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Abstract

Recent approaches to argument mining have fo-
cused on training machine learning algorithms
from annotated text corpora, utilizing as in-
put high-dimensional linguistic feature vectors.
Differently to previous work, in this paper, we
preliminarily investigate the potential benefits
of reducing the dimensionality of the input data.
Through an empirical study, testing SVD, PCA
and LDA techniques on a new argumentative
corpus in Spanish for an underexplored domain
(e-participation), and using a novel, rich argu-
ment model, we show positive results in terms
of both computation efficiency and argumen-
tative information extraction effectiveness, for
the three major argument mining tasks: argu-
mentative fragment detection, argument compo-
nent classification, and argumentative relation
recognition. On a space with dimension around
3-4% of the number of input features, the argu-
ment mining methods are able to reach 95-97%
of the performance achieved by using the entire
corpus, and even surpass it in some cases.

1 Introduction

Since its origins in the late 2000s, the argument
mining (AM) field has witnessed significant ad-
vances on the problem of automatically extracting
structured argumentative information from text cor-
pora (Lytos et al., 2019; Lawrence and Reed, 2020),
which commonly entails three tasks: the identifi-
cation of argumentative fragments in an input text,
the split or classification of such fragments into
argument components (e.g., claims and premises),
and the recognition of relations (e.g., support and
attack) between pairs of argument components.

In particular, previous research has led to the
development of effective approaches based on ma-
chine learning (ML) (Lippi and Torroni, 2015,
2016) with results almost equal to those obtained
with more complex approaches, such as those
based on deep learning. Hence, argumentative frag-
ment detection (Mochales Palau and Moens, 2009a,

2011; Poudyal et al., 2016), argument component
classification (Habernal and Gurevych, 2017; Du
et al., 2017), and argument relation recognition (Du
et al., 2017) have been modeled as sequence label-
ing problems, where, in general, each sentence1 is
represented as a vector of real-valued linguistic fea-
tures and has associated certain label or class, e.g.,
argumentative vs. non-argumentative, and claim
vs. premise. ML algorithms are thus trained with
sets of labeled sentence vectors in order to predict
the class of new sentences.

In this context, a variety of features have been
considered –ranging from lexical and morpholog-
ical, to structural and syntactic, and semantic and
discourse features (Stab and Gurevych, 2014; Aker
et al., 2017; Habernal and Gurevych, 2017)– and, in
general, approaches have dealt with feature vectors
of high dimensionality.

To the best of our knowledge, only a few re-
search attempts have been made to use a subset
of features (Poudyal et al., 2016; Du et al., 2017).
Motivated by this fact and the increasing need for
more efficient (i.e., less resource-consuming) AM
model building, in this paper, instead of exploring
new argument-related classification algorithms, we
investigate the potential benefits of reducing the
dimensionality of the input data space.

As an innovative research in the AM field,
we report experiments conducted with the well
known SVD (Beltrami, 1973; Stewart, 1993),
PCA (Hotelling, 1933) and LDA (Fisher, 1936)
dimensionality reduction techniques on a novel
corpus in Spanish with electronic (online) citizen
participation discussions, which represent an un-
derexplored domain in the field.

Considering a rich argument model with several
argument relations, and addressing the argumenta-

1The majority of feature-based AM approaches consider
the sentence as the argumentative unit. However, there are
models that also exploit other text fragments, such as the
previous and next sentences to the current sentence (Habernal
and Gurevych, 2017).
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tive fragment detection, argument component clas-
sification, and argument relation recognition tasks,
we evaluate a number of ML algorithms trained
with labeled data without and with dimensional-
ity reduction, achieving favorable results in terms
of both computation efficiency and argumentative
information extraction effectiveness. With around
3-4% of the number of input features, the argument
mining methods are able to reach 95-97% of the
performance achieved by using the entire corpus,
and even surpass it in some cases.

