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Abstract

Sign language processing is the field of
research that aims to recognize, retrieve,
and spot signs in videos. Various ap-
proaches have been developed, varying in
whether they use linguistic features and
whether they use landmark detection tools
or not. Incorporating linguistics holds
promise for improving sign language pro-
cessing in terms of performance, general-
izability, and explainability. This paper fo-
cuses on the task of sign spotting and aims
to expand on the approximative linguistic
features that have been used in previous
work, and to understand when linguistic
features deliver an improvement over land-
mark features. We detect landmarks with
Mediapipe and extract linguistically rele-
vant features from them, including hand-
shape, orientation, location, and move-
ment. We compare a sign spotting model
using linguistic features with a model op-
erating on landmarks directly, finding that
the approximate linguistic features tested
in this paper capture some aspects of signs
better than the landmark features, while
they are worse for others.

1 Introduction

Sign Language Processing (SLP) (Bragg et al.,
2019; Moryossef and Goldberg, 2021) is the field
of research that studies how signs and signed
phrases can be recognized, retrieved and spot-
ted in videos. Key approaches differ with re-
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Figure 1: Four methods for sign language processing

spect to whether they attempt to leverage linguis-
tics/phonology, and the way in which they do it,
as shown in Figure 1. Some recent work used
pixel information as input (Approach A) without
explicitly considering linguistic features that are
relevant for sign language (e.g. handshape and ori-
entation of the hand) (Momeni et al., 2020; Jiang
et al., 2021). On the other hand, earlier work in
sign language recognition proposed methods to ex-
tract phonological properties of signs from pixel
information (Bowden et al., 2004; Von Agris et al.,
2008; Han et al., 2009; Zaki and Shaheen, 2011)
(Approach B). Other approaches have applied a
landmark detection tool, such as OpenPose, to ob-
tain the location of landmarks in the body from the
pixel input and used them to train a model (Ko
et al., 2018; Ko et al., 2019) (Approach C). An-
gle and distance features which approximate the
phonological properties of a sign have also been
extracted from these landmarks (Shin et al., 2021;
Hussain et al., 2022; Farhan and Madi, 2022) (Ap-
proach D). SLP research seeks to use approxima-
tive features where possible to avoid the computa-
tional overhead of calculating features that reflect
linguistic properties exactly. An approximation is
considered sufficiently good if it contributes to the
performance of an SLP system.



Incorporating linguistic features holds great
promise for improving SLP in terms of generaliz-
ability and explainability. The drawback of incor-
porating linguistic features based on pixel informa-
tion, as in Approach B, is that this method is sen-
sitive to particular properties of the training data,
such as the lighting conditions, the skin colour
of the signer, the color and shape of the signer’s
clothes, and the recording background. Approach
D, which we pursue here, improves on this by im-
plementing a modular approach which is poten-
tially more robust because linguistic features are
extracted from landmarks rather than pixel input.

The purpose of this paper is to move research
adopting Approach D beyond the current state of
the art. We make two contributions. First, we
expand the inventory of approximative linguistic
features that are used for SLP. Second, we seek to
understand when linguistic features deliver an im-
provement over the landmark features from which
they are produced. In contrast, previous work
solely focused on the ability of linguistic features
to improve performance of SLP systems and did
not examine what makes these features important.

The reason why linguistic features extracted
from landmarks can be anticipated to be more ro-
bust is that the modularity of this approach makes
it possible to use existing tools for landmark de-
tection, such as Mediapipe (Zhang et al., 2020),
OpenPose (Cao et al., 2017), or MMPose (Sen-
gupta et al., 2020). Mediapipe, for instance, has
been trained on a large-scale, in-the-wild dataset
(as well as curated and synthetic data) with high
variability in background, lighting conditions, the
skin colour of subjects, and other visual artifacts.
In addition, the modular nature of the approach
makes it straightforward to incorporate future im-
provements of landmark detection technologies as
they become available.

