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Abstract

Question generation (QG) for reading compre-
hension, a technology for automatically gen-
erating questions related to given reading pas-
sages, has been used in various applications,
including in education. Recently, QG methods
based on deep neural networks have succeeded
in generating fluent questions that are pertinent
to given reading passages. One example of how
QG can be applied in education is a reading
tutor that automatically offers reading compre-
hension questions related to various reading
materials. In such an application, QG methods
should provide questions with difficulty levels
appropriate for each learner’s reading ability
in order to improve learning efficiency. Sev-
eral difficulty-controllable QG methods have
been proposed for doing so. However, con-
ventional methods focus only on generating
questions and cannot generate answers to them.
Furthermore, they ignore the relation between
question difficulty and learner ability, making
it hard to determine an appropriate difficulty
for each learner. To resolve these problems, we
propose a new method for generating question–
answer pairs that considers their difficulty, es-
timated using item response theory. The pro-
posed difficulty-controllable generation is real-
ized by extending two pre-trained transformer
models: BERT and GPT-2.

1 Introduction

Automatic question generation (QG) for reading
comprehension is the task of automatically gen-
erating reading comprehension questions related
to given reading passages. Various QG methods
have been developed in the natural language pro-
cessing (NLP) research field (Zhang et al., 2021).
They have also been used in various educational
systems, such as intelligent tutoring systems, writ-
ing support systems, and knowledge assessment
systems (Ghanem et al., 2022; Kurdi et al., 2020;
Le et al., 2014; Rathod et al., 2022; Zhang et al.,
2021).

Early QG methods have relied on rule-based
or template-based approaches, which use hand-
crafted rules or templates to generate an interrog-
ative question text from a declarative text (Zhang
et al., 2021). However, preparing those QG meth-
ods for a target application is time-consuming
and labor-intensive because achieving high-quality
QG requires well-designed rules and templates for
each application (Chen et al., 2021; Zhang et al.,
2021). End-to-end QG methods based on deep
neural networks have received wide attention as
a means of overcoming this limitation (Chan and
Fan, 2019; Du et al., 2017; Ushio et al., 2022; Yu
et al., 2023; Zhang et al., 2021). Earlier neural QG
methods were designed as sequence-to-sequence
(seq2seq) models based on recurrent neural net-
works (RNNs) and attention mechanisms (Du
et al., 2017), while recent methods are based on
pre-trained transformer models (Gao et al., 2019;
Ghanem et al., 2022; Lee and Lee, 2022; Rathod
et al., 2022; Ushio et al., 2022), including BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019), GPT-2 (Generative
Pre-trained Transformer 2) (Radford et al., 2019),
BART (Bidirectional and Auto-Regressive Trans-
formers) (Lewis et al., 2020), and T5 (Text-to-Text
Transfer Transformer) (Raffel et al., 2022). Those
methods have succeeded in generating fluent ques-
tions that are pertinent to given reading passages.

A representative application of how QG can be
used for educational purposes is a reading tutor that
automatically offers reading comprehension ques-
tions related to various reading materials (Kurdi
et al., 2020; Le et al., 2014; Rathod et al., 2022;
Zhang et al., 2021). This helps to focus learners’
attention on the reading materials and offers the
opportunity to observe any misconceptions they
might have (Kurdi et al., 2020), which supports
the development of reading comprehension skills.
To enhance such learning, it is useful to provide
questions with difficulty levels appropriate for each
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Figure 1: Conventional QG task.

learner’s reading ability. Such adaptivity is a core
component of recent AI-based intelligent tutoring
systems.

Difficulty control of QG is a relatively new
task (Cheng et al., 2021; Kurdi et al., 2020), and
thus previous research on difficulty-controllable
QG for reading comprehension is still lim-
ited (Chen et al., 2021; Cheng et al., 2021; Gao
et al., 2019). There are currently only two con-
ventional methods; the first uses an RNN-based
seq2seq model in which hidden states before its
encoder are modified to receive a difficulty as input
that is categorized as either easy or hard (Gao et al.,
2019), and the second is a multi-hop QG (Cheng
et al., 2021) that takes the question difficulty to be
the number of inference steps required to answer
a question and aims to generate questions while
controlling the number of required inference steps.
However, both methods have the following limita-
tions that prevent them from generating questions
appropriate for a learner’s ability.

