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Abstract 

Responding to the increasing need for 
automated writing evaluation (AWE) 
systems to assess language use beyond 
lexis and grammar (Burstein et al., 2016), 
we introduce a new approach to identify 
rhetorical features of stance in academic 
English writing. Drawing on the discourse-
analytic framework of engagement in the 
Appraisal analysis (Martin & White, 2005), 
we manually annotated 4,688 sentences 
(126,411 tokens) for eight rhetorical stance 
categories (e.g., PROCLAIM, 
ATTRIBUTION) and additional discourse 
elements. We then report an experiment to 
train machine learning models to identify 
and categorize the spans of these stance 
expressions. The best-performing model 
(RoBERTa + LSTM) achieved macro-
averaged F1 of .7208 in the span 
identification of stance-taking expressions, 
slightly outperforming the intercoder 
reliability estimates before adjudication (F1 
= .6629).  

1 Introduction 

Automated writing evaluation (AWE) systems 
make it possible to assess students’ writings and 
provide useful feedback efficiently (Shermis & 
Burstein, 2013). From the language assessment 
perspective, however, usefulness is multifaceted 
(e.g., Bachman & Palmer, 1996) and, in many 
parts, depends on what areas of writing ability a 
given system can measure and give feedback on 
(Huawei & Aryadoust, 2023). While many AWE 
systems to date focus on lexical, syntactic, 
organizational, and topical aspects of students’ 
writing (e.g., Attali, 2007), the construct of writing 
(i.e., writing skill) is known to be far more complex 
and includes pragmatic and rhetorical knowledge 

(Bachman & Palmer, 2010; Sparks et al., 2014). 
Accordingly, recent studies have included 
constructs such as discourse moves and steps (e.g., 
Cotos, 2014), source use and citations (Burstein et 
al., 2018; Kyle, 2020), and argument structures 
using Rhetorical Structure Theory (Fiacco et al., 
2022). Given the increasing focus on the 
assessment of the ability to construct effective 
persuasive texts (Sparks et al., 2014), innovative 
use of NLP is needed how to assess these social and 
rhetorical constructs of writing (e.g., Burstein et al., 
2016; Carr, 2013; Lu, 2021). 
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Figure 1: A sample output of the best-performing 
system reported in this study. The excerpt was taken 
from the ICNALE corpus (Ishikawa, 2013). 
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One area that has received relatively little 
attention in the literature on AWE is the notion of 
evaluative language or stance-taking (Biber & 
Finegan, 1988; Hunston & Thompson, 2000; Xie, 
2020). In the computational linguistics context, the 
notion of stance is often discussed in relation to the 
stance-detection task, where the objective is to 
categorize whether a text producer is in favor, 
against, or None, toward a certain topic (e.g., 
Schiller et al., 2021). However, from the language 
assessment perspective, researchers are more 
interested in the rhetorical strategies used to 
express a nuanced stance instead of the binary 
classification of positions (Biber, 2006; Biber & 
Finegan, 1988; Hyland, 2005). In applied 
linguistics research, evaluative language 
essentially concerns how writers express their 
stance on a topic of discussion or express their 
emotions or feelings on an entity (see Xie, 2020).  

This paper reports the development and 
empirical evaluation of an end-to-end system to 
identify and categorize epistemic evaluative 
meanings in academic written discourse (see 
Figure 1 for illustration). We specifically draw on 
the discourse-analytic framework of the 
engagement system in the appraisal analysis 
(Martin & White, 2005) to create a gold-standard 
corpus of academic English. We then train an end-
to-end span identification systems that can 
undertake stance analysis under the discourse 
functional framework. The free online demo of the 
current span identification system is accessible 
through Hugging Face Space1. 

2 Background 

2.1 Evaluative language 

English for Academic Purposes (EAP) research 
often investigates evaluative language through 
corpus-based or discourse-analytic methods (Xie, 
2020). Both approaches have both benefits and 
drawbacks. Qualitative discourse analysis allows 
researchers to analyze nuanced stance-taking 
strategies using contextual information; however, 
this limits the scalability of the analysis and thus 
cannot be used for large-scale standardized testing 
situations. Corpus-based approaches (e.g., Bax et 
al., 2019; Biber, 2006; Yoon, 2017) can overcome 
the issue of scalability. However, most tools rely 

 
1https://huggingface.co/spaces/egumasa/engageme
nt-analyzer-demo 

extensively on lexical and syntactic features (e.g., 
dictionary lookups of relevant vocabulary filtered 
for particular POS tags). Accordingly, these corpus 
approaches tend to neglect the fact that evaluative 
language can be poly-functional depending on the 
surrounding context. For example, very few corpus 
tools disambiguate whether the verb suggest is 
used to attribute an idea to external sources (The 
authors suggest that …) or to hedge the writers’ 
own view (e.g., We suggest that …). Therefore, a 
probabilistic approach to identify the function in 
which the evaluative language is used is necessary 
to overcome the dilemma faced in the two 
approaches. 