This paper focuses on the task of sign spotting,
which has as its goal to determine when a given
target sign occurs in a video of continuous signing.
Sign spotting is distinct from sign recognition, be-
cause we need to establish when a sign occurs in
a given video. Recognition only uses video seg-
ments in which one isolated sign is performed.

Building on the aforementioned work in sign
language recognition (SLR) (Shin et al., 2021;
Hussain et al., 2022; Farhan and Madi, 2022), we
first detect landmarks with Mediapipe and then
extract linguistically relevant features from these

landmarks. In the extraction phase, we expand on
previous work in that we do not only extract fea-
tures that serve as an approximate representation
of the handshape of the signer, but also features
that correspond to other relevant properties, such
as the orientation of the hand, its location relative
to the body, and its movement through space.

We compare a sign spotting model which makes
use of these approximative linguistic features with
one that operates on landmarks directly (approach
D and C, respectively). We find that the approxi-
mate linguistic features tested in this paper capture
some aspects of signs better than the landmark fea-
tures, while they are worse for others. Our code is
made available on Github1.

2 Background

2.1 Sign language phonology and phonetics
Sign language phonology studies the articulation
of signs within and across different sign languages.
Typically, the phonological properties of a sign are
split up into manual and non-manual properties.
Non-manual properties pertain to the face, in par-
ticular the mouth, and the signer’s body posture
(Pendzich, 2020). Manual phonological proper-
ties pertain to the shape, orientation, location and
movement of the signer’s hands (Stokoe, 1960;
Battison, 1978; Van der Kooij, 2002; Sandler,
2012; Brentari et al., 2018; Brentari, 2019). We
focus here on manual phonological properties.

The phonology of a sign is not the only factor
that influences how the sign is articulated in real-
ity. The specific characteristics of the signer, such
as their emotional state, language background, age
and gender, can change how signs are performed in
practice. Moreover, the linguistic context in which
the sign is uttered, in particular the previous and
subsequent sign, is an important factor in a sign’s
articulation. The concrete realisation of signs, as
influenced by these factors and more, is studied
in the field of sign language phonetics (Crasborn,
2012; Tyrone, 2020). In this work, we focus on
the basic phonological parameters that we intro-
duced above, leaving the study of phonetics to fu-
ture work.

2.2 Sign spotting
We give a brief overview of notable work on sign
spotting before describing what distinguishes our
1https://github.com/nataliehh/Linguistic-Features-for-Sign-
Spotting



work from what has already been done. A variety
of methods have been applied in previous work,
including dynamic time warping (Viitaniemi et al.,
2014), conditional random fields (Cho et al., 2009;
Yang and Lee, 2010), hierarchical sequential pat-
terns (Ong et al., 2014) and hidden Markov mod-
els (Elmezain et al., 2008). Typically, these ap-
proaches were applied to datasets that only con-
tained a small set of signs and signers. More re-
cently, the focus has been on the application of
deep learning methods, such as 3D convolution
(Jiang et al., 2021; Wong et al., 2023; Enrıquez
et al., 2022).

We highlight in particular the work of Momeni
et al. (2020), which proposed a framework for
continuous sign spotting called ‘watch, read and
lookup’. A model was trained to create sign spot-
ting embeddings using sparsely annotated videos
and examples from a video dictionary of signs.
The authors use BSL-1k, a dataset that contains
videos of BBC broadcasts that have been inter-
preted in sign language. Interpreted signing is dis-
tinct from ‘natural signing’, the latter being faster
and less distinctly signed (Bragg et al., 2019).

Our work contrasts with current approaches to
sign spotting, which either used ad-hoc datasets or
operated directly on pixel input. We use a dataset
which matches most of the criteria described by
Bragg et al. (2019). Furthermore, although lin-
guistic features have been used for other SLP tasks,
we are the first to our knowledge to investigate
their potential for sign spotting.

3 Method

3.1 Data

We use the Corpus Nederlandse Gebarentaal
(CNGT) (Crasborn and Zwitserlood, 2008; Cras-
born et al., 2008) to train our sign spotting model.
It contains 72 hours of video footage of 104 sign-
ers conversing in Dutch Sign Language (NGT),
recorded at 25 fps. Circa 15% of the corpus is an-
notated, which is equivalent to 162k annotations of
3.2k unique signs. CNGT is annotated using NGT
Signbank (Crasborn et al., 2014), which contains
information about the phonological properties of
signs discussed in Section 2.1.

