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Abstract

Event-Level Video Question Answer-
ing (EVQA) requires complex reasoning
across video events to obtain the visual
information needed to provide optimal answers.
However, despite significant progress in
model performance, few studies have focused
on using the explicit semantic connections
between the question and visual information
especially at the event level. There is need for
using such semantic connections to facilitate
complex reasoning across video frames.
Therefore, we propose a semantic-aware
dynamic retrospective-prospective reasoning
approach for video-based question answering.
Specifically, we explicitly use the Semantic
Role Labeling (SRL) structure of the question
in the dynamic reasoning process where
we decide to move to the next frame based
on which part of the SRL structure (agent,
verb, patient, etc.) of the question is being
focused on. We conduct experiments on
a benchmark EVQA dataset - TrafficQA.
Results show that our proposed approach
achieves superior performance compared to
previous state-of-the-art models. Our code is
publicly available at https://github.com/
lyuchenyang/Semantic-aware-VideoQA.

1 Introduction

This paper focuses on one specific variant of Video
Question Answering (VQA) (Xu et al., 2016; Yu
et al., 2018; Zhong et al., 2022), namely Event-
level VQA (EVQA) (Xu et al., 2021). In gen-
eral, the objective of the VQA task is to provide
an answer to a visual-related question according
to the content of an accompanying video. De-
spite significant recent progress in VQA, EVQA
still remains one of the most challenging VQA-
based tasks since it requires complex reasoning
over the events across video frames (Sadhu et al.,
2021; Zhong et al., 2022; Liu et al., 2022). To
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tackle the challenges in EVQA, a number of ap-
proaches have been proposed (Xu et al., 2021).
Luo et al. (2022) propose a temporal-aware bidi-
rectional attention mechanism for improving event
reasoning in videos, while Zhang et al. (2022) pro-
pose a novel model named Energy-based Refined-
attention Mechanism (ERM), which obtains bet-
ter performance compared to previous approaches
with a smaller model size. Liu et al. (2022), on
the other hand, incorporate visual-linguistic causal
dependencies based on Graph Convolutional Net-
works (Kipf and Welling, 2017) for enhancing
cross-modal event reasoning for EVQA.

Despite recent advances, conventional EVQA ap-
proaches generally fail to take into account the ex-
plicit semantic connection between questions and
the corresponding visual information at the event
level. Therefore, we propose a new approach that
takes advantage of such semantic connections, us-
ing the Semantic Role Labeling (SRL) (Màrquez
et al., 2008; Palmer et al., 2010; He et al., 2017)
structure of questions. The model uses SRL in-
formation to learn an explicit semantic connection
between the text-based questions and visual infor-
mation in videos. Additionally, we carry out a
multi-step reasoning mechanism over video frames
to avoid adapting to spurious correlation and short-
cuts by explicitly learning the reasoning process
itself (Yi et al., 2018; Zhang et al., 2021; Picco
et al., 2021; Hamilton et al., 2022; Zhu, 2022).

Specifically, in each reasoning step, the model
should explicitly decide which frame should be fo-
cused on by predicting the reasoning direction (ret-
rospective or prospective). In terms of the ques-
tion, in each reasoning step, we focus on one or
more specific SRL arguments with high attention
weights, and model its connection with the visual
information (i.e., video frames) contained within
the corresponding video. For example, for a ques-
tion such as [ARG1: How many cars] were [Verb:
involved] [ARG2: in the accident?], the model con-
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Figure 1: Overview of our approach for multi-step visual reasoning. In each reasoning step, the model predicts the
reasoning direction (either retrospective or prospective) and focuses on a specific SRL argument with high attention
weights. A coverage mechanism is employed to improve the coverage of SRL arguments in the question.

centrates on the ARG2 when locating the accident,
before determining how many cars were involved in
the accident (ARG1). In a specific reasoning step, t,
we inject the relevant visual information based on
the semantic connection between the question and
video frames by updating a hidden vector. This vec-
tor is ultimately expected to contain the necessary
information for predicting the correct answer. In
the reasoning process, we employ a coverage mech-
anism (Tu et al., 2016) to improve the coverage of
the SRL arguments of question. Namely, instead of
simply focusing on a small number of specific ar-
guments, the model is capable of including a large
range of arguments.

To investigate the effectiveness of the proposed
approach, we conduct experiments on a bench-
mark EVQA dataset: TrafficQA. Results reveal the
model to achieve performance superior to that of ex-
isting baselines for a range of reasoning types (e.g.,
counterfactual, prospective).

