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Abstract

Discharge summaries are comprehensive med-
ical records that encompass vital information
about a patient’s hospital stay. A crucial aspect
of discharge summaries is the temporal infor-
mation of treatments administered throughout
the patient’s illness. With an extensive vol-
ume of clinical documents, manually extract-
ing and compiling a patient’s medication list
can be laborious, time-consuming, and suscep-
tible to errors. The objective of this paper
is to build upon the recent development on
clinical NLP by temporally classifying treat-
ments in clinical texts, specifically determining
whether a treatment was administered between
the time of admission and discharge from the
hospital. State-of-the-art NLP methods includ-
ing prompt-based learning on Generative Pre-
trained Transformers (GPTs) models and fine-
tuning on pre-trained language models (PLMs)
such as BERT were used to classify temporal re-
lations between treatments and hospitalisation
periods in discharge summaries. Fine-tuning
with the BERT model achieved an F1 score of
92.45% and a balanced accuracy of 77.56%,
while prompt learning using the T5 model and
mixed templates resulted in an F1 score of
90.89% and a balanced accuracy of 72.07%.
Our codes and data are available at https:
//github.com/HECTA-UoM/MedTem.

1 Introduction

Clinical texts contain important temporal informa-
tion, such as medication start and end dates, ap-
pointment dates, and diagnosis dates. Extracting
this information can provide insights into a pa-
tient’s medical history and allow doctors to make
more informed decisions about their treatment.
However, this process requires a significant amount
of time and effort. To help healthcare professionals
make informed decisions more efficiently, leading
to better patient outcomes, we designed the project
MedTem, medication and treatment event extrac-
tion and their relation modelling with temporal

information. By using natural language process-
ing (NLP) methods to extract temporal information
from clinical texts, doctors can spend less time de-
ciphering medical records and more time focusing
on providing the best care possible to their patients.
This study reports findings from MedTem2.0, a
follow-up work from our previous investigation
MedTem (Tu, 2022).

Clinical texts can be challenging to process due
to their unstructured nature and the use of medi-
cal jargon. Thus, developing effective NLP tech-
niques for extracting temporal information from
clinical texts is crucial for improving healthcare
outcomes. The primary goal of this work is to clas-
sify temporal information related to medication,
surgeries, and other treatments within Electronic
Health Records (EHRs) to determine if these treat-
ments occurred during the hospitalisation period.
This work aims to develop a system capable of clas-
sifying temporal information using prompt-based
learning (PBL) from texts, which could aid health-
care professionals in understanding patients’ medi-
cal histories and facilitate research in clinical text
mining.

As an example, in Table 1, given the admission
and discharge dates, we aim to determine if the a
left carotid endarterectomy and vein patch angio-
plasty were used during the hospitalisation period.
The note indicates that those treatments were ad-
ministered on 3/3/92, which is during the admission
and discharge dates, suggesting that it was used dur-
ing hospitalisation. We assume that all treatment
information is provided and only need to analyse
the temporal information.

To the best of our knowledge, this is the first
attempt at using prompt-based learning for the tem-
poral classification of treatments in the clinical
domain, with the following outcomes: 1) we es-
tablished a high baseline score with 90.89% F1
measurement and 72.07% balanced accuracy by
using prompt-based learning, demonstrating the
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clinical free text
Admission Date Discharge Date Doctor’s Note
02/22/92 03/08/92 She was, therefore, cleared for the operating room, and on 3/3/92,

she underwent a left carotid endarterectomy, with continuous
electroencephalogram monitoring and vein patch angioplasty,
which was uneventful .

Table 1: Task Example

effectiveness of the developed system for classify-
ing temporal relationships between treatments and
hospitalisation times; 2) we achieved improved per-
formance using fine-tuning with the BERT model,
resulting in a 92.45% F1 score and 77.56% bal-
anced accuracy.

2 Methodologies

2.1 Task Overview
The pipeline shown in Figure 1 presents the
methodology. The key approaches entail deriv-
ing gold labels from annotated datasets, follow-
ing several pre-processing steps such as few-shot
learning and sentence segmentation, among others.
To evaluate the efficacy of prompt-based learning
in temporally classifying treatment entities, two
widely-adopted paradigms were used for compar-
ison: pre-trained fine-tuning and prompt-based
learning. Within these paradigms, three state-of-
the-art pre-trained language models were used to
perform the task: the Masked Language Model
BERT, Seq2seq model T5 and Auto-regressive Lan-
guage Model GPT-2 (Devlin et al., 2018; Raffel
et al., 2020; Radford et al., 2019). All these mod-
els are based on Transformer structures but with
different architecture/components, BERT for the
encoder, GPT for the decoder, and T5 for both
the encoder and decoder. We used BERT-base in-
stead of BERT-large because the latter one costs
too much power that the Colab platform we used
could not afford.

2.2 Data Pre-processing
Step I: Generation of Gold Standard The i2b2
temporal relations corpus we used contains pre-
existing layers of gold standard annotations, such
as clinical concepts (problems, tests, treatments)
and coreference relations (Uzuner et al., 2012,
2011), which can facilitate temporal reasoning.

In each discharge note, there are three types of
annotations: events, temporal expressions, and tem-
poral relations. Event annotations (EVENTs) en-

compass three distinct clinical concepts (i.e. PROB-
LEMs, TESTs, and TREATMENTs), clinical de-
partments, EVIDENTIALs (words or phrases pa-
tients use to describe their symptoms), and OC-
CURRENCEs (other events, such as admission,
that indicate the patient’s timeline). Each EVENT
possesses three attributes: TYPE, MODALITY,
and POLARITY. For this specific task, we
only need to identify the TYPE of EVENT as
TREATMENT and OCCURRENCE among all
the TYPE attributes (PROBLEM, TEST, TREAT-
MENT, CLINICAL_DEPT, EVIDENTIAL, or OC-
CURRENCE). Figure 2 shows the discharge sum-
mary paragraph; the EVENTs in this record are
shown in Table 2.

In clinical records, the temporal expression an-
notations use the TIMEX3 tag, which includes four
categories: time, date, duration, and frequency.
Each TIMEX3 value (VAL) is standardised to a uni-
fied format, such as time and date being represented
as [YYYY-MM-DD]T[HH:MM]. Additionally, the
MOD attribute indicates the characteristics of the
temporal expression. Table 3 shows the TIMEX3 in
the sample clinical record snippet. Once we have
acquired all the EVENT and TIMEX3 informa-
tion, we can map the temporal relations (TLINKs)
between time and events, or between events them-
selves (Table 4). The TLINK categories include
BEFORE, AFTER, BEGUN_BY, ENDED_BY,
DURING, SIMULTANEOUS, OVERLAP, and BE-
FORE_OVERLAP.

