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Abstract
This paper explores the use of L2-specific
grammatical microsystems as elements of
the domain knowledge of an Intelligent
Computer-assisted Language Learning
(ICALL) system. We report on the design
of new grammatico-functional measures
and their association with proficiency. We
illustrate the approach with the design of
the IT, THIS, THAT proform microsystem.
The measures rely on the paradigmatic
relations between words of the same linguistic
functions. They are operationalised with one
frequency-based and two probabilistic meth-
ods, i.e., the relative proportions of the forms
and their likelihood of occurrence. Ordinal
regression models show that the measures are
significant in terms of association with CEFR
levels, paving the way for their introduction in
a specific proform microsystem expert model.

1 Introduction

This paper explores the use of L2-specific gram-
matical systems as elements of the domain knowl-
edge of an Intelligent Computer-assisted Lan-
guage Learning (ICALL) system. Such systems
rely on Natural Language Processing approaches
that conduct several high-end tasks such as Gram-
matical Error Detection (GED), automatic refor-
mulation or proficiency level prediction. As part
of the Intelligent Tutoring System (ITS) category,
they rely on models that have have an expertise,
which is language use in their case.

Expert models encapsulate the domain knowl-
edge which is required to describe the learner’s
language skills involved in tasks such as writ-
ing production. In ITSs, there are several pos-
sible strategies used to acquire and represent do-
main knowledge (Nkambou et al., 2010). Among

those are rule-based cognitive models, describing
learning strategies, and Constraint-based models
(CBM) describing principles that rely on correct
solutions to a problem.

In the case of ICALL, representing the knowl-
edge of learners has traditionally been done within
the Constraint-based model (CBM) framework
thanks to correct-usage principles derived from
native language use. For instance, some Gram-
matical Error Detection tasks are processed on
the basis of target hypotheses (TH) (Lüdeling and
Hirschmann, 2015), i.e. the correct version of
what is meant by a learner in a specific segment.
In this type of tasks, correct versions of erroneous
segments or patterns are compared with the TH
(Bryant et al., 2017) to identify incorrect uses. As
useful as it has proved to be, this type of approach
tends to reduce the knowledge about L2 language
production to what native speakers would say or
write by focusing on error correction. In doing
so, it overlooks the meta-knowledge that language
learning experts possess regarding acquisition pro-
cesses. Experts’ evaluations of learner language
not only rely on TH, but also on what they know of
the grammatical, lexical, semantic and pragmatic
features in L2 writings of different proficiency lev-
els, be they negative or positive features (Bulté and
Housen, 2012). This allows them to position the
learner’s productions in terms of level and to pro-
vide feedback.

We argue that an expert ICALL system should
not be reduced to error identification and correc-
tion on the basis of native language production, but
include comprehensive knowledge about the range
of L2 linguistic profiles at different stages of lan-
guage learning. We intend to use such profiling as
part of a learning-analytics system providing in-
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formation to teachers on their learners’ linguistic
developmental stages.

Modelling the domain knowledge with such
profiles linked to proficiency levels is necessary.
In order to do so, we draw inspiration from rule-
based cognitive models. The role of rule-based
cognitive models is to describe the knowledge in-
volved in ”student performance in a given task do-
main, including strategies, problem-solving prin-
ciples, and knowledge of how to apply problem-
solving principles in the context of specific prob-
lems” (Aleven, 2010). When applied to language
learning, this approach complies well with de-
scribing the strategies used to elaborate language
patterns, including idiosyncrasies. This makes
rule-based cognitive models quite comprehensive
in describing learner language characteristics.

Our proposal follows this approach, as it con-
siders an expert model as a cognitive entity that
knows positive and negative characteristics of an
L2 set of writings at various stages of proficiency.
The expert model should not simply ”know” the
rules that operate for native speakers, it should
also include the probability of patterns that gov-
ern specific levels. Many grammatico-functional
microsystems (MS) exist that describe a part of
the grammatical reasoning at work in production.
They are convenient to describe the psychologi-
cal reality of the learner and may be linked to
proficiency as in the English Grammar Profile
(O’Keeffe and Mark, 2017).