We thus claim the following contributions of our
ongoing work:

• Building a new argumentative corpus in Span-
ish, on an underexplored, but highly relevant
domain: e-participation, and more specifically,
e-participatory budgeting.

• Proposing a new argument model, which in-
cludes a variety of fine-grained types of argu-
mentative relations.

• Developing and evaluating machine learning-
based methods for the main tasks of the argu-
ment mining pipeline.

• Testing the effects of dimensionality reduc-
tion on the efficiency and effectiveness of the
argument mining methods.

Moreover, we make the generated argument
model, corpus, annotation tool, software code, and
empirical results publicly available2.

Before presenting our experiments (Section 5)
and conclusions (Sections 6 and 7), we next survey
related work on feature-based machine learning
AM (Section 2), and describe the addressed case
study and created corpus (Section 3) and the used
dimensionality reduction techniques (Section 4).

2 Related work

In this section, we survey previous work on apply-
ing feature-based machine learning for AM. We
discard deep learning approaches, since they are
appropriate to very large amounts of input data3.

Feature-based ML methods model AM tasks as
sequence labeling problems. They have been pro-

2Data and code are available at https://github.
com/argrecsys/arg-classifier

3Experimenting with some deep neural network architec-
tures, we did not achieve better performance results than those
reported in this paper with traditional machine learning algo-
rithms.

posed to separately address the argumentative frag-
ment detection (Mochales Palau and Moens, 2009a,
2011; Poudyal et al., 2016; Kunaefi and Aritsugi,
2020; Alhamzeh et al., 2021), argument component
classification (Mochales Palau and Moens, 2009a,
2011; Habernal and Gurevych, 2017; Burhan ud
Din Tahir, 2017), and argument relation recogni-
tion (Du et al., 2017) tasks.

The surveyed methods consider the sentence as
the argument unit, and exploit its linguistic features
to classify it. Only Habernal and Gurevych (2017)
also exploited feature information from the previ-
ous and next sentences to the target sentence. In all
cases, however, the used features are manifold, as
we will detail in Section 4.1.

From our survey, only Du et al. (2017) addressed
the argument relation recognition task. This is
not the case in recent word embedding-based deep
learning methods, which deal with the three tasks
as sequence tagging problems, by commonly fol-
lowing the BIO tagging format, e.g., (Deguchi and
Yamaguchi, 2019; Mayer et al., 2020).

With respect to the used ML algorithms, pub-
lished work has focused on logistic regression (Du
et al., 2017; Kunaefi and Aritsugi, 2020), naive
Bayes (Mochales Palau and Moens, 2009a, 2011;
Burhan ud Din Tahir, 2017), maximum en-
tropy (Mochales Palau and Moens, 2009a, 2011),
decision trees (Burhan ud Din Tahir, 2017; Du
et al., 2017), random forests (Poudyal et al., 2016;
Burhan ud Din Tahir, 2017; Du et al., 2017; Ku-
naefi and Aritsugi, 2020), and support vector ma-
chines (Mochales Palau and Moens, 2009a, 2011;
Poudyal et al., 2016; Burhan ud Din Tahir, 2017;
Du et al., 2017; Kunaefi and Aritsugi, 2020; Al-
hamzeh et al., 2021).

Additionally, as done in deep learning works,
the surveyed papers have focused on the traditional
domains and corpora of the AM field, such as
the Persuasive Student Essays corpus (Burhan ud
Din Tahir, 2017; Du et al., 2017; Alhamzeh et al.,
2021), the legal texts ECHR (Mochales Palau and
Moens, 2009a, 2011; Poudyal et al., 2016) and
AraucariaDB (Mochales Palau and Moens, 2009a,
2011) corpora, and the Web Discourse corpus (Al-
hamzeh et al., 2021), which are mostly in English.

To the best of our knowledge, in the AM re-
search literature, only Poudyal et al. (2016) and Du
et al. (2017) have explored feature selection using
information gain, reducing the input feature vector
space. In this context, a traditional pre-learning di-

https://github.com/argrecsys/arg-classifier
https://github.com/argrecsys/arg-classifier
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mensionality reduction approach, such as the ones
we evaluate here, has not been explored yet.