Upon identifying all the treatment EVENTs and
their relationships with admission and discharge
times, we assign a label of "ON" to those enti-
ties where treatment occurs after or overlaps with
the admission time and is also before or overlaps
with the discharge time, indicating that the treat-
ment was administered during hospitalisation. Con-
versely, we assign a label of "OFF" to the remain-
ing treatments, signifying that they were not used
during hospitalisation. Figure 3 illustrates the ap-
plication of this rule-based approach for generating
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Figure 1: System Pipeline

Figure 2: Sample Clinical Record Snippet (Underscored: EVENTs, Italics: TIMEX3s)

the necessary gold labels. These gold labels com-
prise the document name, discharge note, treatment
entity, and the label. In this study, the provided
dataset consists of a training dataset and a testing
dataset. After processing the data using the gold
label generator as above, we obtained 3,075 ON-
labelled training samples (indicating treatments
used during hospital stays) and 762 OFF-labelled
samples (indicating treatments not used during hos-
pital stays). This results in an imbalanced label set
on the dataset.

Step II: Few-shot Learning to Balance Labels
To address the label-imbalance issue, we used a
few-shot learning approach to create a balanced
training dataset. This involved randomly select-
ing an equal number of samples from each label
and combining them to form the few-shot training
dataset.

Furthermore, most notes contain numerous ab-
breviations, such as "mcg subq q.d.", which stands
for "micrograms subcutaneously once daily". How-
ever, since our objective is to analyse temporal in-
formation related to treatments, addressing dosage

and frequency abbreviations is not necessary.

Step III: Sentence Segmentation Due to the
nature of the dataset, which consists of clinical
discharge notes, doctors frequently use brief sen-
tences or even short phrases to describe various
treatments, tests, or other patient-related informa-
tion. This characteristic simplifies the process of
Sentence Segmentation, which can be achieved by
splitting the text based on newline characters ("/n")
and periods ("."). The rationale behind sentence
segmentation is to preserve and enhance the extrac-
tion of contextual information within the text, as
distinct sentences often address different topics or
aspects.

Step IV: Sentence Window An interesting as-
pect is that a single treatment may be mentioned
multiple times in one clinical note, each referring
to different events with distinct time sequences.
Providing the entire text as input data would be
imprecise and inaccurate. Additionally, clinical
notes predominantly consist of factual statements
and clinical declarations, with sentences generally
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Event Type Modality Polarity
[Admission] OCCURRENCE FACTUAL POS
[Discharge] OCCURRENCE FACTUAL POS
[gravida IV] OCCURRENCE FACTUAL POS
[metastatic cervical cancer] PROBLEM FACTUAL POS
[malignant pericardial effusion] PROBLEM POSSIBLE POS
[a total abdominal hysterectomy] TREATMENT FACTUAL POS
[a fibroid] PROBLEM POSSIBLE POS
[Vanor] CLINICAL_DEPT FACTUAL POS

Table 2: EVENT Annotation Examples

Figure 3: Example of Generated Gold Label

TIMEX3 Type VAL Mod
[06/11/1991] DATE 1991-06-11 NA
[06/22/1991] DATE 1991-06-22 NA

Table 3: TIMEX3 Annotation Examples

being independent. As a result, we used a Sentence
Window approach to extract valuable information.
For instance, if the target treatment entity is in the
target sentence, and the sentence window size is
set to 4, the model selects two sentences before and
after the target sentence. The input data consists
of the target sentence, its surrounding sentences,
and the key temporal information of admission and
discharge times, which appear at the beginning of
every clinical note. Thus, this approach ensures
that the model incorporates relevant temporal infor-
mation and context.

Step V: Tokenization Tokenization is a crucial
step in the natural language processing pipeline,
wherein paragraphs are segmented into sentences,
and sentences are further broken down into individ-
ual tokens or words (Koehn, 2009). This process
enables the conversion of unstructured textual data
into a structured, word-based data format, facilitat-
ing subsequent processing and analysis. By trans-
forming unstructured data into structured data, we
can represent textual information as vectors, and
tokenization serves as the foundational step in this
transformation.

In prompt-based learning, designing a template
that includes an input sequence and prompting sen-
tence is essential. However, creating a tokenizer for
this purpose can be time-consuming and prone to
errors. This is due to the presence of specific infor-
mation, such as masked tokens or auto-generated
tokens, embedded in the template, which requires
careful handling during tokenization. Any mis-
matches in masked tokens can result in serious
consequences. Furthermore, different PLMs may
have distinct architectures, leading to varying to-
kenization strategies, necessitating consistency in
context processing.

2.3 Prompt-based Learning vs Fine-Tuning

In conventional supervised learning for NLP, the
objective is to predict an output y based on an
input x utilising the model P (y|x; θ) (Manning
and Schutze, 1999). In classification tasks, y de-
notes the class label corresponding to input x. To
train the model’s parameters θ, a dataset consist-
ing of input-output pairs is required for predict-
ing this conditional probability (Goodfellow et al.,
2016). However, obtaining adequately annotated
(labelled) data for certain domains can be chal-
lenging. Prompt learning methods address this
limitation by learning a language model (LM) that
estimates the probability P (x; θ) of the text x itself.
Consequently, this probability is used to predict y,
thereby bypassing the need for extensive labelled
datasets (Liu et al., 2023; Ding et al., 2021). There
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From extent Type To extent
[Admission] SIMULTANEOUS [06/11/1991]
[Discharge] SIMULTANEOUS [06/22/1991]
[gravida IV] BEFORE [SECTIME: 06/11/1991]
[para 2] BEFORE [SECTIME: 06/11/1991]
[para 2] OVERLAP [gravida IV]
[...] ... [...]
[a total abdominal hysterectomy] BEFORE [SECTIME: 06/11/1991]

Table 4: TLINK Annotation Examples

will be three main steps of doing that including
prompt construction, answer selection, and answer
mapping (refer to Appendix C.1).