1. They ignore the relation between question dif-
ficulty and learner ability, making it difficult
to determine an appropriate difficulty for each
learner.

2. They are answer-aware QG methods, which
generate questions given a reading passage
and an answer text, as illustrated in Fig. 1,
and thus cannot generate question–answer
pairs. Without correct answers, systems can-
not score learners’ answers automatically,

Figure 2: Our QG task.

meaning adaptive systems will not work effi-
ciently. Furthermore, controlling difficulty in
answer generation is also important because
difficulty is a property that generally depends
on both questions and answers.

To resolve these problems, we propose a new
method for generating question–answer pairs that
considers the difficulty associated with learners’
ability. A unique feature of our method is that it
uses item response theory (IRT) (Lord, 1980), a test
theory based on mathematical models, to quantify
the difficulty of each question–answer pair. IRT is
based on statistical models that define the relation
between question difficulty and learner ability, and
thus it helps us to select a difficulty appropriate for
each learner’s ability. For these reasons, we aim
to generate question–answer pairs while consider-
ing their difficulty, quantified by IRT. For our QG
method, we first propose a method for construct-
ing a training dataset consisting of quadruplets
(reading passage, question text, answer text, and
IRT-based difficulty), based on the SQuAD dataset,
which is the most popular benchmark dataset for
the reading comprehension QG task. Then, we pro-
pose a difficulty-controllable generation method
for question–answer pairs that can be trained using
this dataset. Our generation method consists of
two pre-trained transformer-based models, which
are extended to take IRT-based difficulty values as
input: a difficulty-controllable answer extraction
model using BERT, and a difficulty-controllable
answer-aware QG model using GPT-2.
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To our knowledge, this is the first difficulty-
controllable QG method aimed at generating
question–answer pairs corresponding to IRT-based
difficulty.

2 Task Definition

The task tackled in this study is to generate a read-
ing comprehension question and a corresponding
correct answer, given a reading passage and a tar-
get difficulty value. Here, we assume that a correct
answer to each question consists of a segment of
text from the corresponding reading passage, as in
typical answer-aware QG tasks (Rajpurkar et al.,
2016). Fig. 2 shows an outline of our task.

The detailed task definition is as follows. Let
a given reading passage be a word sequence r =
{ri | i ∈ {1, . . . , I}}, where ri represents the i-th
word in the passage, and I is the passage text length.
Similarly, let a question text q and an answer text a
be word sequences q = {qj | j ∈ {1, . . . , J}} and
a = {ak | k ∈ {1, . . . ,K}}, respectively, where
qj is the j-th word in the question text, ak is the
k-th word in the answer text, J is the question text
length, and K is the answer text length. Note that
the answer text a must be a subset of the word
sequence in the reading passage r, namely, a ⊂
r. Using this notation, our task is to generate a
question text q and an answer text a given a reading
passage r and a target difficulty value b, where the
difficulty value b is assumed to be quantified based
on IRT, as explained in the introduction.

3 Item Response Theory

IRT (Lord, 1980) is a statistical framework used
in psychometrics and educational measurement to
analyze examinees’ responses to test items (items
corresponds to questions in our study). One of the
unique characteristics of IRT is that it estimates
two types of latent factors from response data: ex-
aminee ability and item characteristics. Examinee
ability refers to the latent trait or ability that the
test is intended to measure, such as reading com-
prehension ability in our context. Item characteris-
tics refer to the properties of test items, including
their difficulty level and their ability to discriminate
examinee ability. IRT uses probabilistic models,
called IRT models, to estimate examinees’ abilities
and item characteristics from response data that
typically consist of a binary variable taking one if
an examinee answers an item correctly and zero
otherwise.

Figure 3: Item response curves for a Rasch model with
different item difficulty values.