2.2 The engagement system 

In this study, we draw on the framework of 
engagement in the appraisal analysis (Martin & 
White, 2005; White, 2003) as a theoretical 
framework for annotating functional categories of 
stance-taking expressions. According to Martin 
and White (2005), engagement concerns “locutions 
which provide the means for the authorial voice to 
position itself with respect to, and hence to 
‘engage’ with, the other voices and alternative 
positions construed as being in play in the current 
communicative context” (p.94). In this discourse-
analytic framework, parts of sentences (or clauses) 
are classified into different stances writers take. For 
example, a writer can present his/her idea as if it is 
a fact (e.g., The banks have been greedy; Martin & 
White, 2005). The use of present tense in the 
example implies that the statement does not 
recognize potential alternative realities and is thus 
termed MONOGLOSS by Martin & White 
(2005). Alternatively, a writer can display their 
awareness of other positions on the topic of 
discussion, using various heteroglossic strategies. 
These include, for example, ATTRIBUTE (e.g., I 
heard on the recent news that the banks have been 
greedy), COUNTER (e.g., Although you might 
disagree, the banks have been greedy), and 
CONCUR (e.g., Everyone agrees that the banks 
are greedy.), etc. (see a complete list of discourse 
choices in Section 3.4).  

The engagement system has been shown useful 
in describing nuanced ways in which writers 
position themselves against possible alternative 
views, for example, in peer-reviewed academic 
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paper (e.g., Chang & Schleppegrell, 2011; X. Xu & 
Nesi, 2017), university written assignments (e.g., 
Lancaster, 2014; Wu, 2007), and second language 
writing research (e.g., Lam & Crosthwaite, 2018). 
However, the analysis requires intensive manual 
coding because of the lack of automated tools that 
classifies the discourse-semantic category of 
engagement reliably. This means that in its current 
state, the engagement system cannot be applied to 
any large-scale educational applications. To benefit 
from the theoretical insights of discourse analysis 
in educational practices, this methodological 
obstacle needs to be overcome. The current study 
attempts to fill this gap using a supervised 
machine-learning approach.  

2.3 Span identification 

In this study, the task of identifying the evaluative 
language of engagement is conceptualized as a 
span identification task (see Gu et al., 2022; Papay 
et al., 2020). Span identification is a task of 
identifying boundaries of expressions in the input 
text and assigning a label (discourse-semantic one 
in the current study). Span identification has been 
used for a range of applications, including entity 
extraction (Gu et al., 2022), quoted material 
detection (Pareti, 2016), and toxic word detection 
(Rao, 2022). Particularly the latter two tasks are 
directly relevant to the current task because it 
attempts to identify text segments that may not be 
easily determined by particular grammatical 
features (e.g., noun chunks).  

Recent span identification architectures (e.g., 
Gu et al., 2022; Rao, 2022) leverages large 
encoder-based pre-trained Transformer models 
(Devlin et al., 2019; Liu et al., 2019). For example, 
Gu et al. (2022) compared three approaches to 
formulate span identification tasks—Sequence 
Tagging, Span Enumeration, and Boundary 
Prediction. According to Gu et al. (2022), tagging 
is similar to NER in that each token is predicted 
under the BIO scheme (e.g., Papay et al., 2020). 
Span enumeration approaches the task by 
considering all spans within specified n lengths as 
candidates (as in Lee et al., 2017). Finally, 
boundary prediction takes a supervised approach to 
predict the start and end of spans. In the latter two 
approaches, span representations are created by 
pooling a set of token embeddings within the 
candidate spans (e.g., start and end tokens) (see Fu 
et al., 2021; Gu et al., 2022). Using the RoBERTa-
base (Liu et al., 2019) and T5-base encoder (Raffel 

et al., 2020), Gu et al. (2022) concluded that while 
the three had relative (dis)advantages, recall-
focused tasks may benefit from span enumeration 
and boundary prediction. 