Differently from (Poudyal et al., 2016; Kunaefi
and Aritsugi, 2020; Alhamzeh et al., 2021), we do
not only focus on classifying a sentence as argu-
mentative or non-argumentative, but also aim to
classify the type of argumentative component of a
text span, i.e., a premise or a claim, and to recog-
nize the existence of a relation between a pair of
components and its type.

Finally, motivated by the need for addressing
other domains and dealing with corpora in lan-
guages distinct to English, in our work we explore
a novel domain in AM and provide a new corpus
in Spanish, which are described next.

3 Case study

In this section, we introduce the case study for
which we have built our argumentative corpus
and have implemented and evaluated the machine
learning-based argument mining methods with and
without dimensionality reduction techniques.

Citizen participation refers to the active involve-
ment of citizens in influencing on public opinion
and being part of democratic decision and policy
making processes. It represents one of the most
widespread forms of open government, and his-
torically has been conducted through physical in-
teractions like assemblies, meetings and working
groups (Gramberger, 2001).

Nowadays, under the umbrella of e-
participation (Boudjelida et al., 2016), it
often occurs on the internet, via online digital tools,
in which citizens’ opinions and contributions are
easily shared, thus generating new opportunities
for communication, consultation and collaboration
at a large scale (Held, 2006).

The majority of current e-participation platforms
are based on web forums where citizens upload
comments, forming large conversation threads.
This makes the processing of the underlying de-
bates challenging and sometimes overwhelming.
Without functionalities to support critical thinking
and argumentation, it is usually very difficult and
time-consuming for users to achieve a well-formed
view of existing problems and proposed solutions.

In our work, we focus our attention on one of
such platforms, Decide Madrid4, which is an online
web portal created by the City Council of Madrid
(Spain) to support its annual participatory budgets

4Decide Madrid, https://decide.madrid.es

since September 2015. Every year, the city resi-
dents use the platform to freely post proposals to
address issues and problems in the city, and com-
ment and vote others’ proposals. Those citizen
proposals that receive a certain number of votes
and are technically and economically feasible are
funded and implemented by the city government.
In 2021-2022, the municipal budget allocated to
such proposals has been 50 million euro.

Figures 1 and 2 show an example of a citizen pro-
posal and its comment threads in Decide Madrid.

Figure 1: Screenshot of a Decide Madrid webpage show-
ing a citizen proposal that suggests having more tree
areas close to M-30, one of the principal motorways in
Madrid.

Figure 2: Screenshot of a Decide Madrid webpage show-
ing the comment threads of a citizen proposal.

Both proposal descriptions and comments are
rich on argumentative information, which may be
very valuable for citizens and government stake-
holders, and which we aim to extract in our work.
For this purpose, we consider the Decide Madrid
dataset used by Cantador et al. (2017, 2020), which
contains information about 21,744 citizen propos-
als ––classified into 30 categories and 325 topics,
geolocated in 21 city districts, and annotated with
controversy scores––, and 62,838 comments.

From this dataset, we selected the 40 most con-
troversial proposals, and collaboratively searched
for and annotated the arguments given by citizens

https://decide.madrid.es
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in the proposals descriptions and comments, gen-
erating a first version of a corpus that we make
publicly available5. To ease the manual argument
annotation process, and store the identified argu-
ments in a formal, structured format –including
the components and relations of the arguments–,
we used ARGAEL (Segura-Tinoco and Cantador,
2023), an easy-to-use, configurable desktop tool
that we have developed to assist with the argument
annotation and evaluation task, and which can be
freely downloaded6.

Our corpus is composed of 3,254 propositions
annotated with 922 claims and 538 premises inter-
connected, and to the best of our knowledge, ours
is one of the first argumentative corpora in Spanish
in the AM field.