We used OpenPrompt, a toolkit for implement-
ing prompt learning in downstream tasks (Ding
et al., 2021). It offers a function for loading
PLMs, tokenizers, and other required configura-
tions, which function accommodates the choice of
PLMs (MLM, LM, and Seq2seq) and conducts tok-
enization accordingly. Designed with encapsulated
data processing APIs, users can apply a human-
readable style to create templates and conveniently
operate on both the input and template simultane-
ously.

To identify the optimal prompt format for this
task, we examine various components in the
prompt-based construction. We explore different
large langauge model (LLM) architectures, and ad-
just the template’s structure and format within the
prompt construction. We modify the answer’s form
in answer selection to correspond with the chosen
template.

In this context, we will first define the templates
and verbalizers used within the framework and our
experiments. We refer to the traditional prompt-
based learning approach that uses human designed
templates and verbalizers as manual templates and
manual verbalizers respectively. This strategy was
initially introduced as Pattern-Exploiting Training
(PET) by Schick and Schütze (Schick and Schütze,
2020).

Manual Template Creating manual components
in prompt learning can be quite intricate, as slight
modifications to the tokens can lead to significant
changes in performance. Domain expertise is typ-
ically required for effective engineering of these
components. Examples of manual template can be
a statement or question-answering format.

The Soft Template (Example 1) approach shares
similarities with the manual method but replaces

fixed manual components with soft (trainable) to-
kens or embeddings, denoted as <[soft]>. Combin-
ing some fixed manual components with soft tokens
leads to the Mixed Template approach (Example
2), which uses both fixed and trainable elements in
the template construction.

Listing 1: Example of Soft Template
text = ’<[clinical_record]> <[soft]>

<[treatment]> <[soft]> <[soft]>
<[mask]> <[soft]>.’

Listing 2: Example of Mixed Template
text = ’<[clinical_record]> Question:

<[treatment]> <[soft]> <[soft]>
<[soft]> <[soft]> <[soft]>. Is it
correct? <[mask]>’

Leveraging the T5 model’s encoder-decoder
architecture, we can generate variable-length
output sequences based on the input sequence.
With this advantage, the PLM can generate
part of the prompt within the manual template.
Choosing to sacrifice human interpretability,
one can create soft prompt components instead.
A typical mixed template takes the form x0 =
[P0, P1, . . . , Pj ], x, [Pj+1, Pj+2, . . . , Pk], [MASK],
where for i ∈ 0, 1, . . . , k, Pi represents the token
of the template.

Verbalizer The verbalizer functions as a mech-
anism that maps single or multiple distinct tokens
to well-defined class labels. The embedding or
hidden state associated with the < [MASK] >
position, generated by the PLM, is subsequently
processed through a standard language model head
or classifier. This step computes the probabilities
connected to the class label tokens derived from the
verbalizer. In this task, a Manual Verbalizer was
used, which entailed manually constructing a list of
answers. These answers can be either token-based
or span-based, depending on the specific template
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Figure 4: Illustration of Manual Template and Verbalizer in Prompt Learning

used.
In a similar fashion to the soft template, a

Soft Verbalizer can be conceptualised as replaced
words in the verbalizer with trainable embeddings
for each class. As a result, when useing a soft
verbalizer, there is no necessary to establish a map-
ping from vocabulary V to class C, as the trainable
vectors lack semantic meaning.

2.4 Traditional Fine-tuning

In traditional fine-tuning methodology, the down-
stream task uses a multilayer perceptron (MLP)
denoted as fMLP (·). This MLP takes the pooled
sequence embedding generated by the PLM as in-
put and delivers an n-dimensional vector, where n
represents the numeral of classes (Kowsari et al.,
2019). Given an input text x, the PLM first pro-
cesses the raw input to obtain the m-dimensional
embedding for each token. Next, a pooling process,
such as the mean, is involved in all the token’s em-
beddings to generate a single sequence embedding
h(x) with the same m-dimensional size. The sen-
tence embedding h(x) is then fed into the MLP
block through a typical feed-forward process to
obtain the likelihood distribution across n classes
using a softmax operator.

Figure 4, 5, and 6 illustrate the examples of PBL
and PLM fine-tuning on our task, adapted from
(Taylor et al., 2022).

2.5 Evaluation Methods

We take the label "ON" as the positive class and
label "OFF" as the negative class. In addition to
F1 score, we used balanced accuracy as a perfor-

mance measure for our model, which calculates the
average recall across all classes. The decision to
use balanced accuracy instead of overall accuracy
stems from the imbalanced distribution of class
labels in the test dataset, with 3164 instances of
label "ON" and 921 instances of the label "OFF".
Balanced accuracy considers the performance of
the model on each class individually, thus avoiding
potential misinterpretations that can arise from us-
ing overall accuracy when one class is substantially
more prevalent than the other.

3 Experimental Work

3.1 Dataset

In this project, we use electronic health records
(EHRs) from the National NLP Clinical Challenges
(n2c2, formerly known as i2b2) dataset, which is
part of an annual challenge workshop 1. We primar-
ily focus on the 2012 n2c2 challenge (Sun et al.,
2013b), which is centred around temporal relations.
The dataset consists of 310 patient clinical history
records and hospital course sections from Partners
Healthcare and Beth Israel Deaconess Medical Cen-
ter, along with clinical events, time expressions,
and temporal relationship annotations (Sun et al.,
2013a). For ethical reasons and to protect patient
privacy, the data has been de-identified and ab-
stracted, including the obfuscation or alteration of
names, addresses, and other personal information.
Additionally, accurate time information has been
randomly shifted.

1https://n2c2.dbmi.hms.harvard.edu/
about-n2c2
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Figure 5: Illustration of Mixed Template and Verbalizer in Prompt Learning.

3.2 Output from Prompt-based Learning

We adopt a systematic approach to optimise the
performance of different PLMs. Initially, we use
various PLMs by the full training dataset, basic
manual templates, and verbalizers, while fixing the
sentence window for input text and adjusting the
learning rate to identify the optimal performance
for each model. Comparing the results, we will
determine the best-performing PLM at this stage.

Next, with the best PLM and fixed sentence win-
dow, we will train the model using the full dataset
while varying templates and verbalizers to identify
the most effective template. Furthermore, we will
maintain the best PLM and template while altering
the sentence window to assess the impact of input
text on performance.

Upon completing the hyperparameter selection
for prompt-based learning, we will obtain the best-
performing model. Finally, we will use few-shot
learning to compare this model with the fine-tuning
paradigm.