In previous span identification architectures, 
researchers have often used additional 
contextualization by adding an additional Bi-
LSTM layer on top of the transformer embeddings. 
However, the results appear mixed depending on 
the nature of the task and dataset (Gu et al., 2022; 
Papay et al., 2020). Therefore, a secondary goal of 
this study is to test whether we observe the benefits 
of additional contextual information via additional 
Bi-LSTM when the task does appear to require 
fine-tuned contextual information due to the 
discourse oriented nature of the proposed task (see 
Sections 2.1 and 2.2; see examples of the verb 
suggest).  

2.4 Contribution of this study 

The main contributions of this paper are two-
fold. First, we present a new annotation scheme of 
academic English writing drawing on the 
discourse-analytic framework of the engagement 
(Martin & White, 2005) and present annotated 
dataset using the developed scheme (Section 3). 
Second, we present a new end-to-end model that 
can identify and categorize the span of engagement 
strategies (see Figure 1). 

3 Engagement Discourse Treebank 
(EDT) 

The EDT currently comprises 4,688 sentences with 
manually annotated engagement resource spans 
(126,411 tokens; 11,856 spans), which were 
sampled from corpora of academic English or 
closely related genres (see definition of in-domain 
text below). The version of EDT used to train the 
machine learning models presented in this paper is 
accessible at https://github.com/LCR-ADS-
Lab/Engagement-Discourse-Treebank. The most 
recent version of the annotation guideline is 
accessible through the following GitHub page: 
https://egumasa.github.io/engagement-annotation-
project/.  

3.1 Definition of in-domain text 

When developing a new dataset for an NLP task, it 
is important to clearly define the domain of texts to 
sample the annotation data to ensure the 
correspondence between the gold-standard 
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annotation and the kind of data to make inferences 
(Ramponi & Plank, 2020). A precise definition of 
in-domain text is also important from the AWE 
perspective since the degree of correspondence will 
influence the degree to which the AWE is able to 
assess the language use in the Target Language Use 
domain in language assessment (TLU domain; 
Bachman & Palmer, 2010). Following these two 
related concepts, we defined the in-domain text of 
EDT as academic written English of various genres 
written by both first- and second-language writers 
of English.  

3.2 Source corpora 

Annotation data was widely sampled from pre-
existing corpora to represent the in-domain texts 
(see section 3.1 for definition). A major portion of 
data was sampled from two corpora of university 
written assignments—the British Academic 
Written English (Alsop & Nesi, 2009) and the 
Michigan Corpus of Upper-level Student Papers  
(Römer & O’Donnell, 2011)—representing first- 
and second-language writers of English. The 
remaining portion of data was sampled from a 
combination of corpora documenting timed essays 
by second-language writers with various 
backgrounds and proficiency levels (Blanchard et 
al., 2013; Ishikawa, 2013; Yannakoudakis et al., 
2011). The selection of a wide range of sources, 
instead of commonly used data sources, such as 
Wall Street Journal articles, allowed us to represent 
the characteristics of in-domain texts. 

3.3 Minimal context approach 

During the corpus sampling, we opted for a 
minimal context window strategy (i.e., three-
sentence) to achieve a compromise between the 
validity of the annotation and any practical 
considerations (e.g., budget, time constraints, 
copyrights of source corpora). In an ideal situation, 
the unit of analysis for annotation should be the 
entire document, particularly because the object of 
the annotation is discourse semantics; however, 
there are arguably advantages and drawbacks to 
this approach. One advantage of the current three-
sentence window approach is that a small dataset 
(like EDT) can still represent a larger number of 
writers (hence individual writing styles and stance-
taking strategies) compared to using the whole 
document as a unit of analysis. The coverage of 
patterns of stance-taking strategies was deemed as 
important as the annotation of the entire 

documents, to allow generalization of the machine 
learning system to different writing styles. A 
potential drawback of this approach is the 
reduction of contextual information during 
annotation; however, using the minimal contexts 
mitigates this potential issue. This point is taken up 
in the limitation section, where we offer 
recommendations and our plans for further 
research. 

3.4 Core Engagement Categories 

There are eight core engagement categories 
annotated for EDT. The category definitions and 
descriptions below were adapted from previous 
studies (Martin & White, 2005; Wu, 2007; Y. Xu, 
2020). The examples are only for illustrative 
purposes. Note that the bold-italics in the examples 
show the spans to be annotated and categorized.  

Monogloss concerns a statement that does not 
acknowledge any recognition of potential 
alternative viewpoints. Such an utterance ignores 
the dialogic potential in an utterance typically 
through bare assertions (e.g., The language you 
speak determines your thoughts). 