The corpus consists of videos of ‘natural’ sign-
ing, where signers are in conversation and are not
signing in a more proper manner than usual (Cras-
born and Zwitserlood, 2008). The dataset con-
tains footage that is compatible with real-world

applications (Bragg et al., 2019), and contains a
large amount of different signs and signers. Thus,
CNGT forms a good basis for SLP applications.

We prepare the data of CNGT for our model as
follows. First, we split the annotations into a train,
validation and test set. We ensure that the train-
ing set does not contain the same signers as the
validation or test set to make our system signer-
independent. We filter out signs which are not seen
during training, as well as signs for which no lin-
guistic information is available in the NGT Lexi-
con in Signbank, since we require such informa-
tion for our performance analysis. After this pre-
processing step, 118k annotations of 2.7k unique
signs remain. We use a data split of approximately
80/10/10, with 90k train, 10.5k validation and 9.5k
test annotations.

To create more variety in the training set, we
augment it by mirroring the footage. This is done
to ensure that one-handed signs occur signed with
both the right and the left hand. Similarly, two-
handed signs where one hand is dominant now also
occur with each hand being dominant. After the
augmentation, we have 180k train instances. We
found that our model converges more consistently
with this augmentation than without it.

Due to the fact that signs have variability in how
long they are signed, the annotations in our dataset
are of variable length. Thus, to make the input
compatible with a neural network architecture, we
ensure that our inputs are transformed to a fixed
length. We select a target length of 10 frames,
which is equal to the mean duration of the anno-
tations in the corpus. Annotations that are shorter
than 10 frames are simply padded with zeros to the
target length. For annotations that are too long, we
undersample to 10 frames.

3.2 Landmark detection

For each frame of our dataset, we detect land-
marks on the hands and body using Mediapipe.
Each hand has 21 landmarks, as shown in Figure
2. While Mediapipe is capable of estimating the
x, y, z coordinates of each landmark, the z coordi-
nate is less reliable. As such, we only make use of
the 2D coordinates, x and y.

Mediapipe normalises landmarks using the
video dimensions (width and height), which means
that landmark coordinates are not comparable
across videos with different dimensions. There-
fore, we reverse the dimension-wise normalisation



Figure 2: The 21 Mediapipe landmarks for one hand

to convert them back to pixel coordinates. In other
words, given a landmark with normalised coordi-
nates [x, y] in a video with dimensions w, h, we
perform the operation [x · w, y · h].

After reversing the normalisation, we apply the
normalisation described by Celebi et al. (2013).
For each frame, we obtain the landmarks of the left
and right shoulder, shL and shR. Every landmark
ℓ at a given frame is then normalised as follows:

• We scale ℓ using the absolute distance be-

tween the shoulders:
ℓ

abs(shL − shR)

• We center ℓ by subtracting the midpoint of the

shoulders: ℓ−
abs(shL + shR)

2
.

For our model that uses landmark features, we sim-
ply use the normalised landmarks of both hands as
our input, or 21·2 = 42 landmarks. Each landmark
consists of an x and y coordinate, such that we use
42 · 2 = 84 features for each frame by using all of
the coordinates as features. Thus, each annotation
results in a data input of shape (10, 84).

3.3 Linguistic features

To represent the basic phonological parameters,
we extracted the following types of features from
the normalised landmarks:

• Handshape: the distances and angles between
the fingertips, handpalm and wrist.

• Orientation: the angle of the handpalm rela-
tive to the torso and the shoulders.

• Location: the x, y coordinates of the wrist(s)
and fingertips.

• Movement: the velocity of the wrist.

