with the accept-
able values. All matches within an appropriate
threshold (usually 80% or higher) were replaced
with the matched canonical value, while those be-
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Data Field Prompt

Study Type What type of study is this? I define study type as "phase 0", "phase 1", "phase 2", "phase 3",
"phase 4", "randomized", "double blind", "open label", "placebo controlled", "pilot studies".
Please list all applicable study types.

Cancer Type What type of cancer(disease) did the study focus on?
Cancer Stage What stage of cancer did the study focus on? I define cancer stage as "Early (stages 0 - 3)",

"Advanced (stages 3-4)", "Metastatic (Stage 4)", "All stages (0-4)"
Drug Name What is/are the name(s) of the drug(s) used in the study?
Treatment Timing What is the treatment timing? I define treatment timing as "adjuvant", "continuous", "mainte-

nance", "neo-adjuvant", "palliative", "peri-operative", "post-diagnosis", "primary therapy", and
"secondary therapy".

Dosage What is the dosage of the drug(s) used in the study? Please list values in a dictionary as
{drug_name: dosage}

Concurrent SOC What is the standard of care? I define standard of care as "anti-angiogenic", "check point
inhibitors", "chemo-radiation", "immune therapy", "radiation", and "targeted therapy"

Sample Size How many patients were enrolled in the study? Please give only the number and no other
words.

Summary Write a summary the study using the following guidelines/template. Fill out a template
that includes the following features: Include the disease name, drug name, type of clinical
trial for the first sentence. Then summarize the abstract by including PICO (Population,
Intervention,comparison (control & intervention) and outcome. Also include the standard
of care that is used. Finally include author’s conclusion. Below is a sample template, with
values you should insert in brackets []. "A [clinical trial phase] clinical trial evaluating the
effects of [drug(s)] in patients with [cancer type(s)] cancer. Disease: [cancer types] cancer
Population: [n] patients with histopathology in [location] Intervention (n=[num patients in
intervention group]): [dosage details] Control (n=[n patients in control/standard of care group]):
[standard of care treatment. should not include non-cancer drug being investigated] Concurrent
treatment: [treatment type, e.g. chemotherapy (detailed or not?)] Primary outcomes: a)[study
endpoint/outcome metric], [value (intervention vs control)], [confidence interval], [p-value]
b) Secondary outcomes: a) [study endpoint/outcome metric], [value (intervention vs control)],
[confidence interval], [p-value] b) The authors conclude: [single sentence direct quote from
author conclusions]

Table 3: Prompts used for ReMedy data extraction

Data Field Prompt

All TKIs Please list all tyrosine kinase inhibitors studied. List only the TKI name(s) delimited by commas.
Do not return anything other than the TKI name(s).\nChoices: [’imatinib’, ’nilotinib’, ’dasa-
tinib’, ’radotinib’, ’ruxolitinib’, ’bosutinib’, ’tipifarnib’, ’asciminib’, ’ponatinib’, ’bosutonib’]

All Phases What phase(s) of chronic myeloid leukemia (CML) did patients in the study have? List all that
apply. Do not return anything other than the CML phase(s).\nChoices: ["chronic", "accelerated",
"blast"]\nIf not specified, reply "n/a".

All HAEs What hematological adverse events were experienced by patients in the study? Select all that
apply. Do not return anything other than the adverse events.\nChoices: ["anemia", "pancy-
topenia", "myelosuppression", "aplastic anemia", "neutropenia", "thrombocytopenia"]\nIf none
mentioned, reply "n/a"\n

HAE Grade Does this study list all grades of adverse events or only severe (i.e. grade 3 or 4) adverse events?
If all grades, please respond "all" and if severe only, please respond "severe". If no adverse
events are mentioned, reply "n/a"

Num. Treated How many patients with phase phase CML were treated with tki? Please return a single integer
and nothing else. If no patients with phase phase CML were treated with tki were specified,
return "n/a"

HAE Counts How many {tki} treated patients with {phase} phase CML experienced {ade}? Please return a
single integer. If the number of patients with {ade} is not listed, reply "n/a"

Table 4: Prompts used for CML data extraction
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Unfiltered Filtered

ChatGPT GPT-JT-6B ChatGPT GPT-JT-6B Metric

Concurrent SOC 0.135 0.192 0.149 0.201 Accuracy
Cancer Type 0.897 0.510 0.904 0.518 Accuracy
Treatment Type 0.235 0.564 0.248 0.549 Accuracy
Num. Patients 0.719 0.638 0.720 0.634 Accuracy
Cancer Stage 0.403 0.224 0.408 0.215 Accuracy
Dosage 0.461 0.083 0.472 0.077 Fuzzy Acc
Study Subtype 0.584 0.375 0.604 0.382 Jaccard
Summary (p) 0.469 0.197 0.496 0.205 Precision
Summary (r) 0.420 0.201 0.431 0.201 Recall
Summary (f1) 0.421 0.188 0.441 0.193 F1