Disclaim-Deny is an utterance that invokes an 
alternative position but rejects it directly (e.g., The 
language you speak does not determine your 
thoughts). 

Disclaim-Counter is an utterance that 
expresses the idea so as to replace an alternative 
and thus counter the position which would have 
been expected (e.g., Despite the lack of evidence, 
the language you speak determines your thoughts). 

Proclaim-Concur concerns an utterance where 
the writers expect/ assume that their position is 
easily agreed upon by the putative readers (e.g., As 
we all know, the language you speak determines 
your thoughts). 

Proclaim: Pronounce is an utterance that 
shows a strong level of writer’s commitment 
accompanied by explicit emphasis and 
interpolation, thereby closing down the dialogic 
space (e.g., I contend that the language you speak 
determines your thoughts). 

Proclaim: Endorse includes utterances that use 
external sources as warrantable, undeniable, and/or 
reliable. It shows the writer’s alignment with the 
attributed proposition (e.g., The study by Wilson 
showed that the language you speak determines 
your thoughts). 

Entertain concerns an utterance that presents 
the author’s position as only one possibility 
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amongst others, thereby opening up dialogic space 
(e.g., The language you speak might influence your 
thoughts). 

Attribute concerns an utterance where the 
writer delegates the responsibility of a proposition 
to a third person (i.e., an external source), thereby 
opening up the dialogic space (e.g., It is often 
believed that the language you speak determines 
your thoughts.).  

It is important to reiterate that engagement is a 
discourse semantic category. This means that while 
there are some prototypical lexico-grammatical 
items for each category, the exact function needs to 
be determined with their co-text in mind, and it is 
challenging to create an exhaustive list of 
‘expressions’ (see Hunston, 2004). 

3.5 Supplementary discourse categories 

Four supplementary discourse labels were added 
considering the previous discourse-analytic studies 
in academic domains (e.g., Hyland, 2005; Nesi, 
2021). For other tags annotated, see the annotation 
guideline. 

Citations is defined as mentions to an external 
source(s) in the text in form of in-text or narrative 
citation (e.g., Smith (2000); (Smith, 2000)). 

Sources: Mentions to an external source(s) in the 
text in form of nominal expressions (e.g., A recent 
paper reports …). 

Endophoric markers include a part of the text 
that refers to information in other parts of its own 
text (e.g., X is discussed in Section 9). 

Justifying includes locutions that signal 
persuasion through justification or substantiation 
(e.g., The current discussion is important because 
it highlights the key factors of climate change).  

4 Annotation Procedure 

The annotation team consisted of two primary 
annotators (undergraduate students; linguistics 
majors) and the principal investigator (PI) (the first 
author,  who was a Ph.D. candidate in a functional 
linguistics program and holds a master’s degree in 
Second Language Acquisition and English 
Language Teaching). 

The annotation project comprises the following 
four steps—annotator training (Section 4.1), 
iterative consensus building (Section 4.2), 
independent annotation (Section 4.3), and double-
checking and quality assurance (Section 4.4). The 
annotation comprised two tasks—detecting spans 
and assigning one functional label for each span. 

4.1 Annotator Training—orientation and 
guided practice 

Annotator training consisted of an orientation 
phase followed by guided practice. During the 
orientation phase, the two annotators were 
introduced to the basic concepts of SFL and the 
engagement system (Martin & White, 2005), 
which were summarized by the PI in the annotation 
guideline. This included the distinction between 
monogloss and heterogloss, the distinction between 
contraction and expansion, and distinct strategies 
(see Sections 2.2). Preliminary topics on the lexico-
grammatical analysis were also reviewed as needed 
(Biber et al., 1999), including the notion of 
constituency, finite and non-finite clauses, 
subordinate or embedded clauses, and T-units 
(Hunt, 1965). 

In the guided practice phase, the two annotators 
went through multiple-stage practice with iterative 
feedback from the PI. First, they were introduced 
to the annotation tool, WebAnno version 3.2 
(Eckart de Castilho et al., 2016; Yimam et al., 
2013). WebAnno was used as the graphical user 
interface that assists the manual span annotation of 
engagement resources throughout the annotation 
project. Second, a sample of 500 sentences was 
distributed to the annotators. They annotated this 
training sample independently, which was later 
checked by the IP for the mastery of the discourse 
annotation framework. For each annotator, the IP 
identified the patterns of errors in the training, 
provided tailored feedback independently, and 
clarified any concepts in the guideline. This step 
took the annotation team about 10 weeks (50–100 
hours of working time for each annotator). 