The handshape angle features are computed us-
ing a start, middle and end point triple, (ℓs, ℓm, ℓe),
and the arctangent measure:

angle(ℓs, ℓm, ℓe) = atan2(ℓe,y − ℓm,y, ℓe,x −
ℓm,x)− atan2(ℓs,y − ℓm,y, ℓs,x − ℓm,x)

where we indicate with the subscript whether the
x, y coordinate of the element is used, e.g. ℓ1,x
indicates the x coordinate of landmark ℓ1.

For each finger, we compute the angle with the
wrist as well as its internal angle. For instance,
we get the angle within the thumb using land-
marks [01, 02, 04] and get the thumb’s angle with
the wrist using [00, 01, 04].

For the handshape distance features, we calcu-
late the Euclidean distance between pairs of land-
marks ℓ1, ℓ2:

dist(ℓ1, ℓ2) =
√
(ℓ1,x − ℓ2,x)2 + (ℓ1,y − ℓ2,y)2

To compute the hand orientation, we use Me-
diapipe’s Pose model, which captures the position
of landmarks of the entire body. In particular, we
use the landmarks of the left shoulder shL (pose
index 11), right shoulder shR (index 12), left hip
hipL (index 23) and right hip hipR (index 24).
We draw two lines using these landmarks: the
horizontal line between the shoulders, (shL, shR),
and the vertical line in the middle of the torso,

(
shL + shR

2
,
hipL + hipR

2
). For the landmarks

within the hand, we draw two axes within the hand:
one between index 00 and 09, the y-axis, and one
between 05 and 17, the x-axis.

Based on the lines that have been drawn for the
shoulders, torso and hands, we now compute the
slope of each line. For a given line ℓ that consists
of a start and end point (ℓs, ℓe), we compute the
slope sℓ of the line as:

sℓ =
ℓe,y − ℓs,y
ℓe,x − ℓs,x

Finally, we can compute the angle between two
lines for which we computed the slopes, s1, s2:

angle(s1, s2) = arctan(
s2 − s1

1 + (s2 · s1)
)

The hand orientation is then represented by the
angles between the x-axis and y-axis of the hand
with the shoulders and with the torso. We do not
compare the angle of the torso and shoulders, nor
the x-axis and y-axis of the hand because these are
not relevant for the orientation of the hand relative
to the body. As such, we end up with four distinct
orientation angles.



Feature Ind. Type Ind. Mediapipe Landmarks
0 – 24 Handshape (Angles) [01,02,04], [00,01,04], [05,06,08], [00,05,08],

[09,10,12], [00,09,12], [13,14,16], [00,13,16],
[17,18,20], [00,17,20], [02,03,04], [05,06,07],
[06,07,08], [09,10,11], [10,11,12], [13,14,15],
[14,15,16], [17,18,19], [18,19,20], [04,00,08],
[08,00,20], [16,17,20], [08,05,12], [04,05,20],
[08,13,20], [00,00,00], [00,00,00], [00,00,00]

25 – 39 Handshape (Distances) [00,04], [00,08], [00,12], [00,16], [00,20], [04,08],
[04,12], [04,16], [04,20], [08,12], [08,16], [08,20],
[12,16], [12,20], [16,20]

40 – 43 Hand orientation [00,09], [05,17] + Pose: [11, 12, 23, 24]
44 – 55 Wrist, fingertip locations 00, 04, 08, 12, 16, 20
56 – 58 Wrist velocity 00
59 – 117 Features other hand See features 0 – 58
118 – 119 Distance between wrists 00

Table 1: Feature indices

The location of the hand is simply represented
using the x, y coordinates of the wrist and the fin-
gertips. To capture the movement of the hand, we
compute the velocity of the wrist. We do this in
three different ways: first, we compute the Eu-
clidean distance between the location of the wrist
at the current frame and the last frame. This is
done in the same manner as for the handshape dis-
tance features. Second, we separately store the dif-
ference between the x coordinate of the wrist be-
tween these two frames. We do the same for the
y coordinate to obtain the third feature. This way,
we capture both an average velocity that combines
the x, y coordinates, as well as the horizontal and
vertical velocity.