The underlying argument model is configured in
ARGAEL and, going beyond the traditional sup-
port and attack argumentative links, it includes the
following categories of relations between argument
components (claims c and premises p):

• Cause, stating the reason or condition for an
argument, e.g., “[The pollution levels in the
city center are very high]c because [most peo-
ple use the car to get around]p,” “[If the gov-
ernment wants to favor tourism]p, [it must
offer free tourist information]c.”

• Clarification, introducing a conclusion, ex-
emplification, restatement, or summary of an
argument, e.g., “As a conclusion, [we suggest
the government to authorize this initiative]c,”
“In short, [we have to wait for the results
of the elections so that they can start to do
something]c.”

• Consequence, evidencing an explanation,
goal, or result of an argument, e.g., “[The
use of public transport should be facilitated]p
to [avoid pollution in the downtown area]c,”
“[I have not seen garbage trucks for a week]p,
hence [the bins are full, and people have to
throw the garbage in the streets]c.”

• Contrast, conflicting with an argument by giv-
ing alternatives, doing comparisons, making
concessions, or providing oppositions, e.g.,
“On the other hand, [we must think about

5Decide Madrid corpus, https://github.com/
argrecsys/decide-madrid-2019-annotations

6ARGAEL, https://github.com/argrecsys/
argael

the costs that this work will cause due to its
maintenance]c,” “[Restricting the access of
private vehicles to the downtown area helps in
mitigating noise]c, but [it is still insufficient
due to the presence of buses, taxis, etc.]c”

• Elaboration, introducing an argument that pro-
vides details about another one, entailing ad-
dition, precision, or similarity issues, e.g.,
“[The asphalt of the streets is in very bad
conditions]c, moreover, [the sidewalks have
holes]c,” “[The youth unemployment rate has
increased compared to last year]c, specifically,
[it has gone from 23% to 28%]c.”

This taxonomy is a compendium of relations
used in the AM literature (Knott and Dale, 1994;
Mochales Palau and Moens, 2009b; Wei Feng and
Hirst, 2011; Stab and Gurevych, 2014, 2017), and
represent a fine-grained representation of argumen-
tative structures, which entails addressing the argu-
ment relation recognition as a multi-class classifi-
cation problem.

Specifically, in our corpus, we annotated 538
argument relations distributed by category as: 77
relations belonging to the Cause category, 64 to
Clarification, 76 to Consequence, 120 to Contrast,
and 201 to Elaboration. Figure 4 shows additional
details about the number of argument relations by
subcategory in the corpus.

Figure 4: Number of argument relations by subcategory
in our corpus.

4 Dimensionality Reduction

In this section, we introduce the linguistic features
of the vector representations exploited by the evalu-
ated ML models to AM, and the vector dimension-
ality reduction techniques applied before building
such models.

https://github.com/argrecsys/decide-madrid-2019-annotations
https://github.com/argrecsys/decide-madrid-2019-annotations
https://github.com/argrecsys/argael
https://github.com/argrecsys/argael
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Figure 3: Screenshot of the ARGAEL tool, whose graphical user interface allows, among other things, marking
argument components and relations in a set of input texts, according to a given argument model.

4.1 Linguistic Features

Researchers have considered different types of fea-
tures for the AM sequence labeling tasks (Stab and
Gurevych, 2014; Aker et al., 2017; Du et al., 2017;
Habernal and Gurevych, 2017).

Almost all the surveyed ML-based works on
argumentative fragment detection, argument com-
ponent classification, and argument relation recog-
nition make use of some well-known structural,
lexical, morphosyntactic and discourse-associated
features. Only Habernal and Gurevych (2017) ex-
plore the use of word embedding features (sum up
the first 300 embeddings of each word, resulting in
a single vector for the entire sentence) with good
results in cross-domain scenarios.

Therefore, in this work we have considered the
following features at sentence level:

• Structural features: sentence length, relative
position in paragraph, average word length,
number of tokens, and punctuation marks.