3.2.1 Different Language Models
To evaluate the performance of various models, we
use a combination of admission and discharge infor-
mation along with three sentences that include the
target sentence and the sentences immediately pre-

ceding and following it, where the target sentence
contains the target treatment entity. Moreover, we
use manual templates and verbalizers, with the tem-
plate following a question-answering format. The
verbalizer is set to a collection of words, specifi-
cally "Yes", "No". The entire training process spans
5 epochs.

L.R. F1.on B.Accy.

BERT
1E-4
2E-4
5E-6

87.29
90.75
90.14

50
69.72
69.57

GPT-2
6E-5
2E-5
5E-6

90.57
90.79
90.28

70.24
71.19
65.58

T5
6E-5
4E-5
2E-5

90.69
91.24
90.12

70.43
71.43
68.36

Table 5: Performance of Different PLM. L.R.: learning
rate; F1.on: score of ON class; B.A.:Balanced Accuracy

Upon adjusting the learning rate for the various
PLMs, several examples of results were obtained
in table 5. The bold font indicates the highest score
for each PLM. In fact, there was not a big differ-
ence between them. T5 is 1.71 and 0.24 higher
than BERT and GPT-2 under balanced accuracy
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Figure 6: Illustration of Conventional Fine-tuning Method. (Here [CLS] and [SEP] tokens are special tokens for
BERT-based models that are added to the beginning and end of sequences.)

respectively and held a 0.49 and 0.45 advantage in
F1 score.

During the training process, we observed that
all the results demonstrated a higher recall than
precision, indicating that the model correctly iden-
tifies most of the true positive cases (with few false
negatives). This situation can be attributed to the
training data having a significantly larger number
of positive examples compared to negative ones,
which is also reflected in the testing dataset. Addi-
tionally, when examining the negative class accu-
racy, the models only achieve approximately 50%.
This suggests that they are not proficient in detect-
ing negative classes. However, when using a bal-
anced training dataset, the negative class accuracy
increases to 61%.

3.2.2 Different Prompt Learning Setups

In order to assess the effectiveness of different com-
binations of templates and verbalizers, we used a
variety of templates in conjunction with both man-
ual and soft verbalizers. For the manual template,
we used a question-answering format, combined
with a yes, no manual verbalizer and a soft verbal-
izer. Additionally, the soft template used Example 1
for prompting, with fixed and predefined positions
and lengths for the soft tokens, and was combined
with the same manual and soft verbalizers as the
manual template. For the mixed template, we used
Example 2 along with the same verbalizers as be-
fore. During the comparison of different prompt en-

gineering approaches, we also experimented with
various text lengths for each template category.

Template Verbalizer F1.on B.Accy.

Manual
Manual

Soft
91.24
90.85

71.43
70.52

Soft
Manual

Soft
90.68
89.8

68.33
72.48

Mixed
Manual

Soft
90.89
90.7

72.07
69.01

Table 6: Performance of Different Prompt Learning.
F1.on: score of ON class; B.Accy.: Balanced Accuracy

The evaluation results presented in Table 6 reveal
that the (Manual, Manual) combination, with the
format (Template, Verbalizer), achieves the highest
F1 score of 91.24. This indicates its strong capa-
bility to classify "ON" class samples. Additionally,
the (Soft, Soft) setup demonstrates the best bal-
anced accuracy of 72.42, which is more suitable
when the "OFF" class is as important as the positive
class. We list error analysis examples and compar-
isons of different input text in Appendix (F). The
(Mixed, Manual) configuration showcases compar-
atively good results for both evaluation metrics and
will be used as the standard for the next section of
comparisons.

3.3 PBL vs Traditional Fine-Tuning
The Hyperparameters-optimised outputs from PBL
and traditional fine-tuning are displayed in Table
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Figure 7: Balanced Accuracy and F1 Score for Prompt Learning and Traditional Fine-tuning Frameworks Across
the Temporal Classification Task. ("Full" refers to a full training dataset size.)

7 and Figure 7, with the hyper-parameter sets in
Appendix (G).

Paradigm F1 score B.Accy.
Traditional fine-tuning 92.45 77.56
Prompt-based learning 91.79 75.08

Table 7: Hyperparameter Optimised Model for Tempo-
ral Classification. B.Accy.: Balanced accuracy

4 Related Work

Early research in temporal relation classification
focused on extracting and representing temporal in-
formation from clinical text. Hripcsak et al. (2002)
proposed a method for representing clinical events
and their temporal relationships using an interval-
based temporal model, laying the groundwork for
understanding temporal dependencies in clinical
text.

Inspired by the TimeML standard (Pustejovsky
et al., 2003) for annotating temporal expressions
and relations in text, the THYME (Temporal Histo-
ries of Your Medical Events) annotation guidelines
were developed by Styler IV et al. (2014) to adapt
TimeML for clinical narratives. These guidelines
provided a foundation for temporal relation clas-
sification research in the clinical domain. How-
ever, achieving temporal understanding in clinical
narratives is challenging due to the complexity of

determining implicit temporal relations, handling
temporal granularity, and dealing with diverse tem-
poral expressions.

5 Conclusion and Future Work

In this work, two state-of-the-art approaches were
developed to classify the relative timing of treat-
ments in hospital discharge summaries, focusing
on determining whether a treatment was admin-
istered during hospitalisation or not. These ap-
proaches used cutting-edge pre-trained language
models, BERT, GPT-2, and T5, in conjunction with
prompt-based learning and fine-tuning paradigms.
Both approaches achieved F1 scores of 91.79%
and 92.45%, and balanced accuracy of 75.08% and
77.56%, respectively, on the n2c2 2012 Temporal
Relations dataset. The primary challenge was ac-
curately classifying the "OFF" class due to data
imbalance and complex semantic meanings that
made it difficult for the models to make correct de-
cisions. Future work could investigate the impact
of fixed tokens on mixed template performance or
the role of longer sequence lengths in soft templates
for improved understanding. Additionally, a more
comprehensive comparison of prompt learning and
traditional fine-tuning can be conducted across var-
ious clinical domain tasks, using frozen PLMs in
conjunction with few-shot learning methods.
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Limitations

There are several limitations to the experiments
conducted in this project that should be acknowl-
edged:

• Selection of the best pre-trained language
model (PLM) for prompt-based learning: The
evaluation method used to compare the per-
formance of BERT, GPT-2, and T5 in the
context of manual templates and manual ver-
balizers may not be entirely accurate. The
performance of these models did not show
significant differences, making it difficult to
determine the best model for prompt-based
learning. Furthermore, other domain-specific
PLMs, such as Bio-BERT, which may be bet-
ter suited for handling clinical data, were not
considered in this project.