Finally, we capture the horizontal and vertical
distance between the wrists of the hands. These
features are chosen because the location of a sign is
partially characterised by the interaction between
the hands. We compute the difference between the
x and y coordinates, resulting in two features.

In Table 1, the extracted features are displayed.
The Ind. Mediapipe Landmarks column shows
which indices from the Mediapipe hand model
are used, while the Feature Ind. column indicates
the indices of our created features. Note that the
shown indices are only for the left hand. The right
hand’s indices are equivalent modulo 59, e.g. the
first feature of the right hand that computes the an-
gle for landmark indices [01, 02, 04], is at index
59. In total, we use 120 features to represent the
phonological properties of both hands.

Some of the extracted features are adapted from
previous work. Bold values indicate features taken
from Farhan et al. (2022). All distance features are
adopted from Shin et al. (2021). The remaining
features are novel.

3.4 Model architecture

Based on Momeni et al. (2020), we develop a
model which learns to create embeddings from our
input features, such that inputs of the same sign re-
sult in similar embeddings while inputs of different
signs result in dissimilar embeddings. The model
that we chose for our experiments is a LSTM
network. LSTMs can extract temporal informa-
tion from data sequences and have been a popu-
lar tool for natural language processing (Chai and
Li, 2019). While more sophisticated architectures
are available these days, our goal is not to select
the best model but rather to engineer meaningful
features. We tested multiple configurations of our
network and selected one which performs well for
both the landmark and linguistic features. Our cho-
sen configuration is shown in Figure 3.

We start with a masking layer to deal with our
zero padding, followed by a Gaussian noise layer
which creates variability in our data to make the
model generalize better. We empirically found that
a standard deviation of σ = 0.001 for the noise is
suitable. It is followed by a biLSTM layer with
2 · 128 = 256 nodes, and two dense layers of
size 256. We use batch normalization between the
dense layers for training stability. A batch size of



Figure 3: Model architecture

128 and learning rate of 0.001 are used, inspired
by Momeni et al. (2020). We train the model using
the Adam optimizer for 10 epochs, which is when
it typically starts to converge on the validation set.
Due to the strength of contrastive loss reported in
the literature (e.g. (Momeni et al., 2020)), we ap-
ply supervised contrastive loss to train our model
(Khosla et al., 2020).

3.5 Experimental setup

Our experiments compare our expanded inven-
tory of approximative linguistic features against
a pipeline using only Mediapipe landmarks. Our
main goal is to investigate when linguistic features
contribute to sign spotting performance. We train
two sign spotting models, one using the linguis-
tic features extracted from the landmarks and the
other using the landmark features directly. In or-
der to test our models, we move a sliding window
with the same size as our train inputs, 10 frames,
over our test set videos. For each window and for
each target sign, we compute their cosine distance
d. The inventory of target signs consists of all 1038
signs present in the test set. If d is lower or equal
to our spotting threshold τ , i.e. d ≤ τ , we say the
target sign has been spotted. We report our results
at τ = 0.2 for both models, which we empirically
found to be a good spotting threshold on the vali-
dation set.

Each target sign has been seen multiple times
during training. As such, using each train em-
bedding individually to find the spottings in a test
video requires many comparisons. To reduce the
number of comparisons, we create reference em-
beddings for each sign. For a sign S, we first com-
pute embeddings of its training set occurrences.
These embeddings are then compared to each other
in terms of their cosine distance to each other. We

investigate which the embeddings are, on average,
closest to all other embeddings of S, and define
them to be most representative of S. The top 10%
most representative embeddings are averaged to
make one reference embedding for S. The pre-
dicted spottings of a sign S can then be found us-
ing the reference embeddings.

3.6 Evaluation

In this section, we describe how we evaluate the
two models. Recall that we aim to achieve in-
sight into when linguistic features are contributing
to sign spotting. To this end, our evaluation ap-
proach makes use of confusable signs: signs which
only differ from a given target by a single phono-
logical property. For instance, a pair of signs may
only differ in where they are signed, in which case
they form confusable signs for each other based on
location. We call the single property that differs
between the confusable signs the ∆ property. By
investigating which confusable signs are actually
mistaken for a given target sign, we are able to dis-
cover which phonological properties are difficult
to distinguish using each set of features.