• Lexical features: bag of words 1-3 grams,
TF-IDF weighted nouns, verbs and adverbs,
modal auxiliaries, and named entities.

• Morphosyntactic features: part-of-speech 1-3
grams, depth and number of subclauses of the
sentence constituency tree.

• Discourse features: keywords representing ar-
gumentative linkers (made publicly available
with the created corpus, see Section 3).

We discard topic and sentiment features because
we aimed to investigate with domain-independent
features. They together with semantic and word
embedding features could be explored in the future.

4.2 Dimensionality Reduction Techniques

In statistics and machine learning, dimensionality
reduction is the process of reducing the number
of random variables (features) under consideration,
obtaining a new set of informative variables, com-
monly referred to as principal components.

Three of the main techniques for dimensional-
ity reduction are Singular Value Decomposition,
SVD (Beltrami, 1973; Stewart, 1993), Principal
Components Analysis, PCA (Hotelling, 1933), and
Linear Discriminant Analysis, LDA (Fisher, 1936).

They search for linear combinations of the fea-
tures that best explain the input data, but they differ
on the fact that LDA is a supervised technique that
also classifies the data, and SVD and PCA are un-
supervised techniques that ignore class labels.

Specifically, SVD obtains a factorization USV t

of the feature matrix A, where the diagonal entries
of the small, inner matrix S are called singular
values, correspond to the root of the positive eigen-
values of AAt, and can be used as a reduced set
of new variables that produce optimal low rank
approximation of A with minimal reconstruction
error. PCA derives new feature variables that are
linear combinations of the original variables and
are uncorrelated, by capturing the direction of max-
imum variation in the dataset, and without paying
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attention to the underlying class structure. Finally,
LDA focuses on finding a feature subspace that
maximizes the separability of classes, i.e., finding
directions (components) of maximum variance.

As shown by Martínez and Kak (2001), although
it is generally believed that algorithms based on
LDA are superior to those based on PCA, this is
not always the case. On the image recognition field,
the authors concluded that if the target dataset is
small, PCA can outperform LDA, being less sen-
sitive to the used training set. In fact, as we shall
show in the experimental section, LDA degraded
the addressed AM tasks since its resultant compo-
nents are determined by the number of classes to
predict: 2 for the argumentative fragment detection
task, 3 for the argument component classification
task, and 6 for the argument relation recognition
task.

5 Experiments

In this section, we describe the methodology used
to evaluate a number of machine learning models
for the three target AM tasks (i.e., argumentative
fragment detection, argument component classi-
fication and argument relation recognition), and
report their performance results with and without
dimensionality reduction of the input data.

5.1 Evaluation Methodology

We approached the argumentative fragment detec-
tion and argument component classification tasks
as binary classification problems –argumentative
vs. non-argumentative), and premise vs. claim,
respectively–, and the argument relation recogni-
tion as a multi-class classification problem, with
a total of six relation types (classes): cause, con-
sequence, contrast, elaboration, clarification, and
none (in absence of relation).

The argument component classification task
(task 2) was tested on those feature vectors that
corresponded to text fragments previously identi-
fied as argumentative (task 1).

The argument relation recognition task (task 3)
was tested on vectors obtained by concatenating
each pair of argumentative text fragment vectors
(from task 1), considering their order. That is, given
two argument components c1 and c2, task 3 was
fed with two vectors u = (c1, c2) and v = (c2, c1).
If the argument components were linked via a re-
lation r, e.g., (c2, r, c1), one of such vectors (v in
the example) was assigned with a class that corre-

spond to the type of r, whereas the other vector
was assigned with the none class.

Considering the surveyed related work of Sec-
tion 2, the ML algorithms we selected for the above
tasks are: naive Bayes (NB), logistic regression
(LR), support vector machine (SVM), and gradient
boosting (GB).

For all tasks, we split the dataset into 80% for
training and 20% for testing. We followed a strat-
ified data split with respect to the label to be pre-
dicted, and used the 10-fold cross-validation tech-
nique on the training data to find the best hyperpa-
rameters for the ML algorithms. Before splitting,
we normalized the input values of each feature to
the [0,1] range.