• Limited exploration of templates: The ex-
periments utilized a limited number of tem-
plates, particularly for soft and mixed tem-
plates. These templates were primarily based
on prompts derived from manual templates.
Further experimentation is needed to explore
different patterns, such as varying the position
and length of soft token sequences or using
soft tokens in mixed templates to replace man-
ual tokens (e.g., "Question:").

• Comparison with frozen PLMs: The experi-
ments did not include a comparison between
fine-tuned and frozen PLMs, as done in Tay-
lor’s study (Taylor et al., 2022). This com-
parison could provide valuable insights into
the performance trade-offs between these two
approaches.

• Addressing the effects of imbalanced datasets,
several strategies have gained popularity. 1)
Re-sampling techniques, for example, Monte
Carlo Simulation Analysis, can be used to bal-
ance class distribution by oversampling the
minority class, undersampling the majority
class, or the combination of these two (Glad-
koff et al., 2021). 2) Data augmentation tech-
niques, such as the use of Generative Adver-
sarial Networks (GANs), can generate new
examples for the minority class by applying
transformations to existing data. 3) Further-
more, machine learning approaches like bag-
ging and bootstrapping can reduce variances

by implementing a "voting system" that en-
ables models to make better decisions.

• Finally, it would be advantageous to develop
a post-processing step that generates a table
displaying all treatments along with their cor-
responding temporal information. This would
create an end-to-end system that physicians
could use as a practical tool.

Future research should address these limitations
by exploring a broader range of PLMs, templates,
and experimental setups to provide a more compre-
hensive understanding of the performance charac-
teristics of prompt-based learning methods in the
clinical domain. Application to some more power-
ful computational resources will also extend this
work.

Ethical Discussion

The n2b2 (formerly i2b2) 2012 Temporal Rela-
tions dataset was used for the development of the
approach in this project. This dataset comprises
patient-level data in the form of discharge sum-
maries. These documents have been de-identified
in accordance with the Health Insurance Portability
and Accountability Act of 1996 privacy regulations
by the organizers of the n2c2 2012 NLP challenge
(Act, 1996). The dataset was obtained with per-
mission for academic use only after signing a Data
Use and Confidentiality Agreement with the n2c2
National Center for Biomedical Computing. So
no further ethical approval forms were required to
gain access to the dataset.

Acknowledgements

We thank the reviewers for their precious comments
on making our paper better. The work was par-
tially supported by Grant EP/V047949/1 “Integrat-
ing hospital outpatient letters into the healthcare
data space” (funder: UKRI/EPSRC).

References
Accountability Act. 1996. Health insurance portability

and accountability act of 1996. Public law, 104:191.

Akiko Aizawa. 2003. An information-theoretic perspec-
tive of tf–idf measures. Information Processing &
Management, 39(1):45–65.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

169



Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wendy W Chapman, Will Bridewell, Paul Hanbury, Gre-
gory F Cooper, and Bruce G Buchanan. 2001. A
simple algorithm for identifying negated findings and
diseases in discharge summaries. Journal of biomed-
ical informatics, 34(5):301–310.

William A Chren. 1998. One-hot residue coding for low
delay-power product cmos design. IEEE Transac-
tions on circuits and systems II: Analog and Digital
Signal Processing, 45(3):303–313.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine
learning, pages 160–167.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Richard S Dick, Elaine B Steen, Don E Detmer, et al.
1997. The computer-based patient record: an essen-
tial technology for health care.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun.
2021. Openprompt: An open-source framework for
prompt-learning. arXiv preprint arXiv:2111.01998.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Serge Gladkoff, Irina Sorokina, Lifeng Han, and Alexan-
dra Alekseeva. 2021. Measuring uncertainty in
translation quality evaluation (tqe). arXiv preprint
arXiv:2111.07699.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT press.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332.

Aaron Li-Feng Han, Xiaodong Zeng, Derek F Wong,
and Lidia S Chao. 2015. Chinese named entity recog-
nition with graph-based semi-supervised learning
model. In Proceedings of the Eighth SIGHAN Work-
shop on Chinese Language Processing, pages 15–20.

Lifeng Han, Gleb Erofeev, Irina Sorokina, Serge Glad-
koff, and Goran Nenadic. 2022. Examining large
pre-trained language models for machine translation:

What you don’t know about it. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 908–919, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Jerry R Hobbs, Douglas Appelt, David Is Bear, and
Mabry Tyson. 1997. Extracting information from
natural-language text. Finite-state language process-
ing, page 383.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

George Hripcsak, John HM Austin, Philip O Alderson,
and Carol Friedman. 2002. Use of natural language
processing to translate clinical information from a
database of 889,921 chest radiographic reports. Ra-
diology, 224(1):157–163.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura Barnes, and Donald
Brown. 2019. Text classification algorithms: A sur-
vey. Information, 10(4):150.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Christopher Manning and Hinrich Schutze. 1999. Foun-
dations of statistical natural language processing.
MIT press.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Erwan Moreau, Ashjan Alsulaimani, Alfredo Maldon-
ado, Lifeng Han, Carl Vogel, and Koel Dutta Chowd-
hury. 2018. Semantic reranking of crf label se-
quences for verbal multiword expression identifica-
tion.

James Pustejovsky, José M Castano, Robert Ingria,
Roser Sauri, Robert J Gaizauskas, Andrea Setzer,
Graham Katz, and Dragomir R Radev. 2003. Timeml:
Robust specification of event and temporal expres-
sions in text. New directions in question answering,
3:28–34.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872–
1897.

170

https://aclanthology.org/2022.wmt-1.84
https://aclanthology.org/2022.wmt-1.84
https://aclanthology.org/2022.wmt-1.84


Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Ellen Riloff. 1996. Automatically generating extraction
patterns from untagged text. In Proceedings of the
national conference on artificial intelligence, pages
1044–1049.

Timo Schick and Hinrich Schütze. 2020. Exploit-
ing cloze questions for few shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676.

Chaitanya Shivade, Preethi Raghavan, Eric Fosler-
Lussier, Peter J Embi, Noemie Elhadad, Stephen B
Johnson, and Albert M Lai. 2014. A review of ap-
proaches to identifying patient phenotype cohorts
using electronic health records. Journal of the Ameri-
can Medical Informatics Association, 21(2):221–230.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

William F Styler IV, Steven Bethard, Sean Finan,
Martha Palmer, Sameer Pradhan, Piet C De Groen,
Brad Erickson, Timothy Miller, Chen Lin, Guergana
Savova, et al. 2014. Temporal annotation in the clini-
cal domain. Transactions of the association for com-
putational linguistics, 2:143–154.