IRT has been widely used in various educational
and psychological tests because it has the follow-
ing typical benefits (Uto and Ueno, 2020) com-
pared with classical test theory (a simple and tra-
ditional framework based on basic statistics such
as mean, variance, and correlation coefficients):
1) IRT provides detailed information about item
properties, including difficulty and discrimination,
which helps test developers identify problematic
items and improve test quality. 2) IRT provides
accurate estimates of examinee ability and item
properties. 3) The abilities of examinees who take
different tests can be estimated on the same scale
because examinee ability is estimated considering
the effects of the items’ characteristics. 4) IRT is
the basis for computerized adaptive testing (CAT),
which can reduce test length and increase measure-
ment precision by selecting appropriate items for a
target examinee’s ability (van der Linden and Glas,
2010).

This study uses the Rasch model (a one-
parameter logistic model), which is the most tra-
ditional and well-known IRT model. The Rasch
model defines the probability that the m-th exami-
nee correctly answers the n-th item as

pnm =
exp(θm − bn)

1 + exp(θm − bn)
, (1)

where bn represents the difficulty of the n-th item
and θm represents the latent ability of the m-th
examinee.

To explain the relationship between the latent
ability θ and the difficulty parameter b in the Rasch
model, Fig. 3 depicts item response curves (IRCs)
of the Rasch model, which are drawn by plotting
the probability pnm, for three different difficulty
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values. In the figure, the horizontal axis shows θ,
the vertical axis shows the probability pnm, and
three solid curves show the IRC for three items
with different difficulty values.

These IRCs show that examinees with higher θ
have a higher probability of responding correctly
to each item. We can also see that the IRC shifts
to the right as the item difficulty value increases,
reflecting the fact that higher ability is required
to correctly answer items with high b. Further-
more, under the Rasch model, the probability that
an examinee with ability θ correctly answers the
question with difficulty b becomes 0.5 when θ = b.

The IRT model parameters are generally esti-
mated in two phases, namely, item calibration and
ability estimation, in order to guarantee asymptotic
consistency. Item calibration estimates the item
parameters from response data by marginalizing
the examinee ability θ from the likelihood in order
to ensure the asymptotic consistency of the item pa-
rameter estimates. Specifically, marginal maximum
likelihood (MML) estimation using an expectation-
maximization (EM) algorithm has been widely
used for item calibration (Baker and Kim, 2004).
Given calibrated item parameters, the ability esti-
mation phase calculates the examinee’s ability θ.
An expected a posteriori (EAP) estimation, a type
of Bayesian estimation, is generally used for the
ability estimation (Fox, 2010; Uto et al., 2023).

This study aims to quantify question difficulty
based on the IRT. The next section explains how to
prepare the dataset with IRT-based difficulty, which
is required to train our QG model.

4 Creating a Dataset with IRT-based
Question Difficulty

We require an appropriate dataset to construct our
QG method for solving the difficulty-controllable
QG task defined in Section 2. While several popu-
lar datasets have been developed for general read-
ing comprehension QG tasks (Zhang et al., 2021),
the most popular is SQuAD (Rajpurkar et al., 2016),
which consists of over 100,000 question–answer
pairs from Wikipedia articles. Specifically, SQuAD
is a collection of triplets (r, q,a), where each an-
swer a is a text fragment from a corresponding
reading passage r and each reading passage r cor-
responds to a paragraph of a Wikipedia article.
However, to construct a difficulty-controllable QG
method, we require a dataset consisting of quadru-
plets (r, q,a, b). Thus, we first propose a method

for extending the SQuAD dataset by appending
the IRT-based difficulty values for each question–
answer pair. The details for doing so are as follows.

1. Collecting response data for each question–
answer pair: We collect answers from
multiple respondents to each question in the
SQuAD dataset and grade those answers
as correct or incorrect. Ideally, we should
gather responses from a population of tar-
get learners, but this is highly expensive and
time-consuming. Thus, we substitute actual
learner responses with automated question–
answering (QA) systems, in the same way
that several previous difficulty-controllable
QG studies have done (Chen et al., 2021; Gao
et al., 2019).

2. Difficulty estimation using IRT: Using the
collected response data, we estimate the ques-
tion difficulty by using the Rasch model and
the item calibration procedure introduced in
Section 3. Note that the difficulty value gen-
erally depends on the contents of both the
question and the answer.