2 Methodology

An overview of our approach is shown in Figure 1.
Suppose the input of our model consists of a video
V composed of n image frames sampled from
it: V = {f0, f1, ......, fn−1}, and a correspond-
ing question Q = {w0, w1, ......, wm−1} with asso-
ciated SRL arguments S = {S0, S1, ......, SN−1}

where Si = {wi, wi+1, ......, wk}. All frames
V = {f0, f1, ......, fn−1} are fed into an IMAGE

ENCODER followed by temporal attention model-
ing to produce temporal-aware frame representa-
tions V

′
= {f ′

0, f
′
1, ......, f

′
n−1} ∈ Rn×d. Mean-

while, we use a TEXT ENCODER to obtain the
representations of the question with its correspond-
ing SRL arguments: Q

′ ∈ R1×d and S
′ ∈ RN×d.

We then perform multi-step reasoning in which we
iteratively update the hidden state vector h with
the visual information from frame representations
based on the attention weights between them and
the SRL arguments of the question. h is updated
from the initial step h0 to the final step hT−1 where
T is the total number of reasoning steps. Finally,
we predict the most probable answer a based on
hT−1.

2.1 Multi-step Reasoning
Before the first reasoning step, we initialize:

h0 = Attn(Q
′
, V

′
, V

′
) (1)

j = argmax(AttnWeights(Q
′
, V

′
, V

′
)) (2)

where Attn serves as the q, k, v attention1 mod-
eling (Vaswani et al., 2017) and j represents the

1In this work, we use a low temperature τ in the softmax
to encourage the model to assign more attention weights to
the most relevant frame.

51



index of the frame with the highest attention weight.
In each specific reasoning step t, we firstly use ht−1

as the attention key to obtain the relevant SRL ar-
gument: S

′
t = Attn(ht−1, S

′
, S

′
). Subsequently,

we infer the next focused frame by:

V focus = Attn(rt, V
′
, V

′
) (3)

where rt = g(ht−1, S
′
t). Finally, we update the

hidden state vector ht−1 based on the currently
focused frame (the frame with the largest attention
weight):

ht = δ(ht−1, V
focus) (4)

2.2 Retrospective-Prospective Reasoning
We propose a Retrospective-Prospective Reason-
ing mechanism for Eq.3 in order to explicitly de-
cide whether the model should move to future
frames (prospective reasoning) or move back to
previous frames (retrospective reasoning). We ob-
tain the retrospective frame V retro and prospective
frame V prosp by:

V retro = ψ(g(ht−1, S
′
t), V

′
, RetroMask(j)) (5)

V prosp = ϕ(g(ht−1, S
′
t), V

′
, P rospMask(j)) (6)

where ψ and ϕ are MASKED ATTENTION that
are used to obtain retrospective and prospective
frames, g(ht−1, S

′
t) and V

′
serve as query and

key, value respectively. RetroMask(j) means
all frames after j (fi>j) will be masked whereas
ProspMask(j) means that all frames before
j (fi<j) will be masked. After obtaining V retro

and V prosp we generate a probability:

p = σ(λ(V retro, V prosp)) (7)

If p is larger than a pre-defined threshold α, we
update ht = δ(ht−1, V

retro) ,otherwise we update
ht = δ(ht−1, V

prosp) as in Eq. 4. The index for the
next-focused frame j is also updated accordingly.
The reasoning process is shown in Algorithm 1.

2.3 Coverage Mechanism
We additionally propose to employ a coverage
mechanism (Tu et al., 2016) to encourage the model
to include as many SRL arguments as possible in
the reasoning process. Specifically, we track the
attention distribution Ct ∈ R1×N of ht−1 on all
SRL arguments S

Ct = Ct−1 +
AttnWeights([ht−1;Ct−1], S

′
, S

′
)

χ
(8)

Algorithm 1: Multi-step dynamic
retrospective-prospective reasoning with
coverage mechanism
V

′
= {f0, f1, ......, fn−1}: representations of video

frames
Q

′
: question

S
′
: SRL representations of Q

T : reasoning steps
χ : normalization factor
α: threshold of the probability for using retrospective

frame
h0 = Attn(Q

′
, V

′
, V

′
)

j = argmax(AttnWeights(Q
′
, V

′
, V

′
))

C0 = 0
for i in T do

S
′
i = Attn(hi−1, S

′
, S

′
, Ci−1)