4.2 Iterative consensus building 

In adapting the discourse-analytic framework of 
engagement (Martin & White, 2005), care was 
taken to update the annotation guidelines to make 
the descriptions rich and context-specific, as 
recommended by Fuoli (2018). To this end, the 
annotation team used the first 200 annotation files 
for active consensus building. Regular meetings 
were held to discuss the issues during the 
annotation of these files after each annotator 
blindly tagged the data. The resolution strategies 
were then documented in the annotation guideline. 
The initial annotation by each annotator was used 
for the inter-annotator agreement reported in this 
study. 
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4.3 Independent annotation phase 

Subsequently, the two annotators were assigned to 
different parts of the corpus. At this point, they 
were encouraged to document any uncertainties in 
their annotations and questions in a shared 
spreadsheet. The annotators were allowed to ask 
the PI questions about ongoing issues in their 
annotation, which were mostly addressed in written 
feedback. 

4.4 Double-check and quality assurance 

Once the data is annotated by either one or two 
annotators, all the annotation files (both from 
Sections 4.2 and 4.3) were reviewed by the PI and 
corrected for any errors and clear deviance from the 
annotation guideline. After the review of each 
annotation file, the PI also conducted queries over 
the entire corpus for any inconsistencies in the 
spans and the categories. For example, the tag 
spans for there is no X construction (typically 
DENY) were inconsistently tagged ([no X]DENY 
versus [there is no X]DENY). These inconsistencies 
were fixed (there is [no X]DENY was used), and any 
ambiguities in the annotation guidelines were fixed 
for future iterations of the project. 

5 Model Architectures 

The identification and classification of engagement 
strategies were formulated as a span identification 
task (e.g., Gu et al., 2022; Lee et al., 2017). Our 
proposed architectures most closely resemble the 
span enumeration approach in Gu (2022), where 
candidate spans are generated greedily (using n-

grams and dependency subtrees). Figure 2 shows 
three variants of our neural architecture. We started 
from the baseline spaCy span categorizer model 
(Honnibal et al., 2020). We then gradually built the 
model complexity, guided by previous work in 
span identification (e.g., Gu et al., 2022; Lee et al., 
2017; Papay et al., 2020; Zhu et al., 2021) and our 
intuitions as linguists. The basic span categorizer 
pipeline consists of Token embedder, Span 
Suggester, and Span Categorizer. 

5.1 Baseline—spaCy Span Categorizer 

The first group of ML models uses a single 
transformer layer as Token Embedder, which is 
then sent to a pooling layer and logistic regression 
(see diagram [a] in the Figure 2). This is the default 
span categorizer implementation provided by 
spaCy (Honnibal et al., 2020; Schmuhl et al., 
2022). In our implementations, we used the off-the-
shelf spaCy en_core_web_trf model to predict 
dependency representations of the input text, which 
were used to suggest candidate spans along with n-
grams. For each candidate span, span 
representation is created by taking the RoBERTa-
base embeddings and applying several pooling 
operations. The pooled span representation is sent 
to the non-linear activation function and 
subsequently to the logistic layer for prediction. In 
this architecture, the RoBERTa embeddings were 
fine-tuned to learn task-specific weights while the 
weights from the en_core_web_trf model were 
fixed. 

 
Figure 2: Three architectural variants of the proposed span identification system using the spaCy SpanCat 
component as the baseline (a). See Sections 5 for details. 
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5.2 RoBERTa + Bi-LSTM model 

Although Transformer models can provide  
contextually aware token representations (Clark et 
al., 2019), it was hypothesized that additional 
sequential information would be beneficial for 
classifying engagement strategies that are 
interpreted by discourse analysts with co-textual 
information in mind, such as ATTRIBUTION. To 
allow the model to learn this additional contextual 
information, we added a single-layer Bidirectional 
Long-Short Term Memory (Bi-LSTM; Hochreiter 
& Schmidhuber, 1997; Schuster & Paliwal, 1997) 
architecture on top of the RoBERTa token-level 
embeddings, before they are sent to the span 
pooling layer. Such architecture has often been 
implemented in previous span identification 
architectures (Gu et al., 2022; Lee et al., 2017; 
Papay et al., 2020; Zhu et al., 2021). For the 
purpose of the current study, we used one-layer Bi-
LSTM with 200 hidden dimensions following the 
previous study (Gu et al., 2022).  