3. Creating a dataset with difficulty estimates:
We construct a dataset consisting of quadru-
plets (r, q,a, b) by appending the estimated
difficulty values b into the triplets (r, q,a) of
the SQuAD dataset.

5 Proposed Method

Our difficulty-controllable QG method, which is
trained using the extended SQuAD dataset, is re-
alized by performing the following two tasks in
sequence: (1) difficulty-controllable answer extrac-
tion that extracts an answer text from a given read-
ing passage while considering a target difficulty
value, and (2) difficulty-controllable answer-aware
QG that generates a question given a reading pas-
sage, an answer text, and a target difficulty value.
Details of each are provided in the following sec-
tions.

5.1 Difficulty-Controllable Answer Extraction

We perform the difficulty-controllable answer ex-
traction using BERT (Devlin et al., 2019). BERT is
a pre-trained multilayer bidirectional transformer
with 340M parameters, a transformer being a neural
network architecture based on self-attention mech-
anisms. BERT is pre-trained on large amounts
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Figure 4: Difficulty-controllable answer extraction us-
ing BERT.

of text data over two unsupervised learning tasks,
masked language modeling and next-sentence pre-
diction. The pre-trained BERT can be applied
to various downstream tasks by fine-tuning the
model with a task-specific supervised dataset after
adding task-specific output layers. We use fine-
tuned BERT for the answer extraction task because
BERT has been widely used before in various text
extraction tasks (Srikanth et al., 2020).

To perform answer extraction using BERT, we
add output layers that predict the start and end
positions of the answer text within a given reading
passage. Specifically, we add two dense layers with
softmax activation to transform each BERT output
vector, which correspond to the words within a
given reading passage, into probability values for
whether the word is at the start or end position of
the answer text. By extracting the word sequence
within the start and end positions, which take the
maximum probabilities, we can extract an answer
text from a given reading passage.

We control the difficulty of the answer extrac-
tion by inputting a difficulty value with the reading
passage. Specifically, the input for our model is
defined as

b, [SEP], r1, r2, r3, . . . , rI , (2)

where [SEP] is the special token used to separate
the difficulty value and the reading passage. This
input is what enables the model to extract an answer
text from a reading passage while considering the
input difficulty value. Fig. 4 shows an outline of
the answer extraction model.

We can fine-tune the answer extraction model by
using a collection of triplets (r,a, b), which can
be obtained from the extended SQuAD dataset ex-
plained in Section 4. This fine-tuning is performed

Figure 5: Difficulty-controllable answer-aware question
generation using GPT-2.

by minimizing cross-entropy loss between the pre-
dicted positions of the start and end of an answer
text and their true positions.

5.2 Difficulty-Controllable Answer-Aware
Question Generation

We use GPT-2 to perform difficulty-controllable
answer-aware QG. GPT-2 is a transformer-based
language model with more than 1.5 billion param-
eters, and it is pre-trained on more than 8 million
documents using an unsupervised learning process
called language modeling, which sequentially pre-
dicts the next word from the current word sequence.
We use GPT-2 for the QG tasks because it has been
widely used before in various text generation tasks.

Conventional answer-aware QG models based
on pre-trained language models (Srivastava and
Goodman, 2021), including GPT-2, are imple-
mented by designing the model’s input as

r1, . . . , [A], a1, . . . , aK , [A], . . . , rI , [G], (3)

where [A] is a special token representing an an-
swer’s start and end positions within a reading pas-
sage. [G] is also a special token representing the
end of a reading passage. Conventional QG models
receive this input and generate a question text after
the special token [G].

To implement difficulty-control for the answer-
aware QG model, we concatenate a target difficulty
value to the conventional input form above using

b, [Q], r1, . . . , [A], a1, . . . , aK , [A], . . . , rI , [G],
(4)

where [Q] is the special token used to separate
the difficulty value and the given reading passage.
Given this input, the model generates a question
text based on a reading passage, an answer, and a
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target difficulty value. Fig. 5 presents an outline of
our QG model.