Weiyi Sun, Anna Rumshisky, and Özlem Uzuner. 2013a.
Annotating temporal information in clinical narra-
tives. Journal of biomedical informatics, 46:S5–S12.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013b.
Evaluating temporal relations in clinical text: 2012
i2b2 challenge. Journal of the American Medical
Informatics Association, 20(5):806–813.

Niall Taylor, Yi Zhang, Dan Joyce, Alejo Nevado-
Holgado, and Andrey Kormilitzin. 2022. Clinical
prompt learning with frozen language models. arXiv
preprint arXiv:2205.05535.

Hangyu Tu. 2022. Extraction of Temporal Information
from Clinical Free Text. MSc. Thesis, The University
of Manchester.

Özlem Uzuner, Andreea Bodnari, Shuying Shen, Tyler
Forbush, John Pestian, and Brett R South. 2012. Eval-
uating the state of the art in coreference resolution for
electronic medical records. Journal of the American
Medical Informatics Association, 19(5):786–791.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Associ-
ation, 18(5):552–556.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Par-
mar, et al. 2018. Tensor2tensor for neural machine
translation. arXiv preprint arXiv:1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
arXiv preprint arXiv:1909.03546.

Yuping Wu, Lifeng Han, Valerio Antonini, and Goran
Nenadic. 2022. On cross-domain pre-trained lan-
guage models for clinical text mining: How do they
perform on data-constrained fine-tuning? arXiv
preprint arXiv:2210.12770.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

A Background and More Literature

In this section, We introduce some key concepts
and then explore the methods and techniques used
in clinical text mining, with a particular focus on
temporal classification (Tu, 2022). We will begin
by examining the fundamentals of clinical text min-
ing and its applications in healthcare, followed by
an in-depth discussion on the challenges associated
with temporal event extraction and classification.
Next, we will delve into the recent developments in
prompt-based learning and its potential to revolu-
tionise the field of clinical text mining, including its
ability to handle diverse NLP tasks with a unified
framework.
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Our objective is to provide a comprehensive
overview of the current landscape of clinical text
mining in the context of temporal classification,
emphasising the emerging role of prompt-based
learning and its potential to drive further innova-
tion and improvement in healthcare research and
practice.

A.1 Temporal Classification from EHRs
Electronic Health Records (EHRs) have evolved
from the concept of Computer Patient Records
(CPR) proposed by the Institute of Medicine in
1991 (Dick et al., 1997). Temporal relation classifi-
cation of clinical events is crucial in understanding
the chronological sequence and dependencies of
events within electronic health records (EHRs). Ex-
tracting and analysing temporal information from
EHRs can enhance our comprehension of disease
progression, treatment efficacy, and patient risk
factors, ultimately leading to improved healthcare
outcomes.

A.2 Related NLP Applications
Rule-based methods in NLP involve using a pre-
defined set of linguistic rules, patterns, or heuris-
tics to process and analyse text. These rules are
often developed by domain experts or linguists, re-
flecting the inherent structure and patterns present
in the language. For instance, in Named Entity
Recognition (NER) tasks, rule-based approaches
can identify proper names, organisations, and loca-
tions using regular expressions (Hobbs et al., 1997),
which often target words starting with a capital
letter. And Chapman (Chapman et al., 2001) pro-
poses a rule-based algorithm designed for detecting
negated concepts in clinical text. The advantages
of rule-based methods include their speed and the
lack of requirement for extensive computational
resources.

However, rule-based methods have many limita-
tions such as low recall (Riloff, 1996). In certain
domains, only experts can develop effective rules.
Changes in the data source might render existing
rules ineffective. Moreover, rule-based methods
can be challenging to apply in temporal classifica-
tion tasks involving free text, due to the absence
of a standard format and the diverse and varied
language expressions.

Statistical sequence models are particularly well-
suited for language processing tasks due to their
ability to handle variable-length sequences, such
as sentences. CRFs have been widely used in

sequence labelling tasks such as part-of-speech
tagging, information extraction, and named entity
recognition (NER) (Moreau et al., 2018; Han et al.,
2015). In clinical domain, Shivade et al. (2014)
used a combination of HMMs and CRFs for clinical
named entity recognition (NER) tasks. They used
these methods to identify medical concepts such as
medications, dosages, and durations from clinical
text. Their results demonstrated that HMMs and
CRFs could effectively recognize medical concepts,
with CRFs outperforming HMMs in most cases.

Before the advent of word embeddings, re-
searchers primarily used statistical techniques
like one-hot encoding (Chren, 1998) and TF-IDF
(Aizawa, 2003) to represent words based on their
frequency of occurrence in the text. This led to
the creation of large, sparse vectors for word rep-
resentation. The introduction of Word2Vec (Gold-
berg and Levy, 2014) offered several advantages,
including lower-dimensional, dense, and continu-
ous vectors that captured semantic similarity be-
tween words based on their co-occurrence with
other words.

With the development of hardware capabilities,
large neural networks have become feasible, which
allows the exploration of deep learning architec-
tures that can discover hidden features and auto-
matically learn representations from the input in
an end-to-end structure, mostly via the encoder-
decoder style (Goodfellow et al., 2016). Collobert
and Weston (2008) first introduced temporal con-
volutional neural networks (CNNs) for named en-
tity recognition (NER) tasks. To model long se-
quences, Hochreiter and Schmidhuber (1997) pro-
posed the long short-term memory (LSTM) model
based on the architecture of recurrent neural net-
works (RNNs), addressing the challenge of captur-
ing long-distance historical information and mit-
igating the vanishing gradient problem faced by
RNNs.

Tu (2022) used a combination of Bidirectional
Long Short-Term Memory (BiLSTM) and Condi-
tional Random Fields (CRF) to perform Named En-
tity Recognition (NER) tasks on a clinical dataset.
The model achieved a weighted average accuracy
of 0.98 and a macro-averaging score of 0.69. Addi-
tionally, they explored the use of a Convolutional
Neural Network (CNN) with BiLSTM, resulting
in improved performance compared to the BiL-
STM+CRF model. This hybrid model demon-
strated a precision of 85.67%, recall of 87.83%,
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and an F1-score of 88.17%.