As an illustration of the broad process, we
present the design and implementation of a spe-
cific linguistic microsystem as a rule-based cogni-
tive model, namely the THIS, THAT and IT pro-
form microsystem. Our working hypothesis re-
volves around the idea that different proficiency
levels prompt different linguistic contexts around
the use of the microsystem, which leads to differ-
ent odds of using the forms in the microsystem.
Therefore, by observing the probability of using a
given form in the microsystem as a function of the
context, we could capture aspects of the learner’s
grammatical reasoning that points to a given pro-
ficiency level. This approach raises two research
questions:

1. What is the likelihood of microsystem forms
in L2 writings, according to the linguistic
context that surrounds the microsystem?

2. What is the distribution of these probabilities
across CEFR levels?

To answer these questions, we propose to use a
model to describe the probabilities of use of THIS,
THAT and IT proforms depending on context, as
a first step toward modelling linguistic profiles. In
other words, this model predicts the likelihood of
a learner using either THIS, THAT or IT given
the linguistic context of this proform, while be-
ing agnostic to whether the choice of such pro-
form was correct or not. To assess the relevance
of using the likelihood of microsystem forms as
linguistic profiling, a second model predicts pro-
ficiency levels using only the probabilities of us-
ing THIS, THAT and IT output by the microsys-
tem prediction model. If this second classifica-
tion model can discriminate proficiency levels us-
ing only the predicted probabilities for the forms
of the microsystem, then the microsystem likeli-
hood model is a coherent way to build domain
knowledge indicators for profiling. In section 2
we present the theoretical background underlying
our research. Section 3 presents the data and the
microsystem extraction methods used to exploit it.
In section 4, we present how the microsystems are
implemented and evaluated in terms of extraction
and predictability. Section 5 covers the results ob-
tained with different modelling approaches to val-
idate the associations between microsystem and
proficiency.

2 Theoretical background

ICALL systems are ITSs, and it is relevant to un-
derstand the distinctions between the types of ex-
pert models before reviewing the types of ICALL
models.

Expert models in general ITSs. Intelligent Tu-
toting Systems require expert models which fall
into three main categories, i.e. black-box, glass-
box (or rule-based) and cognitive models (Nkam-
bou et al., 2010; Anderson, 2013). Following
Aleven (2010), we place rule-based models along-
side CBMs as part of the cognitive category. Black
box models are said to be inexplicit in their rep-
resentations as they only provide the final results
(Nkambou, 2010, p.18) and show correct input-
output behaviour with very little use for their in-
ternal computation (Anderson, 2013, p.26).

Cognitive models show different degrees of in-
terpretability, which is useful for instruction deliv-
ery. Their decision making processes lend them-
selves well to giving feedback to learners. In the
subcategory of CBMs the requirements that all
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solutions should satisfy are set in advance rather
than having to map all possible errors and cor-
rect solutions. This simplifies the search space by
narrowing down the possible solutions and avoid-
ing breaking the domain principles. Conversely,
rule-based models rely on an comprehensive set
of rules that can be deterministic or probabilis-
tic. The rules mirror the way an expert analyses
a problem by taking into account positive or nega-
tive observations.

A good expert model seems to revolve around
several principles. Not only does it have to pro-
duce correct results, but it also needs to have high
cognitive fidelity, i.e., the compliance of its deci-
sion making features with those that are used by
learners. In addition, the expert model must fil-
ter out the feature space “according to the same
restrictions as a human does” (Anderson, 2013).

Expert models in ICALL. The aforementioned
distinctions can be used to understand the different
types of expert models that exist in ICALL sys-
tems. Are they black boxes or cognitive models?
Rule-based or CBM? Depending on the tasks and
the adopted NLP approaches, they may fall into
one of the categories, showing or not their cogni-
tive inclination.

As far as we know, most second language mod-
els employ supervised learning methods which
rely on very different types of features. Neural
approaches with text embeddings and transformer
models provide very accurate results in different
tasks such as Grammar Error Detection (GED)
(Bryant and Briscoe, 2018) or Automatic Essay
Scoring (AES) (Rama and Vajjala, 2021). How-
ever, the rules and features they rely on are diffi-
cult to interpret, turning them into black boxes and
leading to poor cognitive fidelity.