We can fine-tune the answer-aware QG model
by using a dataset consisting of quadruplets
(r, q,a, b), explained in Section 4. Specifically, we
prepare the following format data and train GPT-
2 by maximizing the log-likelihood for question
texts:

b, [Q], r1, . . . , [A], a1, . . . , aK , [A],

. . . , rI , [G], q1, . . . , qJ . (5)

5.3 Determining Appropriate Difficulty based
on IRT

As explained in Section 1, IRT helps us to select a
difficulty appropriate for each learner’s ability. Ear-
lier studies on adaptive learning have demonstrated
that offering questions with a difficulty at which
the learner would have a 50% chance of answering
correctly is the most effective approach for learn-
ing (Ueno and Miyazawa, 2018). As explained in
Section 3, under the Rasch model, the probability
that a learner with ability θ correctly answers the
question with difficulty b becomes 0.5 when θ = b.
Thus, we can generate questions with a difficulty
appropriate for each learner using the following
steps inspired by the framework of CAT (van der
Linden and Glas, 2010).

1. Provide some questions randomly to a learner
and collect response data.

2. Estimate the learner’s ability using the Rasch
model and the response data.

3. Generate a question–answer pair by inputting
the estimated ability value as the difficulty
value into the proposed QG method.

Furthermore, by repeating procedures 2–3, we can
enable adaptive QG.

6 Experiments

In this section, we demonstrate that our proposed
method can generate questions and answers corre-
sponding to target IRT-based difficulty values.

6.1 Data preparation
For our experiment, we first constructed an ex-
tended SQuAD dataset consisting of quadruplets
(r, q,a, b) by following the procedures explained
in Section 4. The original SQuAD dataset was di-
vided into training data (90%) and test data (10%)

in advance. In this experiment, we trained QA
models using the training data and constructed an
extended dataset using the test data. The detailed
procedures were as follows.

1. Training QA models: Using the SQuAD
training data, we trained five different QA
models: two neural models, the BERT-based
model (Devlin et al., 2019) and the ALBERT-
based model (Lan et al., 2020), and three
feature-based models, a logistic regression
model using dependency-tree features (Ra-
jpurkar et al., 2016), a logistic regression
model using selected features (Rajpurkar et al.,
2016), and a sliding-window model using bag-
of-words features (Richardson et al., 2013).

2. Collecting response data for each question:
We collected answers from the five QA mod-
els for all the questions in the SQuAD test
data and scored those answers.

3. Estimating IRT-based difficulty: Using the
correct/incorrect response data, we estimated
the difficulty of each question using the Rasch
model. Here, we conducted the estimation us-
ing the MML method with the EM algorithm.
The difficulty values were estimated to be one
of six values (-3.96, -1.82, -0.26, 0.88, 2.01,
3.60), where questions with lower difficulty
estimates indicate that they were easier. We
linearly transformed the difficulty values es-
timated on the real value scale (-3.96, -1.82,
-0.26, 0.88, 2.01, 3.60) to positive integer val-
ues (1, 29, 49, 64, 79, 100) to make it eas-
ier for the language models to understand the
numerical inputs. Table 1 shows the ability
estimates θ̂ for the five QA systems, where
the abilities were estimated by the EAP esti-
mation using a Gaussian quadrature (Baker
and Kim, 2004), given the calibrated item-
difficulty parameters. The table shows that the
abilities of the five QA systems differ greatly.

Table 1: Ability estimates θ̂ of five QA systems.

θ̂

BERT-based model 2.25
ALBERT-based model 1.28
Logistic regression 0.52
Logistic regression (selected features) -0.64
Sliding-window model -2.84
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A larger variety of respondent abilities is gen-
erally effective for clearly distinguishing the
difficulty among questions, suggesting that
our use of these five QA systems in our ex-
periment is reasonable. Note that ability and
question difficulty are estimated assuming a
standard normal distribution, meaning that
these estimates distribute approximately on
a scale with a mean of 0 and a standard devia-
tion of 1.

4. Creating a dataset with difficulty estimates:
We created a dataset D consisting of quadru-
plets (r, q,a, b) by integrating the obtained
IRT-based difficulty values and SQuAD test
data.