A.3 Recent Large Language Models

A.3.1 Pre-trained Language Models
The development of the Transformer architecture
by Vaswani et al. (2017) brought NLP to a new
stage with its self-attention mechanism, which en-
hances the model’s ability to capture long-range
dependencies among words in the input sequence.
Pre-trained language models like BERT, GPT, and
T5, which are based on the Transformer architec-
ture, have achieved state-of-the-art performance
on numerous tasks. These models learn con-
textualised word representations, different from
traditional word representations (e.g., Word2Vec,
GloVe), which map words to fixed-length vectors
and assume words in similar contexts have similar
meanings. In contrast, pre-trained models learn
context-dependent representations, capturing con-
textual information more effectively (Qiu et al.,
2020). This process allows models to better “un-
derstand” language, context, and words.

A.3.2 Fine-tuning Paradigm
Fine-tuning has been the traditional approach for
adopting pre-trained language models (PLMs) to
specific tasks. This is usually done by task-specific
layers or heads on top of the pre-trained model
and adjusting the model’s weights through back-
propagation (Wu et al., 2022). It has achieved
state-of-the-art results in many NLP tasks, such
as sentiment analysis (Socher et al., 2013), named
entity recognition (Wadden et al., 2019) and ma-
chine translation (Vaswani et al., 2018; Han et al.,
2022). However, it requires lots of training data,
which may not be available in certain scenarios,
and to fine-tuning a model can be computationally
expensive.

Fine-tuning From 2017 to 2019, there was a
paradigm shift in NLP model learning, with re-
searchers moving away from fully supervised meth-
ods and increasingly adopting the pre-training and
fine-tuning paradigm. This approach uses a fixed
architecture pre-trained language model (PLM) to
predict the probability of observed textual data.
The PLM is adapted to different downstream tasks
by fine-tuning additional parameters using objec-
tive functions specific to each task. For instance,
Zhang et al. (Zhang et al., 2020) introduced a
loss function for predicting salient sentences, and
when combined with PLMs and fine-tuning, it re-

sulted in state-of-the-art performance on various
popular datasets and tasks (Devlin et al., 2018).
However, the fine-tuning approach is most suitable
when large-scale text data is available for optimis-
ing the objective function, which is not always
feasible in certain domains. In the case of clini-
cal records, data privacy issues and the need for
clinical experts to annotate data for training make
it difficult to produce large open clinical datasets.
For example, BERT models trained on non-medical
text tend to perform poorly when applied to medi-
cal domain tasks (Lee et al., 2020; Wu et al., 2022).
Additionally, each specific task requires its own
fine-tuning process, and as the NLP field continues
to increase model sizes to improve performance
(e.g., Microsoft’s Megatron (Shoeybi et al., 2019)
with 530 billion parameters), full or partial fine-
tuning of these massive models demands consider-
able computational, financial resources, and time
(Han et al., 2022). These concerns have led to the
emergence of a new paradigm called prompt-based
learning, which aims to achieve strong performance
across a wide range of applications without the
need for extensive fine-tuning.

A.3.3 Few-shot Learning
Few-shot learning is an area of machine learn-
ing that focuses on training models to recognize
or generalize new concepts with very limited la-
belled examples. This approach aims to alleviate
the need for large amounts of labelled data, which
can be costly and time-consuming to obtain. The
few-shot learning problem is typically framed in
terms of episodes, where each episode consists of
a small support set and a query set. The support
set contains a few labelled examples of each class,
while the query set comprises unlabelled exam-
ples from the same classes. The goal is to learn a
model that can accurately classify the query set in-
stances based on the limited information provided
in the support set. Finn et al. (Finn et al., 2017)
proposed MAML, a meta-learning algorithm that
learns an optimal initialisation of model parame-
ters, enabling rapid adaptation to new tasks with
few gradient updates.

A.3.4 Prompt-based Learning Paradigm
Prompt-based learning is a recent paradigm in NLP
that leverages pre-trained language models (PLMs)
like GPT-3 (Brown et al., 2020) to perform various
tasks without the need for fine-tuning. This ap-
proach involves using carefully designed prompts
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or templates that guide the PLM to generate de-
sired outputs based on the input context. Moreover,
this approach is especially useful in situations with
limited task-specific training data, as it does not re-
quire retraining the entire model, however, crafting
effective prompts for specific tasks can be challeng-
ing and may require manual engineering or iterative
search procedures. It gives me the inspiration to
construct a fine prompt learning and challenge with
more traditional fine-tuning methods.

Prompt-based learning emerged with the advent
of models like T5 and GPT-3, as researchers dis-
covered that pre-trained language models (PLMs)
could be effectively guided by textual prompts in
low-data scenarios. The T5 model innovation sug-
gested that PLMs possess strong language under-
standing capabilities, and by providing appropriate
instructions or prompts, they can adapt to various
tasks (Liu et al., 2023). This approach, dubbed "pre-
train, prompt, and predict" or prompt-based learn-
ing, revolves around prompt engineering, which
tailors prompts to suit different downstream tasks.

For instance, given the sentence “Patient is com-
plaining of a stomachache” an emotion recognition
task can be framed by adding a prompt like “Pa-
tient felt so ___”, prompting the language model to
fill in the blank with an emotion-laden word. Simi-
larly, for translation tasks, a prompt like “English:
Patient is complaining of a stomachache, Chinese:
___” can be used. ChatGPT’s ability to understand
and answer questions in natural language can also
be considered a form of prompting, influencing the
quality of responses.

OpenPrompt Ding et al. (Ding et al., 2021)
introduced a unified, user-friendly toolkit called
OpenPrompt to facilitate prompt-based learning
with PLMs. OpenPrompt’s modular and combin-
able research-friendly framework enables the in-
tegration of various tasks, prompting techniques,
and PLMs while accommodating different tem-
plate formats, verbalizer formats, and initialization
strategies. Taylor et al. (Taylor et al., 2022) ap-
plied prompt learning to the clinical domain using
frozen language models by using the OpenPrompt
framework. Their research compared prompt-
based learning and fine-tuning in clinical classifi-
cation tasks, finding that prompt learning typically
matched traditional fine-tuning performance on full
datasets and outperformed it in few-shot settings
which means prompt learning is more adopted train-
ing with smaller datasets. Additionally, prompt

learning excelled when working with frozen PLMs,
showcasing its potential with fewer trainable pa-
rameters.