Table 5: Results of LLM information extraction on Remedy database

low the threshold were marked as incorrect.
“Cancer Type” and “Concurent Standard-of-

Care Treatment” columns in Remedy were not
given candidate values in the multiple choice list
during initial LLM labeling, so we asked each LLM
to generate a mapping from the free-text values to
their normalized forms. ChatGPT was able to to
map the free-form values in these columns to the
candidates in the multiple choice list for over 95%
of values, while GPT-JT correctly normalized out-
puts less than 10% of the time. When comparing
the outputs of these columns, we compare the self-
normalized version of ChatGPT’s output and the
unnormalized version of GPT-JT’s output, giving
each model the highest respective performance.

4.4 Hyperparameters

ChatGPT was run with p=0 and maximum tokens
set to 30 tokens or less for all fields except the
summary. All other ChatGPT parameters were
set to default values. Manifest parameters were
set to top_p=0.9. We additionally set top_k=40
for ReMedy non-summary fields, and top_k=1 for
ReMedy summary + all CML fields. All summaries
were generated using a maximum of 256 tokens,
occasionally resulting in summary truncation.

4.5 Evaluation Metrics

4.5.1 Classification
Each dataset in question produced diverse data
types that require different evaluation strategies.
All single-label classification columns were eval-
uated using accuracy. For multi-label classifica-
tion, where each model outputs a set of characteris-
tics (e.g., Study Subtype in Remedy), we compare
the set of characteristics labeled by the foundation

model with human-annotated set using Jaccard sim-
ilarity:

J(A,B) =
|A ∩B|
|A ∪B|

4.5.2 Quantitative Information Extraction
Integer columns (e.g., number of patients, side-
effect counts) were evaluated using accuracy, mea-
sured as the mean frequency of an exact match be-
tween the human-annotated integer and the output
of the foundation model. For columns that measure
percentages, we considered an answer “correct” if
the output of the foundation model and the human
annotation differ by no more than 1% to account
for rounding error.

4.5.3 Short Answer
Some fields list a short, free-form text answer
(e.g., dosage). For these fields, multiple equiva-
lent answers could be acceptable. For example, the
dosages “40mg BID” and “40 mg twice daily” are
semantically equivalent. These differences are com-
mon as clinicians prefer shorter acronyms such as
“BID” whereas LLMs prefer more colloquial expla-
nations such as “twice daily”. We compare LLM
outputs’ similarity with gold answers in these fields
using fuzzy string matching, with cutoffs chosen
based on human inspection of included/excluded
matches. We then calculate “fuzzy accuracy” as
the mean of how often gold and LLM responses
were above the required similarity threshold.

4.5.4 Summarization
We compare generated and human summaries us-
ing Rouge (Lin, 2004). Specifically, we use the
Rouge-L metric, which analyzes the length of the
longest common subsequence (LCS) of the gen-
erated and reference summaries. Let m and n be
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Figure 2: ReMedy Summary Rouge-L F1 score distri-
bution for each model.

the lengths of the reference and generated sum-
maries, respectively. Then the Rouge-L precision
(Plcs), recall (Rlcs), and F-measure (Flcs) scores
are computed as follows:

Rlcs =
LCS(X,Y )

m

Plcs =
LCS(X,Y )

n

Flcs =

(
1 + β2

)
RlcsPlcs

Rlcs + β2Plcs

where β = Plcs
Rlcs

.

5 Results

5.1 Remedy

The results of the models on ReMedy are shown in
Table 5. These results show a wide range in accu-
racy, with the extraction of cancer type and sample
size being the most accurate and identification of
the concurrent standard-of-care treatment being the
least accurate.

In general, we observe that ChatGPT dramati-
cally outperforms GPT-JT for most data fields. The
largest gains occur in the “Dosage” and “Sum-
mary” fields. This likely occurs because Chat-
GPT’s training objective provides more explicit
optimization for summarization and formatting,
both of which are critical to performing these
tasks correctly. GPT-JT’s ability to summarize
is notably poor, only performing 3% above the
score given by the template given in the prompt,
(P,R, F1) = (0.206, 0.158, 0.170). A compari-
son of the distribution of Rouge-L F1 scores for
ChatGPT and GPT-JT is shown in Figure 2.