Ci = Ci−1 +
AttnWeights(hi−1,S

′
,S

′
,Ci−1)

χ

V retro = ψ(g(ht−1, S
′
t), V

′
, RetroMask(j))

V prosp = ϕ(g(hi−1, S
′
i), V

′
, P rospMask(j))

p = σ(f(V retro, V prosp))
if p > α then

hi = δ(hi−1, V
retro)

j = argmax(ψ(g(ht−1, S
′
t), V

′
, RetroMask(j)))

else
hi = δ(hi−1, V

prosp)
j = argmax(ϕ(g(hi−1, S

′
i), V

′
, P rospMask(j)))

where χ represents the normalization fac-
tor.2 We obtain the weighted S

′
t by S

′
t =

Attn([ht−1;Ct−1], S
′
, S

′
) where we concatenate

Ct−1 to ht−1 as an additional input to the Attn
function for the purpose of informing the model to
assign more attention weights to previously less-
focused SRL arguments, in order to improve the
coverage for all SRL arguments.

2.4 Training Objective

For the answer prediction, we encode all answer
options A = {a0, ......, aM−1} separately and then
select the one with the highest similarity with hT−1.
We optimize our model parameters θ using Cross
Entropy loss:

J(θ) = −
∑

i

∑

k

log
e𭟋(ak,hT−1)

∑M−1
j=0 e𭟋(aj ,hT−1)

yi,k

(9)
where 𭟋 is the function measuring the similar-

ity between answer candidate and hT−1, and yi,k
represents the answer label for the i−th example
- if the correct answer for the i−th example is the
k−th answer then yi,k is 1 otherwise it is 0.

2In this work, we use the number of SRL arguments of the
corresponding question as the normalization factor.
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Models Setting-1/4 Setting-1/2

Q-type (random) (Xu et al., 2021) 25.00 50.00
QE-LSTM (Xu et al., 2021) 25.21 50.45
QA-LSTM (Xu et al., 2021) 26.65 51.02
Avgpooling (Xu et al., 2021) 30.45 57.50
CNN+LSTM (Xu et al., 2021) 30.78 57.64
I3D+LSTM (Xu et al., 2021) 33.21 54.67
VIS+LSTM (Ren et al., 2015) 29.91 54.25
BERT-VQA (Yang et al., 2020) 33.68 63.50
TVQA (Lei et al., 2018) 35.16 63.15
HCRN (Le et al., 2020a) 36.49 63.79
Eclipse (Xu et al., 2021) 37.05 64.77
ERM (Zhang et al., 2022) 37.11 65.14
TMBC (Luo et al., 2022) 37.17 65.14
CMCIR (Liu et al., 2022) 38.58 N/A
Ours 43.19 71.63

Table 1: Evaluation results on TrafficQA dataset.

3 Experiments

3.1 Dataset
We employ a benchmark dataset for EVQA - Traf-
ficQA (Xu et al., 2021) which contains 62,535 QA
pairs and 10,080 videos. We follow the standard
split of TrafficQA – 56,460 pairs for training and
6,075 pairs for evaluation. We further sample 5,000
examples from training data as the dev set.

3.2 Experimental Setup
We use CLIP ViT-B/16 (Radford et al., 2021) 3

to initialize our image encoder and text encoder.
We evenly sample 10 frames from each video
in the TrafficQA dataset. The SRL parser em-
ployed in the experiments is from AllenNLP (Gard-
ner et al., 2018; Shi and Lin, 2019). We train
our model over 10 epochs with a learning rate of
1 × 10−6 and a batch size of 8. The optimizer is
AdamW (Loshchilov and Hutter, 2019). We set
the maximum reasoning step T to 3 and we use a
temperature τ of 0.2 in Attention modeling. The
hyper-parameters are empirically selected based on
the performance on dev set. There are two experi-
mental settings for TrafficQA (Xu et al., 2021): 1)
Setting-1/2, this task is to predict whether an an-
swer is correct for a given question based on videos;
2) Setting-1/4: this task follows the standard setup
of multiple-choice task in which the model is ex-
pected to predict the correct the answer from the
four candidate options.