We evaluate our sign spotting models by com-
puting the true positive (TP), false negative (FN),
true negative (TN) and false positive (FP) evalua-
tions for each model. The FP and TN evaluations
are computed by obtaining the confusable signs
for each target sign that are present in our test set
videos. The confusable signs are selected based
on the linguistic properties provided by NGT Sign-
bank (Crasborn et al., 2020).

We begin by analyzing the confusable signs for
each target sign and determining their ∆ proper-
ties. In Table 2, the frequency of the ∆ properties
in our test set is shown. Notably, a few ∆ proper-
ties are much more common than others. This may
be related to how many confusable signs exist with
a particular ∆ property. For example, there may
be few signs for which only the handshape of the
weak hand differs from another sign. Additionally,
if confusable signs with a given ∆ property are not
common signs in our corpus, the ∆ property will
also not occur frequently.

The TP, FN, TN and FP instances are calculated
using tolerance to irrelevance (TTI) (De Vries et
al., 2004). This metric is based on the assump-
tion that users, when given an entry point in an
audio or video stream, keep listening or watching
until their tolerance to irrelevant content has been



∆ property Test set frequency
Alternating blank
Movement

182

Contact Type 231
Handedness 4263
Handshape Change 299
Location 18078
Movement Direction 16566
Movement Shape 749
Orientation Change 568
Relation between ah
Articulators

42

Relative Orientation:
Location

1711

Relative Orientation:
Movement

2839

Repeated Movement 1047
Strong Hand 35043
Weak Hand 85

Table 2: Frequency of ∆ properties in our test set

reached. TTI is thus relevant to our evaluation, as
sign spotting systems should reflect real-life appli-
cations (Bragg et al., 2019).

To capture a user’s tolerance, TTI makes use of a
tolerance window which allows for entry points to
be located a bit before or at the start of the relevant
content, but not after it has begun. The reasoning
behind this decision is that it has been found to be
annoying to users when entry points are given after
the start of the relevant section (He et al., 1999).

We formalize TTI for our analysis as follows.
For a given ground truth annotation sj , a TP occurs
when a prediction pi, with onset time tpi , falls into
its tolerance window:

tpi ∈ [tsj − tol, tsj ]

where tsj is the onset time of sj . In contrast, a
FN occurs when no prediction falls into this tol-
erance window. The tolerance tol can be chosen
depending on the exact context in which TTI is
used. There are currently no established tolerance
levels for SLP, thus, we consult the related field
of audio segmentation for our tolerance. We found
tol = 0.5 seconds to be a frequently used tolerance
for audio (Aljanaki et al., 2015; Smith and Chew,
2013; Smith et al., 2011).

To compute the FP and TN instances, we obtain
the confusable signs, C(S), for each target sign S:

C(S) = {A,B, ..., Z}

We then determine when the confusable signs are
annotated in CNGT:

ANNC(S) = {A1, ..., Am, ..., Z1, ..., Zn}
Next, we select the onset time of each confusable
sign annotation:

TANNC(S)
= {tA1 , ..., tAm , ..., tZ1 , ..., tZn}

Based on the notation above, we can then define
FP and TN evaluations. Given the onset time of an
annotation for a confusable sign, tcj ∈ TANNC(S)

,
and a set of predictions P (S) with onset times
TP (S), we define the FP and TN evaluations as:

FP (tcj ) iff ∃tpi ∈ TP (S) : tpi ∈ [tcj − tol, tcj ]
TN(tcj ) iff ∀tpi ∈ TP (S) : tpi /∈ [tcj − tol, tcj ]

In other words, a predicted spotting of a given
target is a FP if it falls within the tolerance window
of an annotated occurrence of another sign that is
a confusable sign for the target. On the other hand,
a TN occurs if we do not predict a spotting within
the tolerance window of this annotated occurrence
of the confusable sign.