5.3 Dual-RoBERTa model 

The third architecture used two sets of transformer 
embeddings side-by-side, concatenated before the 
final output layer for prediction (see Architecture 
(c) in Figure 2). This model architecture was 
inspired by recent ensemble approaches to span 
identification pipelines (e.g., Rao, 2022). The 
intuition behind the dual-Transformer architecture 
was that the two Transformer models would offer 
complementary information to categorize the span 
labels, particularly because the second Transformer 
layer from the spaCy en_core_web_trf model was 
already fine-tuned for multitask learning objectives 
(e.g., POS tagging, Dependency parsing, Named 
Entity Recognition) on the Ontonote 5.0 corpus 
(Weischedel et al., 2013). Note that the RoBERTa 
weights from the en_core_web_trf was fixed in 
order to avoid forgetting of the important 
information for the dependency parsing. 

5.4 Domain adaptation of RoBERTa 

Since the version of EDT used for training was still 
relatively small, adaptive pre-trainings were 
conducted on the RoBERTa-base model (Liu et al., 
2019) using the checkpoint available through 
Hugging Face library (Wolf et al., 2020) in hope to 
counteract potential mismatches between the 
RoBERTa embedding and the characteristics of in-
domain texts (Han & Eisenstein, 2019; Ramponi & 
Plank, 2020). To this end, four domain adapted 

RoBERTa-base models were created. The five 
versions of RoBERTa (including the original) were 
set as hyperparameter in the following experiment 
(see Appendix B). 

6  Methods 

We implemented the three architectures through 
spaCy version 3.4 (Honnibal et al., 2020). All 
models were trained on a quad Nvidia Tesla K80 
GPU with 12GB RAM. All models were optimized 
with Adam Optimizer. 

6.1 Data preparation 

Table 1 summarizes the number of tags by category 
in the dataset used for this experiment. Two pairs 
of tags (Concur and Pronounce; Endorse and 
Attribute) were collapsed as PROCLAIM and 
ATTRIBUTION, respectively, to obtain enough 
number of instances in the dev and test sets. 
According to the engagement system (Martin & 
White, 2005), Concur and Pronounce are subtypes 
of PROCLAIM strategy along with ENDORSE, 
while ENDORSE was categorized under 
ATTRIBUTION with Attribute in this study due to 
its primary function of such (Sections 2.2 and 3.4). 
We then created five sets of 80/10/10 splits for 5-
fold cross-validations (CV). The tag counts in the 
5-fold datasets can be found in Appendix A. Due to 
the imbalances in labels, we oversampled minority 
cases in each data split (after splitting them into 
training sets to avoid data leaks). The oversampling 
approach (e.g., Wang & Wang, 2022) was used 
because there is no existing model to create 
synthetic examples for this new type of NLP task. 

Category Tag counts 

ATTRIBUTION 1247 

COUNTER 1046 
DENY 887 

ENTERTAIN 2837 
MONOGLOSS 2742 

PROCLAIM 445 

CITATION 618 
ENDOPHORIC 213 

JUSTIFYING 966 
SOURCES 855 

Table 1: The number of tags by category in the entire 
EDT. ATTRIBUTION subsumes ATTRIBUTE and 
ENDORSE; PROCLAIM subsumes CONCUR and 
PRONOUNCE in the original tags. 
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6.2  Hyperparameter tuning and 5-fold 
cross-validation 

We randomly searched the optimal combination of 
hyperparameters for each of the three architectures 
and tested the stabilities of the top three settings 
from each architecture (see Appendix B for 
hyperparameters). A total of 205 models were 
trained across the three architectures. 
Subsequently, eight top-performing 
hyperparameter settings were chosen, and we then 
conducted 5-fold cross-validation for each. We 
report the result of the best 5-fold CV result for 
each architecture. 

6.3 Evaluation metrics 

Considering the imbalanced data, the models were 
evaluated using Matthews Correlation Coefficient 
and Cohen’s Kappa on the end-to-end span 
categorization results. Because our span suggester 
used span enumeration approach (Gu et al., 2022) 
and was constant across the models, they were not 
compared. Note that preliminary experiments 
showed that the current span suggester (See 
Appendix B for hyperparameter settings) achieved 
recall of 97–99% on Development and Test sets. 

7 Results 

Table 2 reports on the inter-annotator reliability and 
the results of the 5-fold CV. 

7.1 Inter-annotator agreement 

A subset of blind annotation (35,640 tokens; 1,373 
sentences; 3,732 unique spans) was used to 
compute the inter-annotator agreement between the 
two annotators. The results indicated that the 
agreement was moderate (Cohen’s Kappa = .6686; 
Matthews Correlation Coefficient = .6691). 
Comparing the by-tag F1 scores against those by 
Read and Carroll (2012), our annotator agreement 
was substantially higher. However, the results also 
indicate there were some areas of struggle by 
human annotators (e.g., ATTRIBUTION, 
PROCLAIM).  