A number of GED tasks have relied on super-
vised learning approaches based on error coded
datasets including corrected statements as target
hypotheses (Settles et al., 2018). These hypothe-
ses may be seen as the CBM principle, i.e. refer-
ence points with which learner language is com-
pared (Bryant et al., 2017). By way of edit-
distance metrics, the models can be used to pro-
vide error identification in context. However, they
cannot explain the reasons for the errors. Their
decision making process does not rely on infor-
mation that is cognitively meaningful for learners.

Other supervised-learning models are based on
probabilistic rules relying on explicit linguistic

features. In proficiency prediction tasks, a num-
ber of experiments were conducted with models
relying on morphosyntactic and lexical features
(Tack et al., 2016; Pilán and Volodina, 2018; Yan-
nakoudakis et al., 2018). These linguistic features
make up intelligible rules that have a degree of
cognitive fidelity. However, in spite of their lin-
guistic characterisation, some are not very action-
able by teachers. This is due to the complex-
ity of their design in terms of variables (Gaillat,
2022). For instance, the Automated Readability
Index (ARI; (Smith and Senter, 1967)), a measure
of difficulty in reading, is composed of two vari-
ables (Average Sentence Length (ASL), the Aver-
age Word Length (AWL)) whose combination in
a formula1 is hard to interpret. Because they are
not designed to provide any other feedback than
the result, these models do not have high cognitive
fidelity.

Some advanced Automated Writing Evaluation
(AWE) systems show greater cognitive fidelity as
they try to match their feedback with interpretable
linguistic information. Based on linguistic fea-
tures used in supervised learning methods, the sys-
tems can contextualise the errors with grammati-
cal justifications (Attali and Burstein, 2006; Yan-
nakoudakis et al., 2018). Some Automatic Essay
Scoring systems, which rely on semantic and dis-
course complexity metrics, feed from their expert
models’ features to elaborate feedback messages
on cohesion for learners (Dascalu et al., 2013). In
these cases, the connection between the models’
rules and the wording of the feedback messages
shows a focus for high cognitive fidelity. While
elaborating the messages, these systems rely on
expert models that filter out irrelevant knowledge
that could impair the cognitive reception by learn-
ers. One important aspect is that Dascalu et al.
(2013) add specificity as an extra dimension. They
use two specific models for two specific tasks, i.e.
a view of cohesive links in discourse and a view of
stance variation in discourse.

Our proposal follows the same principle applied
to the grammatical rather than the cohesive di-
mension. The objective is to design expert mod-
els that capture the hesitations that learner may
have on specific syntactic paradigms. For in-
stance, learners may hesitate between different de-
terminers, or they may have confusions in the use
of demonstrative pronouns. We intend to design

1ARI = 0.5ASL + 4.71AWL - 21.34
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several expert models for microsystems specifi-
cally linked to linguistic functions. Their goal is
to provide fine-grained knowledge of the varia-
tions between forms of the same function. Mi-
crosystems reflect the learners’ hesitations that are
part of the competition model in which learn-
ers constantly resolve conflicts while choosing
forms (MacWhinney et al., 1984). These hesi-
tations create microsystem instability as learners
unexpectedly group forms that are not necessar-
ily mapped to the same functional paradigm (Py,
1980). Due to this instability in the mappings, the
microsystems are transitional in nature (Gentil-
homme, 1980). They include erroneous mappings
which later are removed, leading the learner to bet-
ter proficiency. Following Gaillat et al. (2021),
we focus on the referential proform microsystem
made up of THIS, THAT and IT. The purpose is
to compute how each of these forms, mapped to
the same referential function, is likely to occur in
relation to its two other competitors.

3 Data pre-processing and proform
extraction

3.1 Data
The proform microsystem measures are computed
with data extracted from the the EF Cambridge
Open Language Database (EFCAMDAT) corpus
(Geertzen et al., 2013). This corpus results from
the collaboration between the Department of The-
oretical and Applied Linguistics at the Univer-
sity of Cambridge and Education First (EF). The
data was collected on EF EnglishTown, an online
school. Our data set is made up of 1,180,507 texts
written by students in 191 countries around the
world. The data was annotated in terms of 16 pro-
ficiency levels which were converted into the six
CEFR levels as described in the corpus manual2.
Table 1 shows the distribution of the average num-
ber of words per text and per level.