Finally, we can analyze the FP and TN instances
in terms of their ∆ properties to determine which
phonological properties are difficult to distinguish
for our model. Our general approach to evaluat-
ing sign spotting models is further elaborated else-
where (Hollain et al., 2023).

4 Results

The results of our evaluation are shown in Table 3.
The model that was trained with the linguistic fea-
tures produces more TP spottings than the model
trained using landmarks, as well as fewer FP in-
stances for the confusable signs.

Model TP FN FP TN
Linguistic 5442 4274 11395 68263
Landmarks 5380 4336 12292 67366

Table 3: Performance using linguistic and landmark features

We now investigate the capabilities of our lin-
guistic features to capture the linguistic properties
of signs, compared to the landmark features. In
Figure 4, we display the percentage of FPs per ∆
property. The percentage is computed by counting
how often the confusable signs with each ∆ prop-
erty, as shown in Table 2, are falsely spotted. For
instance, a value of 50% in the Alternating Move-
ment column would indicate that 182 · 0.5 = 91
of the confusable signs that differ only in this ∆



Figure 4: Percentage of confusable signs, per ∆ property,
that are falsely spotted (∗=statistically sign. improvement)

property, are falsely spotted. We performed Mc-
Nemar’s test to analyze for which ∆ properties
there was a significant difference in performance
between the models. An asterisk (∗) is displayed
where the difference is significant (p < 0.05).

For most ∆ properties, the model trained using
linguistic features outperforms the one trained with
landmarks as it has a lower percentage of FP spot-
tings. While there are some properties for which
the model with landmark features produces fewer
FP spottings, the difference is never found to be
significant. For all ∆ properties where we find a
significant difference in performance, the linguis-
tic feature model outperforms the landmark model.
That said, it is evident that the linguistic feature
model needs further improvement, since it still
produces a substantial number of FP and FN pre-
dictions, and it does not significantly outperform
the landmark model for some ∆ properties.

5 Conclusion

In this paper, we investigated how linguistic fea-
tures, extracted from landmarks of the hands and
body of a signer, can be used in the context of sign
spotting. We built on recent work in sign language
recognition which derived an approximate repre-
sentation of the handshape of a sign from Medi-
apipe landmarks, and developed our own features
to capture the orientation, location and movement
of the hands. We compared a sign spotting model

Figure 5: Hooked finger from two viewpoints

that uses these approximate linguistic features with
a model that incorporates landmarks directly as
training input. Our results show that the model us-
ing approximate linguistic features captures some
aspects of signs better than the landmark model.

In future work, our approach to extracting lin-
guistic features could be further improved. For ex-
ample, the trajectory and repetition of movements
may be better captured by including additional fea-
tures besides wrist velocity. Furthermore, it could
be interesting to train a model using a combination
of landmark coordinates and linguistic features.

Our general approach will also benefit from fur-
ther improved landmark detection technologies.
Current technologies only reliably deliver 2D land-
mark coordinates. If an accurate estimation of the
z coordinate were available, we could work with
3D representations of the hands and bodies of sign-
ers. Based on such 3D representations, linguistic
features could be extracted in a more robust way.
For instance, the left and right image in Figure 5
depict the same handshape viewed from two dif-
ferent angles. Based on 2D landmark coordinates,
it would be possible to derive the curvature of the
index finger under the perspective on the left (side
view), but not under the perspective on the right
(front view). From 3D landmark coordinates, the
curvature could be derived precisely and reliably.

Another limitation of currently available land-
mark detection technologies, such as Mediapipe, is
that they are not explicitly trained on sign language
data. Certain handshapes are frequent in sign lan-
guages but may not be as frequent in general-
purpose datasets. As a result, the current perfor-
mance of Mediapipe and similar tools may be lim-
ited for such handshapes. That said, an important
advantage of the modular approach we adopted is
that it allows for the direct incorporation of future
improvements of landmark detection technologies.

Finally, while not the focus of this work, we
note that the model chosen to demonstrate the per-
formance of the two types of features can be im-
proved. A more sophisticated model architecture
may result in better sign spotting performance.
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