7.2 Result of the end-to-end models 

Overall, the end-to-end models, which were trained 
on a fully reviewed/adjudicated dataset, tended to 
outperform the benchmarks of inter-annotator 
agreement. The gains were substantial in several 
categories that were challenging for our annotators, 
including ATTRIBUTION, PROCLAIM, and 
SOURCES. 

  
Human annotation 

baselines   End-to-end models trained on adjudicated data 

 Read & 
Carroll 
(2012) 

Our 
annotator 
agreement 

 spaCy default RoBERTa+LSTM Dual-RoBERTa 

Category   M Min M Min M Min 

ATTRIBUTION .379 .5943  .6969 .6553 .7127 .6761 .6911 .6149 
COUNTER .603 .8511  .8521 .7394 .8636 .7781 .8774 .8567 
DENY .451 .8621  .8570 .8257 .8800 .8579 .8815 .8522 
ENTERTAIN .459 .8278  .8413 .7917 .8360 .7755 .8340 .7903 
MONOGLOSS n/a .8092  .8017 .7476 .7864 .7568 .7890 .7314 
PROCLAIM .336 .4038  .6685 .6127 .6906 .6203 .7027 .6197 
CITATION n/a .9497  .9047 .8875 .9185 .8953 .9193 .9015 
ENDOPHORIC n/a .6071  .7236 .6000 .7254 .6316 .7418 .6919 
JUSTIFYING n/a .8203  .8131 .7766 .8167 .7404 .8081 .7608 
SOURCES n/a .5663  .6961 .6585 .6985 .6318 .6844 .5887 

 
         

Accuracy   .7146  .7015 .6885 .7095 .6960 .7054 .6922 
macro avg F1  .6629  .7141 .6942 .7208 .7105 .7209 .7108 
weighted avg F1  .7208  .7183 .7094 .7283 .7105 .7196 .6903 
Cohen's Kappa  .6686  .6647 .6509 .6738 .6596 .6694 .6549 
MMC   .6691  .6663 .6534 .6755 .6611 .6710 .6554 

Table 2:  F1 scores based on 5-Fold CV. Our intercoder agreement is presented side by side with the result 
reported in Read and Carroll (2012), who annotated the entire Appraisal framework. Due to the adaptations of 
the original Martin and White (2005) in our study (see Section 3.4) some of the tags lacks direct comparisons. 
Three neural architectures are compared using the mean and minimum F1 scores based on the 5-Fold CV. 
MCC = Matthews Correlation Coefficient. Averaged F1 scores were calculated including empty tags. 
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7.3 Comparison among three architectures 

The result of the 5-fold CV (Table 2) indicated that 
the RoBERTa + LSTM architecture performed best 
among the three architectures (Cohen’s Kappa = 
.6738; Matthews Correlation Coefficient = .6755). 
This was followed by the Dual-RoBERTa Model 
(Cohen’s Kappa = .6694; Matthews Correlation 
Coefficient = .6710). It appears that RoBERTa + 
LSTM model and Dual-RoBERTa model may 
complement their strengths and weaknesses.  

8 Discussion 

The results of the 5-fold CVs indicated that the 
proposed architectures performed as well as (or 
even outperformed) the inter-annotator agreement 
baseline set for the study. The results also 
suggested that our RoBERTa + LSTM and Dual-
RoBERTa models tended to perform better than the 
spaCy default spancat model (Honnibal et al., 
2020; Schmuhl et al., 2022). 

It is noteworthy that the additional Bi-LSTM 
layer appeared to enhance the stability of the 
model. Although the use of a Bi-LSTM layer on top 
of a Transformer encoder is not uncommon in span 
identification tasks, its reported benefits have been 
mixed (Gu et al., 2022; Papay et al., 2020; Zhu et 
al., 2021). The gain in this study can be explained 
in two ways—additional sequential information 
and dimensional reduction. In a simple 
explanation, the architecture benefited from the 
additional sequence information provided by Bi-
LSTM. At least one previous study (Gu et al., 
2022) reported similar gains in additional LSTM 
layer, particularly when the span suggestion 
components were similar to the current greedy 
approach. Thus, it could be that the additional 
LSTM helped to refine the embedding for this 
particular span enumeration architecture (Gu et al., 
2022; Lee et al., 2017). In addition to this 
explanation, it is also possible that LSTM worked 
as a dimension reducer (while maintaining direct 
sequential information). Future research may 
clarify the potential reasons for this stability in the 
span identification task (which is out of the scope 
of the current study). 