ChatGPT GPT-JT-6B Metric

TKIs 0.870 0.448 Jaccard
CML Phases 0.919 0.932 Jaccard
HAEs 0.500 0.466 Jaccard
HAE Grade 0.044 0.128 Accuracy
Num. Treated 0.444 0.154 Accuracy
Anemia 0.244 0.308 +/-1 Accuracy
Neutropenia 0.133 0.179 +/-1 Accuracy
Thrombocytopenia 0.133 0.128 +/-1 Accuracy
Pancytopeia 0.956 0.974 +/-1 Accuracy
Myelosuppression 1.000 1.000 +/-1 Accuracy
Aplastic Anemia 1.000 1.000 +/-1 Accuracy

Table 6: Results of LLM information extraction on CML
dataset. +\- Accuracy counts numerical matches that are
off-by-1 to account for rounding error.

5.2 CML

The results of the models on the CML dataset are
shown in Table 6. We observe that ChatGPT out-
performs GPT-JT on identifying the number of pa-
tients treated and the TKIs used in the study.

One interesting result is that accuracy on pan-
cytopenia, myelosuppression, and aplastic anemia
are high. This is because these HAEs are very
rarely observed in the data, and the models cor-
rectly predict them as N/A. This is a promising
result showing that models are capable of refusing
to make up values when the data is not present for
extraction.

5.3 Error Analysis

We perform an error analysis of the mistakes made
by models when generatively extracting data. We
found that errors extracting specific data elements
generally fell into the following categories:

Excessive Verbosity Despite prompts explicitly
designed to limit verbosity (e.g., “...Please list only
the tki name(s) delimited by commas”, “...Please
return a single integer. If the answer is not found,
return ‘n/a’ ”), models frequently output extrane-
ous text trying to explain their answers, particu-
larly ChatGPT. Excess explanations turned single-
word answers into complete sentences, added un-
desired (but grammatically correct) punctuation,
or explained that the data was not found in the
quoted text rather than simply returning “n/a”. This
verbosity was the leading cause of postprocessing
needed to make model output usable.

Data not in Abstract Each of the databases used
in this study were curated the full text of research
articles. However, our models only examined data
present in the abstracts of such articles. While all
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needed information was sometimes present in the
abstract alone, specific quantitative results were
often present only in the full text of the research
article, particularly for the CML dataset. In these
cases, failure to agree with the curated data reflects
a correct assessment by the model that information
is lacking in the text it was provided. In the Rem-
edy dataset, the study subtype was sometimes not
present in the abstract, which ChatGPT correctly
detected and returned a response indicating its ab-
sence. For 33% of the articles, ChatGPT detected
all study subtypes accurately from the abstract.

Incomplete Gold-standard Data In select cases,
LLM output revealed human errors in the curation
of the original databases. An analysis of the 30
lowest-scoring abstracts for document summariza-
tion revealed that 20 had incomplete human sum-
maries, 3 of which had no human summary. Two
additional articles had been removed from ReM-
edy and/or referenced by a different PMID in the
database. This indicates that text summarization
results are overly conservative in estimating model
performance, especially on the lowest-scoring por-
tion of the data. We report the results after remov-
ing the subset with errors under the “Filtered” tab
of the ReMedy results.

Hallucinations Models occasionally hallucinate
false information from studies. The most common
hallucinations from ChatGPT in Remedy were in-
correct numbers of patients in treatment/control
groups and the hallucination of a control group
when none was present. This most commonly oc-
curs when the group sizes are not explicitly given
in the paper, in which case ChatGPT assumed that
the population was split evenly between treatment
and control groups. When the disease subtype was
absent in the abstract, ChatGPT had the propensity
to guess the study subtype instead of indicating its
absence. Hallucinations from GPT-JT showed a
higher propensity to seek to answer the question
with fabricated numbers when the actual answer
was missing from the study.

6 Conclusion

In conclusion, this study demonstrates the poten-
tial of large language models in enhancing the
efficiency of clinical meta-analyses of random-
ized clinical trials. By comparing its performance
with traditional manual annotation methods, we
provide valuable insights into the advantages and

challenges of implementing AI-based solutions in
evidence-based medicine. The results of our re-
search indicate that LLMs can contribute to more
streamlined, transparent, and reproducible results
in clinical research. It also reveals that they still
make significant errors and should be used cau-
tiously with additional quality checks when used
as a tool to extract data from clinical research.

Ethics Statement

Using large language models in a clinical domain
has inherent risks. As demonstrated in this paper,
LLMs sometimes hallucinate and fabricate false
answers to questions posed about research articles.
If done at scale, these extraction errors could propa-
gate to downstream analyses, potentially leading to
false conclusions. While LLMs may be able to sig-
nificantly speed the process of human data curation
and even help in detecting errors, they still require
manual verification of results to ensure high data
quality.
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