The data was pre-processed with the methods
detailed in Section 3.2. Then, the Grew pattern
extraction explained in Section 3.3 was applied,
and only the samples where an instance of the
microsystem was found are kept. This results
in a table that contains 881,627 samples, i.e., as
many lines as there are occurrences of proforms
IT, THIS and THAT in the EFCAMDAT learner
writings. This table also contains 726 columns

2Available at https://corpus.mml.cam.ac.uk/faq/EFCamDat-
Intro release2.pdf (last access 25/03/2023)

CEFR Writings Mean of tokens SD
A1 626,005 39.32 21.46
A2 308,014 68.82 24.42
B1 168,473 98.88 30.23
B2 61,366 137.27 43.67
C1 14,709 171.13 49.03
C2 1,940 176.98 71.95

Table 1: Descriptive statistics of EFCAMDAT writings
across CEFR levels

corresponding to the linguistic features about the
environment of the microsystem.

3.2 Pre-processing

Prior to microsystem extraction, the data are an-
notated according to the Universal Dependencies
(de Marneffe et al., 2021) framework. The an-
notations notably include Universal Dependency
tagged part-of-speech, lemmas of tokens, and
morphological features such as case, number, gen-
der, etc. Linguistic annotations were obtained with
the UDPipe pipeline (Straka et al., 2016) using
the English model trained on the GUM corpus3

(Zeldes, 2017). This model shows reliability for
POS and dependency annotation on L1 and L2
(Kyle et al., 2022).

3.3 Proform extraction with Grew pattern
queries

Grew (Amblard et al., 2022) is a graph rewrit-
ing tool that manipulates linguistic representations
and is aimed at natural language processing ap-
plications. It is used to extract the elements of a
microsystem from a sentence, given its linguistic
annotations.

Grew creates an annotated graph from a
CoNLL-U annotated sentence, with the words and
their linguistic annotations (lemma, xpos, upos...)
as nodes, and the dependency relations between
the words as edges. Using a set of patterns, it
is then possible to isolate only the words in the
graph that follow these patterns. We create pat-
terns corresponding to proform usage of IT, THIS
and THAT. Example (1a) shows the THIS pattern.
The heuristic searches for all tokens which are DE-
Pendent on a GOVernor predicate by a dependency
relation of the following types: nominal subject
(nsubj) in a passive voice structure (:pass), oblique
(obl), nominal modifier, object, conjunct, or root

3english-gum-ud-2.5-191206
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of sentence (see de Marneffe et al., 2021, p.266-
267).

(1a)

THIS_PRF::DEP[wordform="this"

|"these"|"This"|"These"];
GOV-[nsubj|obl|nsubj:pass|nmod
|obj|nsubj:outer|conj|root]
-> DEP.

As a results, proforms, such as in examples (2a)
and (2b), can be extracted.

• 2a) This song may be a joke now , between
musicians , but at the time it came , this
rocked .

• 2b) That is how I found the class of Sciences
of Education in Paris 2 . I went to the global
opening and when I was listening to the pre-
sentation of the classes , I was sure this was
what I wanted to study for my future .

Once the patterns have been extracted, informa-
tion about the linguistic environment of the tar-
get microsystem is collected, including morpho-
logical, syntactic and part-of-speech information
available for the words in a five-word window
around the target proforms. The same type of
information is also collected for the dependency
governor of the target word, as well as the distance
along the dependency tree from the target word to
the root of the sentence.

Evaluation of the extractions To check the
soundness of using Grew patterns to extract mi-
crosystems, we conducted the following evalua-
tion. All the sentences that contain an occurrence
of the words IT, THIS or THAT, whether they
are proforms or not, are selected from the pre-
processed data. For each of these words, 100 sam-
ples are selected randomly among those that con-
tain the forms, or the maximum amount available
if it is less than 100. Additionally, some samples,
not containing any of the forms, are also selected.
This results in 358 samples used only for eval-
uation of Grew patterns. This sampling strategy
is different from the modelling-evaluation strategy
applied in Section 4.3 because, here, it is essential
to capture forms of any function. On the contra-
try, the modelling strategy solely requires proform
samples of the forms.