Apart from the machine learning experiment, 
our inter-annotator agreement showed that the span 
annotation of engagement resource may be a 
challenging task, particularly for undergraduate 
annotators (linguistics majors) who were trained 
over 10 weeks. However, our annotator agreement 

substantially improved upon the previously 
published benchmark by Read and Carroll (2012). 
The moderate reliability in this study may provide 
further evidence to Fuoli’s (2018) claim regarding 
the lack of explicit guidelines and methodological 
discussions pertaining to the identification of 
engagement resources in discourse samples. Thus, 
it is hoped that the present annotation guideline 
may serve as a resource to guide future 
methodological improvement in discourse 
annotation of engagement resource analysis (see 
Fuoli, 2018; Read & Carroll, 2012).  

9 Conclusion 

In this paper, we reported a new approach to 
identifying stance-taking expressions in English 
texts in academic domains. Specifically, we 
introduced a new human-annotated corpus of 
academic English that draws on a discourse-
analytic framework of the engagement system 
from the Appraisal framework (Martin & White, 
2005). We also reported an end-to-end system that 
can conduct automated span identification of 
stance-taking strategies based on the engagement 
framework. The experimental result indicates that 
the system can outperform inter-annotator 
reliability estimates by a 5–6% gain in the macro-
averaged F1 score. The finding, although 
preliminary, opens a new avenue for feature 
engineering for the next-generation AWE systems 
(Burstein et al., 2016), expanding the constructs 
measured by the AWE engines. A follow-up study 
by the first author shows that the engagement 
features can explain the writing scores above and 
beyond the existing linguistic features at the levels 
of lexis, grammar, and cohesion (Eguchi, 2023). 
While end-to-end score prediction models may be 
used to obtain accurate score predictions, the 
features introduced in this paper may be used in 
conjunction with such end-to-end scoring engines 
to maintain the explainability and interpretability 
of the scores. The visualization of stance-taking 
features (see Figure 1 and demo) can also be 
presented to learners to highlight the patterns of 
stance-taking in both model and student essays. 

9.1 Limitations and Future Directions 

For future work, we plan to update the annotated 
corpus and the scope of annotation to paragraphs 
and/or whole documents. In this study, we opted for 
the minimal context approach for practical reasons, 
such as budget, time constraints, and copy rights of 
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the source corpora. The minimal context approach 
allowed the annotation sample to represent as many 
writers as possible for better generalization with 
relatively small sample sizes. However, future 
research should use longer units of analysis to 
enhance the quality of manual annotation. Despite 
this limitation, the results of the current study 
indicated that the current approach is a promising 
direction for further research on automated 
analyses of rhetorical features. 
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B Hyperparameters for random search 

 

Category Hyperparameter Possible values (Parameter range or choice) Selection 
Entire model Model Architecture Single-Transformer; 

Single-Transformer+ LSTM; 
Dual-Transformer + single-LSTM 

discrete 

Token 
Embedder 

Pre-Trained 
language model 

roberta-base; 
egumasa/roberta-base-academic3; 
egumasa/roberta-base-university-writing2; 
egumasa/roberta-base-research-papers 

discrete 

Span 
Categorizer 

FFN (Activation 
function) 

Maxout (default selection by spaCy); 
Mish; 
Mish with two separate FFNs 

discrete 

Span 
Categorizer 

FFN (hidden unit 
sizes) 

[128, 256, 384] discrete 

Span 
Categorizer 

FFN (dropout rates) [0, 0.2, 0.3, 0.4] discrete 

Span 
Categorizer 

FFN (layer depths) [1, 2]  discrete 

Training Maximum learning 
rate (alpha) 

6e-5 – 2e-5 uniform 
distribution 

Training System seed during 
training 

[0, 808, 1993, 1234, 2023] discrete 

Training Gradient 
accumulation steps 

[4, 8] discrete 

Span Suggester Max n-gram lengths 12 words fixed 
Training Optimizer Adam with weight decay fixed 
Training Learning rate 

schedule 
linear decay with warm-up steps fixed 

Training Warm-up steps 1,000 fixed 
Training Maximum training 

step 
20,000 fixed 

Training Steps before early 
stop 

3,000 fixed 

Training mini-batch size defined by number of words fixed 
Training minimal start batch 

size  
[300, 500, 900] discrete 

Training Maximum batch 
size 

1,000 words fixed 

442