3.3 Results
The experimental results on the test set of Traf-
ficQA are shown in Table 1, where we also in-

3https://openai.com/blog/clip/

clude the previous baseline models for EVQA.4

The results show that our proposed approach ob-
tains accuracy of 43.19 under the multiple-choice
setting, which surpasses previous state-of-the-art
approaches including Eclipse (Xu et al., 2021),
ERM (Zhang et al., 2022), TMBC (Luo et al., 2022)
and CMCIR (Liu et al., 2022) by at least 4.5 points.
Furthermore, our approach achieves an accuracy
of 71.63 under Setting 1/2, outperforming previous
strong baselines by at least 6 points. The results
show the effectiveness of our proposed multi-step
reasoning approach for event-level VideoQA.

Ablation Study We conduct experiments on the
dev set of TrafficQA, investigating the contribution
of both the retrospective-prospective reasoning and
coverage mechanism on the performance of our
proposed EVQA approach. The results are shown
in Table 3, which reveals that multi-step reasoning
is critical in terms of model performance while the
coverage mechanism can provide additional, albeit
less substantial, improvements.

Results by Question Type We take a closer look
at model performance on different question types,
e.g. reverse reasoning, counterfactual reasoning,
etc. The results are shown in Table 2. They reveal
that our proposed approach outperforms previous
state-of-the-art models on all individual question
types by a large margin with large improvements
seen for introspection, reverse and counterfactual
questions.

Effect of Reasoning Steps We study the effect
of varying reasoning steps. The results are shown
in Table 4. Increasing reasoning steps improves
performance, especially from 1 step to 3 steps. Ad-
ditionally, the performance (both Setting 1/4 and
1/2) is stable with reasoning steps exceeding three.

4 Conclusion and Future Work

In this paper, we propose a multi-step dynamic
retrospective-prospective approach for EVQA. Our
approach employs a multi-step reasoning model
that explicitly learns reasoning based on the seman-
tic connection of the SRL structure of a question
and corresponding video frames. We additionally
proposed a coverage mechanism to improve the
coverage of SRL arguments in the reasoning pro-
cess. Experimental results show that the proposed

4Some of the baseline results are taken from Xu et al.
(2021).
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Method
Question Type

Basic Attribution Introspection Counterfactual Forecasting Reverse All

HCRN (Le et al., 2020b) 34.17 50.29 33.40 40.73 44.58 50.09 36.26
VQAC (Kim et al., 2021) 34.02 49.43 34.44 39.74 38.55 49.73 36.00
MASN(Seo et al., 2021) 33.83 50.86 34.23 41.06 41.57 50.80 36.03
DualVGR (Wang et al., 2021) 33.91 50.57 33.40 41.39 41.57 50.62 36.07
CMCIR (Liu et al., 2022) 36.10 52.59 38.38 46.03 48.80 52.21 38.58
Ours 37.05 52.68 43.91 50.81 54.26 55.52 43.19

Table 2: Results by various question type on the dev set of TrafficQA. The highest performance are in bold.

Models Setting-1/4 Setting-1/2

Model w/o MR and CM 42.53 69.61
Model w/o CM 46.15 74.97
Model 47.38 75.83

Table 3: Ablation study results on TrafficQA dev set,
where MR represents Multi-step Reasoning and CM rep-
resents Coverage Mechanism. MR and CM are coupled
in our approach.

Reasoning Steps Setting-1/4 Setting-1/2

Model w/ 1 step 41.57 71.46
Model w/ 2 steps 44.21 74.95
Model w/ 3 steps 47.38 75.83
Model w/ 4 steps 47.23 75.96
Model w/ 5 steps 47.15 75.87

Table 4: The effect of various reasoning steps.

approach obtains superior performance compared
to that of state-of-the-art EVQA models.
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Limitations

This papers focuses on a variety of VideoQA -
event-level VideoQA, we only incorporate event
information from the question (textual) side as
we think that parsing video frames is inaccurate
and could introduce unexpected errors, we should
also explore how to inject event-level information
from visual side in the future with more compet-
itive visual parsing models. Our experiments are
only conducted on one dataset due to resource con-
straint, we should also conduct experiments on

more datasets to verify the effectiveness of our ap-
proach.
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Longo. 2022. Is neuro-symbolic ai meeting its
promise in natural language processing? a structured
review. arXiv preprint arXiv:2202.12205.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 473–483,
Vancouver, Canada. Association for Computational
Linguistics.

Nayoung Kim, Seong Jong Ha, and Je-Won Kang. 2021.
Video question answering using language-guided
deep compressed-domain video feature. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 1708–1717.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Thao Minh Le, Vuong Le, Svetha Venkatesh, and
Truyen Tran. 2020a. Hierarchical conditional rela-
tion networks for video question answering. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9972–9981.