The gold standard is set by an expert who an-
notates whether the identified form is indeed a IT,

THIS or THAT proform, or none of those. The
samples are also independently run through Grew.
The tool outputs the patterns for the identified
forms which are then compared to the expert anno-
tations. A notable feature of this data is the unbal-
ance of the forms, with the THIS proform making
out only 2% of the annotated samples, and 60%
of the samples displaying no use of the microsys-
tem. Note that a subsequent development of this
study will include three annotators with measures
of inter-rater agreements.

The weighted F1-score of Grew extractions
reaches 0.82, with a weighted precision of 0.90
and a weighted recall of 0.80. This shows that
using Grew patterns as a tool to identify the mi-
crosystems is viable, and does not select many
forms that are not indeed part of the microsys-
tem. A word of caution is to be given about
the results for each individual form: while the
IT proform occurrences are almost always per-
fectly identified, and most THAT forms found by
Grew are indeed correct, many relevant THAT
proforms are not identified in the text, as shown
in Figure 1. This phenomenon can be explained
by the sample selection strategy : sentences that
contained the string of characters THAT were se-
lected in this data set. However, the word THAT
covers a wide range of other functions than pro-
form, namely, subordinator, relativizer, adverbial,
demonstrative determiner. IT, on the other hand,
is more often used in its referential function in
spite of its possible other functions, i.e., imper-
sonal use, extrapositional use, cleft use and ex-
pressing weather/time/distance (Huddleston and
Pullum, 2002, p. 960, Biber et al., 1999, p. 332).
The samples containing THAT are therefore less
likely to contain a large proportion of proform
use of THAT, contrary to the samples contain-
ing IT. On inspecting extraction errors of THAT,
it also appears that the proform use is confused
with the relativizer use of the form. To address
this problem, the Grew extraction query of THAT
proform should be revised with a finer-grained fil-
tering strategy. Still, with a grain of salt concern-
ing the extraction of THAT, these results show that
Grew is a relevant tool for the extraction of the el-
ements of the microsystem.

Moreover, this first evaluation also provides
some insight on the rarity of proform uses of
THIS, THAT and IT, highlighting variability in the
frequencies of use. IT is more often used in its
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Figure 1: Confusion matrix for the evaluation of Grew
pattern extraction

proform function than THAT, for instance. This
draws the attention on the need to address this im-
balance in crafting the statistical models, as such
models are often biased by unbalanced data, and
to analyze our results in the light of these uses of
the proforms.

4 Design of the proform microsystem
measures

4.1 Conceptual design

The conceptual idea of a microsystem is that each
form is used relative to its competitor forms be-
cause they are mapped to the same referential
function. For instance, one possible assumption
about the proform microsystem is that the use of a
THAT is detrimental to the use of IT and THIS. In
order to identify the best operationalisation of the
microsystem concept, we identified three types of
measures capturing the forms’ relative variations.
The measures are based either on proportions or
probabilities of occurrence.

Regarding proportions, we tally the counts of
each IT, THIS and THAT for each writing, then
create the percentage for each MS as in:

MS(xij) = fij/
∑n

k=1 fkj
where x = the microsystem, i = the ith compo-

nent of the microsystem, j = the jth text, n = the
total number of forms in microsystem and fij =
the frequency of a component in text j.

Regarding probabilities, we apply two types of
models. First, a multinomial logistic regression
model predicting forms on the basis of linguistic

features extracted from the forms’ local contexts.
σ−1(p(i|C)) = α+ β1(c1) + ...+ βn(cn) + ϵ

where p(i|C) is the probability of observing a
proform i knowing the context C made up of fea-
tures C = {c1, ..., cn} and σ−1 is the logit func-
tion.

Second, a neural network predicting the proba-
bilities of a form given the linguistic environment.
Given an input sample C that represents the lin-
guistic environment of a form, the goal is to com-
pute the conditional probability of observing one
of the forms of the microsystem, i.e, THIS, THAT
or IT.
p(i|C) = σ(f2(LR(f1(C))))

where p(i|C) is the probability of observing a
proform i knowing the context C as defined above,
fk(c) = cAk + bk are linear layers with train-
able parameters Ak and bk, LR(c) = max(0, c)−
0.01×min(0, c) is a Leaky ReLU activation func-
tion, and σ(c)i = eci/

∑K
j=1 e

cj is the softmax acti-
vation function. The input C consists of the one-
hot-encoded categorical variables in the linguistic
environment of a form. The LeakyReLU activa-
tion function has been preferred over the ReLU
function as a way to mediate the issues of vanish-
ing gradient during training, induced by the sparse
feature representation of the input due to one-hot-
encoding.