6.2 Experimental Procedures

We conducted the following experiment using the
created dataset D and the original SQuAD training
data.

1. Using the original SQuAD training data, we
fine-tuned the proposed answer extraction
model and the answer-aware QG model, ignor-
ing the difficulty. This fine-tuning was done
by removing the difficulty value from the in-
put of the proposed models. Although this
procedure is not mandatory, we applied it to
improve the basic QG performance.

2. We randomly divided the dataset D into parts,
one 90% (designated as D(train)) and the
other 10% (designated as D(eval)). Then, us-
ing the 90% dataset D(train), we fine-tuned
the difficulty-controllable answer extraction
model and the difficulty-controllable answer-
aware QG model, where the initial model pa-
rameters were set to the values obtained in
procedure 1.

3. We generated questions and answers for each
reading passage in the remaining 10% dataset
D(eval), given each of the six difficulty values
(1, 29, 49, 64, 79, 100). Using the generated
questions and answers, we conducted both an
automatic evaluation and a human evaluation,
which are explained below.

We used PyTorch and the Transformers library to
implement the proposed models and the neural QA
systems. Furthermore, we used R and the TAM
package to perform the IRT parameter estimation.

Table 2: Number of questions corresponding to the six
difficulty values in D(train) and D(eval).

Difficulty D(train) D(eval)

1 662 (0.07) 90 (0.1)
29 2,739 (0.28) 269 (0.3)
49 1,623 (0.17) 144 (0.16)
64 2,362 (0.24) 195 (0.22)
79 1,389 (0.14) 107 (0.12)
100 909 (0.09) 81 (0.09)

Numbers in parentheses indicate ratios.

Here, we summarize the basic statistics of the
datasets D(train) and D(eval), which we developed
in the above procedure 2 to train and evaluate our
difficulty-controllable QG method. First, the num-
ber of reading passages in D(train) and D(eval) was
1,860 and 207, respectively. Next, the average num-
ber of questions per reading passage in D(train)

and D(eval) was 5.21 and 4.28. Furthermore, Ta-
ble 2 shows the number of questions corresponding
to the six difficulty values in each dataset. From
these results, we can confirm that the basic statistics
and the difficulty distributions are similar between
the two datasets, indicating that the dataset D was
randomly divided into D(train) and D(eval) without
bias.

6.3 Automatic Evaluation

We performed an automatic evaluation by calcu-
lating the percentage of correct answers given by
the neural QA systems (BERT-based and ALBERT-
based QA models) to the questions generated for
each difficulty. Fig. 6 shows the results, which in-
dicate that the correct answer rate of QA systems

Figure 6: Percentage of correct answers by neural QA
systems to questions generated for each difficulty.
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Table 3: Examples of generated questions and answers for different difficulties.

Reading pas-
sage

Much of the work of the Scottish Parliament is done in committee. The role
of committees is stronger in the Scottish Parliament than in other parliamentary
systems, partly as a means of strengthening the role of backbenchers in their
scrutiny of the government and partly to compensate for the fact that there is no
revising chamber. The principal role of committees in the Scottish Parliament is
to take evidence from witnesses, conduct inquiries and scrutinise legislation.

Difficulty 1 (easiest)
Question Where is much of the work of the Scottish Parliament done?
Answer committee
Difficulty 100 (most difficult)
Question What is the purpose of the chairman and member of the committee?
Answer take evidence from witnesses, conduct inquiries and scrutinise legislation

Figure 7: Average word length in generated answers for
each difficulty.

decreases as the difficulty increases. This suggests
that our proposed method generates questions that
reflect the given difficulty.

Furthermore, we calculated the average word
length in the generated answer texts for each diffi-
culty. Fig. 7 shows the results, and these indicate
that the average word length in the generated an-
swer texts increases as the target difficulty values
increase. Considering that questions with longer
and more complex answers are generally difficult
to correct perfectly, this result suggests that the
proposed method extracts answers that reflect the
specified difficulty.

Table 3 shows examples of the generated
question–answer pairs when given the same read-
ing text but different difficulty values, demon-
strating that higher difficulty values correspond to
longer answers.