Thao Minh Le, Vuong Le, Svetha Venkatesh, and
Truyen Tran. 2020b. Hierarchical conditional rela-
tion networks for video question answering. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9972–9981.

54

https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl


Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg.
2018. Tvqa: Localized, compositional video ques-
tion answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1369–1379.

Yang Liu, Guanbin Li, and Liang Lin. 2022.
Cross-modal causal relational reasoning for event-
level visual question answering. arXiv preprint
arXiv:2207.12647.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yuanmao Luo, Ruomei Wang, Fuwei Zhang, Fan Zhou,
and Shujin Lin. 2022. Temporal-aware mechanism
with bidirectional complementarity for video q&a.
In 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 3273–3278.
IEEE.

Lluís Màrquez, Xavier Carreras, Kenneth C Litkowski,
and Suzanne Stevenson. 2008. Semantic role label-
ing: an introduction to the special issue.

Martha Palmer, Daniel Gildea, and Nianwen Xue. 2010.
Semantic role labeling. Synthesis Lectures on Human
Language Technologies, 3(1):1–103.

Gabriele Picco, Thanh Lam Hoang, Marco Luca Sbo-
dio, and Vanessa Lopez. 2021. Neural unification
for logic reasoning over natural language. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 3939–3950, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Mengye Ren, Ryan Kiros, and Richard Zemel. 2015.
Exploring models and data for image question an-
swering. Advances in neural information processing
systems, 28.

Arka Sadhu, Kan Chen, and Ram Nevatia. 2021. Video
question answering with phrases via semantic roles.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2460–2478, Online. Association for Computa-
tional Linguistics.

Ahjeong Seo, Gi-Cheon Kang, Joonhan Park, and
Byoung-Tak Zhang. 2021. Attend what you need:
Motion-appearance synergistic networks for video
question answering. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:

Long Papers), pages 6167–6177, Online. Association
for Computational Linguistics.

Peng Shi and Jimmy J. Lin. 2019. Simple bert models
for relation extraction and semantic role labeling.
ArXiv, abs/1904.05255.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–85,
Berlin, Germany. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jianyu Wang, Bing-Kun Bao, and Changsheng Xu. 2021.
Dualvgr: A dual-visual graph reasoning unit for
video question answering. IEEE Transactions on
Multimedia, 24:3369–3380.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-
vtt: A large video description dataset for bridging
video and language. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5288–5296.

Li Xu, He Huang, and Jun Liu. 2021. Sutd-trafficqa: A
question answering benchmark and an efficient net-
work for video reasoning over traffic events. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9878–9888.

Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani,
Yuta Nakashima, and Haruo Takemura. 2020. Bert
representations for video question answering. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1556–1565.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba,
Pushmeet Kohli, and Josh Tenenbaum. 2018. Neural-
symbolic vqa: Disentangling reasoning from vision
and language understanding. Advances in neural
information processing systems, 31.

Youngjae Yu, Jongseok Kim, and Gunhee Kim. 2018.
A joint sequence fusion model for video question
answering and retrieval. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
471–487.

Fuwei Zhang, Ruomei Wang, Fan Zhou, and Yuanmao
Luo. 2022. Erm: Energy-based refined-attention
mechanism for video question answering. IEEE
Transactions on Circuits and Systems for Video Tech-
nology.

Xi Zhang, Feifei Zhang, and Changsheng Xu. 2021.
Explicit cross-modal representation learning for vi-
sual commonsense reasoning. IEEE Transactions on
Multimedia, 24:2986–2997.

55

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.findings-emnlp.331
https://doi.org/10.18653/v1/2021.findings-emnlp.331
https://doi.org/10.18653/v1/2021.naacl-main.196
https://doi.org/10.18653/v1/2021.naacl-main.196
https://doi.org/10.18653/v1/2021.acl-long.481
https://doi.org/10.18653/v1/2021.acl-long.481
https://doi.org/10.18653/v1/2021.acl-long.481
https://doi.org/10.18653/v1/P16-1008
https://doi.org/10.18653/v1/P16-1008


Yaoyao Zhong, Wei Ji, Junbin Xiao, Yicong Li, Wei-
hong Deng, and Tat-Seng Chua. 2022. Video ques-
tion answering: Datasets, algorithms and challenges.
arXiv preprint arXiv:2203.01225.

Zihao Zhu. 2022. From shallow to deep: Compositional
reasoning over graphs for visual question answering.
In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8217–8221. IEEE.

56