4.2 Technical implementation

The relative proportions are based on the raw fre-
quencies of the proforms in each text and are com-
puted on all the texts.

In the case of the logistic regression measur-
ing approach, the model relies on the following
features: POS, Universal Dependency informa-
tion regarding heads, POS of tokens found in a
[-5;+5] position interval and dependency distance
between a form and its head. As not all variables
of the data set were assigned values (especially
morphological features which are dependent on
word types) variables with more than 10% miss-
ing values are dropped.

In the case of the Neural measuring approach,
all available linguistic annotation is collected as
features at first: POS, morphological features
and Universal Dependency information of tokens
found in the [-5;+5] position window and depen-
dency distance between a form and its head. Then,
only features where more than 60% of the sam-
ples are not null were kept. This is done as an
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A1 A2 B1 B2 C1 C2 Total
IT 18360 20291 18406 11482 2476 371 71386
THAT 9268 16320 25009 14950 5009 830 71386
THIS 19372 16821 20673 10565 3518 437 71386
Total 47000 53432 64088 36997 11003 1638 214158

Table 2: Number of samples for each proform at each
CEFR level in the balanced training data set

attempt to reduce unnecessary dilution of the in-
formation through one-hot-encoded variables that
would be mostly null. The network is trained
over 50 epochs, using the Adam optimiser with a
0.0005 learning rate.

4.3 Evaluation

To evaluate the accuracy of the measures given
by the proform predictive approaches, we split the
data into 80% training and 20% testing, for a total
of 705,302 training samples and 176,325 test sam-
ples. The training data set is then balanced with re-
gard to the number of THIS, THAT or IT forms, in
order to avoid model imbalance. We take random
samples of IT and THAT equal to the number of
THIS (i.e., 71,386 occurrences, the lowest number
among the three proforms), resulting in 214,158
training samples. Details on the composition of
the training data set are provided in Table 2.

We evaluate the three measure construction
methods, that is, proportions, logistic model prob-
abilities and neural network probabilities, in two
steps. Firstly, we examine the predictive capac-
ity of the systems used to create the measures : if
these models cannot properly classify the proform
given a certain context, then they are not likely
to create good measures for the microsystem. We
therefore perform multinomial logistic regression
and train the neural network approach on the train-
ing data and predict labels in the testing data, using
linguistic features listed in Section 4.2.

In a second phase, to evaluate whether the mea-
sures correlate with proficiency, we perform mod-
elling with ordinal logistic regression as a descrip-
tive model. Taking as descriptors the probabilities
of using THIS, THAT and IT output by the previ-
ous model, we investigate whether there is an as-
sociation between these measures and the odds of
increasing CEFR level.

5 Results and discussion

5.1 Measure creation

We separately inspect the three approaches used
to create the measures. The first proportion-based

approach can only provide an insight in the ten-
dency of the learners to use the different forms of
the microsystem, as it is a count-based method and
not a statistical model. The other two approaches
can be evaluated with the usual accuracy, predic-
tion and recall scores, presented in Table 3.

Beginning with measures based on proportions,
Figure 2 depicts the distribution of IT, THIS,
THAT relative proportions across CEFR levels.
It shows a reduction in the percentage use of IT
as CEFR level increases. The reverse is seen in
the percentage of THAT use, with an increase at
higher CEFR levels. A Kruskall-Wallis rank sum
test (or “one way ANOVA on ranks”) is used to
quantify the differences between MS proportions
at different levels. The p-value smaller than 0.05
for all three proforms (p < 0.01) indicates signif-
icant differences between the use of proforms at
different CEFR levels.

Moving on to the second approach, the multi-
nomial logistic regression yields a 0.77 accuracy
overall (95% CI: (0.76, 0.77), p > .001). The
detailed results in Table 3 show reasonable accu-
racy statistics for IT microsystems but low recall
and precision for THIS and THAT proforms. The
difficulty in picking THAT with local context fea-
tures might come from the higher complexity of
the THAT contexts of occurrence due to the form’s
functional versatility, i.e. subordinator, relativizer,
adverbial, demonstrative determiner and proform.