The optimal values of the hyperparameters of
the classification models and the SVD/PCA/LDA
techniques were obtained by grid search with re-
spect to the micro-F1 score. As future work, we
leave the use of other more efficient model training
optimization methods, such as Optuna, presented
by Akiba et al. (2019). Table 1 shows the hyper-
parameters configurations tested, and their optimal
values obtained for each ML algorithm and AM
task.

In each ML algorithm training configuration, we
tested several numbers of principal components for
the dimensionality reduction techniques, in order
to explore whether horizontal reduction of the input
feature space improved classification performance.
Specifically, for SVD and PCA, we tested 20 dif-
ferent numbers of components, from 25 up to 500
(with increment steps of 25). In the case of LDA,
for each AM task, the number of dimensions was
reduced to the number of target classes minus 1.

For the tested number of principal components,
figures 5, 6 and 7 show the effects of the SVD and
PCA dimensionality reduction techniques on the
performance (in terms of micro-F1 score values)
of the tested ML algorithms in the three AM tasks.
As it can be seen, in general, the ML algorithms
outperformed their counterparts operating on re-
duced feature spaces and, as expected, the F1 tends
to increase with the number of components. We
discuss the maximum performance values for all
approaches in the next subsection. More details are
given in Appendix A.

5.2 Classification Results

Tables 2, 3 and 4 show the best performance re-
sults of the evaluated approaches, for argumen-
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Algorithm Hyperparameter Tested values Task 1 Task 2 Task 3
NB alpha {0.0001, 0.001, 0.01, 0.1, 1} 1 1 1

fit prior {true, false} false false false
solver {newton-cg, lbfgs, liblinear, saga} liblinear saga saga

LR C {0.001, 0.01, 0.1, 1, 10, 100} 0.1 1 1
penalty {none, elasticnet, L1, L2} L2 L2 L1
kernel {linear, rbf} rbf linear rbf

SVM C {100, 10, 1, 0.1, 0.01, 0.001} 10 0.1 10
gamma {1, 0.1, 0.01, 0.001, 0.0001} 0.01 - 0.1
learning rate {0.15, 0.1, 0.05, 0.02, 0.01} 0.1 0.1 0.1
n estimators {150, 175, 200, 225, 250} 200 200 150

GB max depth {2, 3, 4, 5, 6} 3 3 5
min samples leaf {1, 2, 5, 7} 5 5 1
min samples split {2, 3} 2 2 2

Table 1: Tested hyperparameter values and obtained best performing hyperparameters for each ML algorithm and
AM task: argument detection (task 1), argument component classification (task 2), and argument relation recognition
(task 3). The names of the hyperparameters are those used by the Python Scikit-learn library. NB, LR, SVM and
GB stand for Naive Bayes, Logistic Regression, Support Vector Machine, and Gradient Boosting, respectively.

tative fragment detection, argument component
classification and argument relation recognition,
respectively. They report the accuracy (acc), preci-
sion (p), recall (r) and micro-F1 score (F1) values
of the ML algorithms on the original feature spaces
and on the principal component spaces obtained by
SVD and PCA. The results of LDA are not reported
because they were relatively low. This supervised
technique degraded the resultant component space,
whose dimension was determined by the number
of classes in the target AM tasks.

The results show that reducing the dimension-
ality of the corpus feature space –composed of a
total of 12,593 lexical, morphosyntactic, structural
and discourse-associated features extracted from
each sentence–, did not impact drastically on the
classification accuracy of the evaluated ML mod-
els. Applying dimensionality reduction, the best
reached F1 was similar to the best F1 achieved by
using the entire feature space: on average, 97% for
task 1, 95% for task 2, and 107% for task 3. In
some cases (which are underlined in the tables),
the F1 values achieved by the ML algorithm on a
reduced space were greater than the entire space
ones.