6.4 Human Evaluation
For the human evaluation, we randomly selected
ten reading passages from D(eval) and extracted
question–answer pairs for the six difficulty val-
ues corresponding to each reading passage from
the generated data obtained in experimental proce-
dure 3. Then, the 60 question–answer pairs were
evaluated by four human judges according to the
following four evaluation metrics.

1. Difficulty: The subjective difficulty evaluation
for each question–answer pair, graded on a
scale from one to five, where smaller grades
mean the question was easier.

2. Fluency: Evaluation of the grammatical cor-
rectness of generated questions, graded on a
three-point scale: Yes, Acceptable, and No.

3. Relevance: Evaluation of the content rele-
vance between generated questions and read-
ing passages, graded on a binary scale: Yes
and No.

4. Answerability: Evaluation of the answerabil-
ity of each generated question–answer pair
from a given reading passage, graded on a
four-point scale: Yes, Partially, and No. Here,
“Partially” indicates that the generated answer
does not entirely match the correct answer for
the generated question but partially includes
the correct answer.

Fig 8 shows the relation between the input diffi-
culty values and the averaged scores in the human
difficulty evaluation for the generated questions.
They indicate that the human subjects judged the
questions generated with higher difficulty values to
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Figure 8: Human difficulty evaluation of generated
question–answer pairs for each difficulty.

Table 4: The fluency, relevance, and answerability of
generated questions and answers.

Fluency
Yes Acceptable No

76.0% 16.3% 7.6%

Relevance
Yes No

87.8% 12.2%

Answerability
Yes Partially No

67.4% 17.4% 15.3%

be more difficult. This indicates that the proposed
method can appropriately control the difficulty of
generated question–answer pairs.

Table 4 gives the results for Fluency, Relevance,
and Answerability. It shows that more than 90%
of the questions were generated with correct or ac-
ceptable grammar, and about 90% appropriately
reflected the content of the given reading passages.
Furthermore, about 70% of generated question–
answer pairs were completely answerable, and
about 85% were partially appropriate. These re-
sults indicate that fluency and relevance are accept-
able but further improvement might be required in
terms of answerability, which is planned for future
work.

7 Conclusion

In this study, we proposed a new neural QG method
that generates question–answer pairs while consid-
ering their difficulty, estimated using IRT. We also
evaluated the effectiveness of this method through
experiments using SQuAD.

One limitation of this study is that we used
only the SQuAD dataset in our experiments. The
SQuAD dataset has often been criticized because
it is overly dependent on the similarity of ques-
tion/answer sentences rather than on human-type
reasoning, meaning it requires only superficial read-

ing skills. Thus, examining the effectiveness of our
proposed method by applying it to various other
datasets will be an important future task.

Furthermore, in the human evaluation experi-
ment presented in Section 6.4, we examined only
60 question–answer pairs generated through the
proposed model from ten randomly selected read-
ing passages. The relatively small scale of the
experiment is due to the high workload required
for people to carefully evaluate the various proper-
ties of a large number of questions. However, in
the future, we aim to conduct a larger-scale human
evaluation in order to increase the reliability of the
experimental results.

Although the present study used only five QA
systems, the use of a larger number of QA systems
with different characteristics is expected to improve
the accuracy of question-difficulty estimation and
provide difficulty estimates with finer granularity.
Therefore, examining the effects of increasing the
number and variability of QA systems will be an-
other future direction of this research.

We also need to confirm in greater detail whether
QA systems can be substituted for human learners.
A comparison between IRT-based question difficul-
ties calibrated from the responses of QA systems
as well as human learners might be a plausible
approach.

Another future goal is to develop a method of
transforming the scale of the IRT-based difficulty,
estimated based on QA systems, into a scale appro-
priate for a population of target learners. Such a
scaling adjustment is expected to be achievable by
using equating, which is a well-established tech-
nique in IRT.

Furthermore, our QG method is easily extended
to adaptive QG systems based on the framework
of computerized adaptive testing, as mentioned in
Section 5.3. Developing and evaluating such an
adaptive system using our QG method will also be
our focus in future work.
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