Thirdly, the model based on the neural net-
work yields a 0.74 accuracy (95% CI: (0.73, 0.74),
p > 0.001). This model shows the same issues
as the multinomial logistic regression model re-
garding the prediction of THIS, although it per-
forms slightly better. However, the performance
increases for THAT, with the recall more than dou-
bling. This could be explained by the capacity of
the neural network to create a high-dimensional la-
tent feature space, where the different functions of
THAT crystallise over different dimensions, dis-
ambiguating the use of THAT as proform as a re-
sult.

The best performances overall are therefore
reached by the neural network approach, although
the multinomial regression method offers better
performance for IT alone, and the proportions are
proved to show statistically significant differences
between CEFR levels. In order to leverage the ad-
vantages of these three approaches, a possible av-
enue for future work is to explore a combination of
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IT THIS THAT

Figure 2: Distribution of relative proportions of IT, THIS and THAT proforms across CEFR levels in the EFCAM-
DAT corpus

these models. It could either be a simple concate-
nation of all measures, leading to a 9 microsys-
tem measures, or a weighted sum of the measures,
with weights proportional to the performance of
each model on each specific form. Another ap-
proach could also lie with bagging several multi-
nomial regressions, and using the average of the
output probabilities as our measures.

5.2 Association between measures and CEFR
level

We now report the results regarding the models
computing associations between the measures and
the odds of increasing CEFR levels, using an ordi-
nal regression analysis. Table 4 shows odds ratios
for each of the three types of measure. For all mea-
sures, the odds ratios are significant ( p < 0.001),
comforting the fact that our microsystem measures
can be used as predictors of CEFR level.

These results suggest that writings with higher
predicted probability of IT have a reduced odds of
being in a higher CEFR level. On the contrary,
those with a higher predicted probability of THAT
are more likely to have a higher CEFR level. Both
predictive methods (multinomial regression and
neural networks) agree on a higher probability of
THIS being more likely to have a higher CEFR
level, while the proportions method finds that on
the contrary, a higher proportion of THIS hints at
a lower CEFR level. We believe that in this case,
this is due to a limitation of the proportion-based
measure, that simply counts the percentage of oc-
currence of each form regardless of linguistic con-
text. The proportion of THIS contains many more
outliers than the other two forms, as seen in Fig-
ure 2. Our explanation is that the disagreement
with the other two models is caused by an inaccu-
rate measure of THIS due to this scattered distri-
bution.

5.3 Discussion

Our first research question revolved around the
likelihood of microsystem forms in L2 writings.
The three measurement methods we propose cap-
ture the choices of a given form with regard to
the other possible forms. Regarding model per-
formance, IT is always well predicted while the
detection of THIS and THAT could be improved,
leading to more accurate probabilities and in turn
better microsystem descriptors. To this end, more
significant features defining the local context of
occurrence of the proforms could be assessed. For
instance, adding referential information regarding
the degree of givenness of a proform could possi-
bly improve the models. Another way to improve
the contextualization of the proforms could be the
use of state-of-the-art Natural Language Process-
ing approaches, such as Long-Short Term Memory
networks (Hochreiter and Schmidhuber, 1997), or
more recently, BERT models (Devlin et al., 2019).
Both these methods could be used in the same
fashion as we did in the present work, that is,
trained to predict a masked form, with the addi-
tional benefits of feeding the entire text ”as is” to
the model and not needing to hand-craft context
features. It must be noted that our use of a neural
model differs from black-box models that rely on
the direct ingestion of texts to predict errors for in-
stance. Our neural model relies on proforms rather
than full texts, hence giving specific grammatico-
functional probabilities that can be used in subse-
quent higher-level prediction tasks.