In particular, we observe that the first 400-500
components of SVD and PCA provided the best
relative performance on the Logistic Regression
and Support Vector Machine algorithms. This rep-
resents around 3-4% of the number of dimensions
in the entire input feature space. Thus, in terms of
training time, we found remarkable improvements
for the three tasks, reducing on average the time
required to train the ML algorithms by 77.58%,
84.29% and 82.31%, respectively for tasks 1, 2 and

3. This finding, although expected, is significant,
as it would allow testing a larger hyperparameter
set and fast experimenting with new algorithmic
solutions, while reducing the well-known carbon
footprint generated by massive ML model training.

As shown in the tables, when no dimensional-
ity reduction was applied, GB was consistently the
best performing algorithm, achieving decreasing
maximum F1 values for the three consecutive tasks:
0.729, 0.624 and 0.554 (marked in bold in the ta-
bles). These values reflect the increasing difficulty
of the underlying classification problems.

In the argumentative fragment detection (bi-
nary classification) task, GB achieved the best
performance (F1=0.729), closely followed by NB
(F1=0.726). SVM was the worst performing ML al-
gorithm. However, this algorithm took benefit from
the dimensionality reduction techniques, especially
from SVD, with which it was able to increase its
F1 value to 0.725, using its first n=500 components
(4% of the total number of original dimensions).

For the argument component classification (mul-
ticlass) task, GB and SVM again were respectively
the best and worst performing ML algorithms, with
maximum F1 values equal to 0.624 and 0.584. In
this case, LR was the algorithm whose performance
improved the most with the help of the dimension-
ality reduction techniques; specifically, it reached
an F1 value of 0.620 with the first n=400 princi-
pal components of PCA, representing 3% of the
number of original features.

Finally, with respect to the argument relation
recognition (multiclass) task, GB –with an F1 value
of 0.554– was followed in performance by ap-
proaches that made use of dimensionality reduction
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Approach acc p r F1
NB .727 .726 .727 .726
NB + SVD (n=250) .647 .656 .647 .647
NB + PCA (n=425) .633 .649 .633 .632
LR .717 .717 .717 .715
LR + SVD (n=400) .708 .708 .708 .705
LR + PCA (n=350) .708 .708 .708 .705
SVM .711 .711 .711 .708
SVM + SVD (n=500) .727 .726 .727 .725
SVM + PCA (n=475) .719 .718 .719 .717
GB .730 .729 .730 .729
GB + SVD (n=325) .719 .721 .719 .714
GB + PCA (n=350) .710 .711 .710 .705

Table 2: Achieved results on the argumentative fragment
detection task.

Approach acc p r F1
NB .624 .589 .624 .587
NB + SVD (n=200) .499 .573 .499 .521
NB + PCA (n=150) .518 .594 .518 .539
LR .633 .603 .633 .607
LR + SVD (n=500) .636 .612 .636 .615
LR + PCA (n=400) .642 .618 .642 .620
SVM .621 .586 .621 .584
SVM + SVD (n=400) .624 .608 .624 .570
SVM + PCA (n=425) .627 .612 .627 .573
GB .648 .631 .648 .624
GB + SVD (n=100) .604 .577 .604 .556
GB + PCA (n=125) .594 .556 .594 .551

Table 3: Achieved results on the argument component
classification task.

Approach acc p r F1
NB .490 .363 .490 .355
NB + SVD (n=500) .455 .472 .455 .462
NB + PCA (n=475) .470 .488 .470 .477
LR .555 .537 .555 .489
LR + SVD (n=500) .555 .483 .555 .490
LR + PCA (n=300) .545 .456 .545 .470
SVM .570 .643 .570 .472
SVM + SVD (n=225) .525 .474 .525 .482
SVM + PCA (n=275) .535 .488 .535 .490
GB .615 .594 .615 .554
GB + SVD (n=350) .550 .510 .550 .482
GB + PCA (n=125) .555 .552 .555 .490

Table 4: Achieved results on the argument relation clas-
sification task.

for all the reminder ML algorithms. Thus, this task,
despite being the most complex of the three main
AM tasks, was the one that took the most advan-
tage from using the unsupervised SVD and PCA
techniques.