The second research question was to analyse the
degree of association between the measures and
the CEFR levels given to the texts. Our results
indicate that an expert proform MS model can be
trained on the basis of likelihood of occurrence,
with a slight disagreement between proportion-
based and probability-based measures. In both
cases, an expert model could use these two mea-
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Multinomial log regression Neural network
IT THIS THAT IT THIS THAT

Balanced accuracy 0.71 0.69 0.64 0.74 0.70 0.72
Precision 0.93 0.20 0.36 0.93 0.31 0.66
Recall 0.81 0.54 0.31 0.74 0.70 0.72

Table 3: Performance statistics for the predictive approaches to measuring the proform microsystem

Odds ratio 95% CI p value
Proportions IT 0.995 0.995, 0.995 <0.001

THIS 0.997 0.997, 0.997 <0.001
THAT 1.010 1.010, 1.010 <0.001

Multinom log regression IT 0.992 0.991, 0.993 <0.001
THIS 1.006 1.005, 1.007 <0.001
THAT 1.012 1.011, 1.014 <0.001

Neural network IT 0. 47 0.42, 0.51 <0.001
THIS 1.17 1.04, 1.32 <0.001
THAT 2.27 2.04, 2.53 <0.001

Table 4: Ordinal logistic regression of CEFR by pro-
portion of IT,THIS and THAT

sures as predictors of CEFR levels in new incom-
ing learner writings.

The MS model also supports qualitative feed-
back with regards to specificity and cognitive fi-
delity. Firstly, the probability-based models offer
knowledge of proform use at word level, allow-
ing specific identification in context, hence spe-
cific feedback. A high level of feedback specificity
improves understanding from the learner (Shute,
2008). Secondly, because of the grammatico-
functional nature of the MS concept, the MS
model’s measures can be used to explains rea-
sons of a problem. For instance, a proficiency-
predicting model relying on MS proform features
could point out the demonstrative pronouns in a
learner’s text in a similar fashion to what Dascalu
et al. (Dascalu et al., 2013) do by identifying cohe-
sion gaps. This level of explainability gives a high
degree of cognitive fidelity. In this respect, the
neural-model increases interpretability as it pro-
vides a broader variation of odds ratios, indicating
clearer proficiency gaps and making the effects of
each form clearer to disambiguate.

6 Conclusion

In this paper, we have reported on the design of
new grammatico-functional metrics which are to
be used in the expert module of an ICALL sys-
tem. The metrics rely on paradigmatic syntactic
relations between words of specific functions. We
have illustrated the approach with the design of the
IT, THIS, THAT proform microsystem. The mea-
sures rely on the relative proportions of the forms
and their likelihood of occurrence. They show sig-

nificance in terms of association with CEFR lev-
els, paving the way for their introduction in a spe-
cific proform microsystem expert model.
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tion des langues. Encrages, pages 79–84.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Rodney Huddleston and Geoffrey K. Pullum. 2002.
The Cambridge Grammar of The English Language.
Cambridge University Press, Beccles, Suffolk.

Kristopher Kyle, Masaki Eguchi, Aaron Miller, and
Theodore Sither. 2022. A Dependency Treebank
of Spoken Second Language English. In Proceed-
ings of the 17th Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2022),

pages 39–45, Seattle, Washington. Association for
Computational Linguistics.
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Gaëtanelle Gilquin, and Fanny Meunier, editors, The
Cambridge Handbook of Learner Corpus Research,
pages 135–158. Cambridge University Press, Cam-
bridge.

Brian MacWhinney, Elizabeth Bates, and Reinhold
Kliegl. 1984. Cue validity and sentence interpreta-
tion in English, German, and Italian. Journal of Ver-
bal Learning and Verbal Behavior, 23(2):127–150.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
(2):255–308.

Roger Nkambou. 2010. Modeling the Domain: An In-
troduction to the Expert Module. In Roger Nkam-
bou, Jacqueline Bourdeau, and Riichiro Mizoguchi,
editors, Advances in Intelligent Tutoring Systems,
number 308 in Studies in Computational Intelli-
gence, pages 15–32. Springer Berlin Heidelberg.

Roger Nkambou, Jacqueline Bourdeau, and Riichiro
Mizoguchi, editors. 2010. Advances in Intelligent
Tutoring Systems. Number 308 in Studies in Com-
putational Intelligence. Springer Berlin Heidelberg.

Anne O’Keeffe and Geraldine Mark. 2017. The
English Grammar Profile of learner competence:
Methodology and key findings. International Jour-
nal of Corpus Linguistics, 22(4):457–489. Pub-
lisher: John Benjamins.
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