6 Conclusions

Although the conducted experiments can be con-
sidered preliminary, they have shown promising
results about the potential benefits of selecting in-
formative linguistic features and reducing dimen-
sionality in ML-based approaches to AM. For the

three major AM tasks (i.e., argumentative fragment
detection, argument component classification, and
argument relation recognition), and for almost all
the ML algorithms used in the AM literature, work-
ing on feature spaces of much lower dimensionality
generated by SVD and PCA has entailed not only
improvements in training efficiency, but also con-
sistent classification performance of the algorithms,
especially logistic regression and support vector
machines.

In addition to these issues, our work contributes
to the AM field through the publication of a new ar-
gumentative corpus in Spanish on e-participation, a
novel and relevant domain for the AM community.
We plan to increase the size and quality of the cor-
pus, and hope it will be of interest for researchers
and practitioners. Regardless of the impact of di-
mensionality reduction, the developed AM meth-
ods and their performance results on our corpus
could be of reference for future improvements.

Moreover, we believe that the corpus may be
exploited in different argumentative scenarios. In
particular, it could be used to extract argumentative
threads from online political discussions (Lawrence
et al., 2017) and parliamentary debates, whose tran-
scripts are available as open government datasets.

7 Limitations

As previous work on machine learning-based AM,
a limitation of our study is the fact that we have
aimed to extract argumentative units at sentence
level. However, a single sentence may contain
several units, such as a claim and an associ-
ated premise, and an argumentative unit could en-
compass several, generally two, consecutive sen-
tences (Habernal and Gurevych, 2017).

Moreover, to draw robust and generalizable con-
clusions about the advantages of applying dimen-
sionality reduction, we need to make further experi-
ments not only with more data, but also considering
other types of features (e.g., word embeddings) and
several domains and corpora, which may be in lan-
guages distinct to Spanish (Lawrence and Reed,
2020).

We could further research which are the most
relevant features in each of the AM tasks, and fo-
cus on and boost them with ad hoc algorithms. In
this context, we could also consider topic, senti-
ment, debate structure, and domain (or language)
dependent features that may be valuable to identify
argumentative fragments and their components and
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relations (Lawrence and Reed, 2020).
Finally, we should compare our results with

those achieved by of recent deep learning ap-
proaches to argument extraction (Eger et al., 2017;
Reimers et al., 2019), in order to properly ana-
lyze the benefits and drawbacks of using a simple
technique with respect to much more complex and
computational costly methods. For such purpose,
we have to extend our corpus, so that deep learning
architectures for AM could be fine-tuned with exist-
ing large language models, such as BETO (Cañete
et al., 2020) for the Spanish language.
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A Effects of the Dimensionality
Reduction

Figures 5, 6 and 7 show the effects of the 3 dimen-
sionality reduction techniques used on the perfor-
mance (in terms of micro-F1 score values) of the
tested ML algorithms, in the argumentative frag-
ment detection, argument component classification
and argument relation recognition tasks, respec-
tively.
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Figure 5: Micro-F1 score values achieved on the argumentative fragment detection task on training sets. NB,
LR, SVM and GB stand for Naive Bayes, Logistic Regression, Support Vector Machines, and Gradient Boosting,
respectively.

Figure 6: Micro-F1 score values achieved by the tested approaches on the argument component classification task
on training sets. NB, LR, SVM and GB stand for Naive Bayes, Logistic Regression, Support Vector Machines, and
Gradient Boosting, respectively.

Figure 7: Micro-F1 score values achieved by the tested approaches on the argument relation recognition task on
training sets. NB, LR, SVM and GB stand for Naive Bayes, Logistic Regression, Support Vector Machines, and
Gradient Boosting, respectively.