A.4 Summary

In this section, we delve into prior work concern-
ing temporal classification and examine the funda-
mental concepts and methods used in constructing
our model. Given the absence of previous stud-
ies utilising prompt-based learning for temporal
classification in the clinical domain, there are no
established guidelines or approaches for this task.
In the following section, we will provide a detailed
explanation of the methodology used to develop
our model, outlining each step of the process.

B On Dataset Used

Figure 8 presents the format used for training the
model, where the discharge note column contains
clinical text information, and the treatment entity
column comprises treatment entities. The training
dataset consists of 3,836 samples, with 3,075 hav-
ing the label "ON" (treatment used during hospital-
isation) and 762 having the label "OFF" (treatment
not used during hospitalisation), resulting in an im-
balanced distribution with label "ON" being four
times more prevalent than label "OFF".

To gain a deeper understanding of the dataset,
various statistical analyses were conducted. As
depicted in Figure 9, the word count distribution
for clinical notes, excluding the first five lines, is
displayed. The first five lines of each note, which
contain admission and discharge dates, are not con-
sidered beneficial for statistical analysis. The fig-
ure illustrates that most sentences have fewer than
20 words, and no sentences in the training dataset
exceed 80 words. Based on this information, the
maximum input sequence length can be determined.

C Learning Models

C.0.1 State-of-the-Art PLMs
A pre-trained language model is a neural network
model that has already been trained on a large cor-
pus of text data before being fine-tuned for spe-
cific tasks (Han et al., 2022). These models are
designed to learn the structure and nuances of a
language by predicting the next word in a sentence
or reconstructing a sentence with masked words.
By learning the complex patterns and relationships
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Figure 8: Training Dataset Format

within the language, these models can generate con-
textually relevant embeddings or representations of
words and phrases.

Masked Language Model: BERT BERT (Bidi-
rectional Encoder Representations from Transform-
ers) is a pre-trained language model developed by
Google researchers in 2018 (Devlin et al., 2018).
As its name suggests, it uses the encoder archi-
tecture from the Transformer model but with a
deeper structure, as shown in Figure 14. The BERT-
base language model comprises 12 encoder blocks,
which is twice the size of a standard Transformer
Encoder.

In contrast to OpenAI’s GPT (Generative Pre-
trained Transformer), BERT uses a bidirectional
Transformer block connection layer (Figure 15), al-
lowing it to access information from both preceding
and following content, while GPT only considers
the preceding content during training. Although the
concept of "bi-directionality" is not new. For exam-
ple, ELMo uses two individual objective functions
P (wi|w1, ...wi−1),P (wi|wi+1, ..., wn) to train the
language model. However, BERT uses a single
objective function:

P (wi|w1, ...wi−1, wi+1, ..., wn) (1)

to train the language model, integrating both pre-
ceding and following context.

The Masked Language Model (MLM) serves as
one of BERT’s pre-training tasks, wherein it ran-
domly masks certain words in a sentence with the
[mask] token. By leveraging the bidirectional En-
coder Representations, BERT predicts the masked

words based on both preceding and following con-
text, resulting in a more comprehensive understand-
ing of word meanings. Additionally, the Next
Sentence Prediction (NSP) pre-training task trains
the model to discern the relationship between sen-
tences by determining whether sentence B follows
sentence A in the original text (Devlin et al., 2018).

The input for BERT consists of Token Embed-
dings, Segment Embeddings, and Position Embed-
dings, as illustrated in Figure 16. Each input sen-
tence is treated as a sequence of tokens, with every
sequence starting with a special classification token,
[CLS]. BERT uses another special token, [SEP],
to separate sentences and assigns segment embed-
dings to each token to indicate whether it belongs
to sentence A or B. This enables BERT to handle
various downstream tasks, such as separating ques-
tion and answer sequences (Devlin et al., 2018).
By incorporating position embeddings, the model
generates distinct word vector outputs for the same
word based on its contextual environment, thereby
enhancing the model’s accuracy.

Fine-tuning enables BERT to accommodate vari-
ous downstream tasks by adjusting the correspond-
ing inputs and outputs (Figure 17). The same pre-
trained model parameters are used to initialise mod-
els for different downstream tasks, and all param-
eters are fine-tuned end-to-end to adapt the model
to the specific task. In comparison to pre-training,
fine-tuning is relatively cost-effective and compu-
tationally efficient.

Auto-regressive Language Model: GPT-2 The
Generative Pre-trained Transformer 2 (GPT-2) is
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Figure 9: Word Count Distribution in Sentences

an advanced language model introduced by Ope-
nAI in 2019, building upon the foundation of the
original GPT (Radford et al., 2019). GPT-2 uses a
transformer-based decoder architecture with multi-
layer, multi-head self-attention mechanisms, as
shown in Figure 18. This design allows GPT-2
to generate sequences of arbitrary length, making it
particularly adept at producing highly coherent and
contextually relevant text, often used for question-
answering and summarization tasks.

GPT-2 differs from BERT in several ways. As
an autoregressive model, GPT-2 predicts one token
at a time, using previously generated tokens as con-
text for subsequent predictions based on the equa-
tion of p(ss−k, ..., sn|s1, ..., sn−k−1). This process
continues until the desired output length is achieved
or an end-of-sequence token is generated. By mod-
elling a sequence of outputs as a product of con-
ditional probabilities, GPT-2 leverages the natural
sequence of symbols inherent in language. Un-
like BERT’s bidirectional approach, GPT-2 uses
masked self-attention, processing input sequences
in a unidirectional manner, resulting in more con-
textually relevant text generation (Radford et al.,
2018).

One innovative aspect of GPT-2 is its ability to
perform supervised learning tasks using an unsuper-
vised pre-training model. While traditional super-
vised learning aims to estimate p(output|input),
GPT-2 seeks to model p(output|input, task), al-

lowing for a more generalised model across various
tasks. This approach has been used in multitask
and meta-learning settings. For instance, a trans-
lation training example could be presented as a
sequence (translate to French, English text, French
text), enabling the model to understand the trans-
lation task and the relationship between input and
output (McCann et al., 2018).

Seq2Seq: T5 T5, an abbreviation for Text-To-
Text Transfer Transformer, proposes the idea that
fine-tuning models for specific tasks may no longer
be necessary (Raffel et al., 2020). Instead, a large
pre-trained model can be used for any task, with
the main focus on adapting the task into appro-
priate textual inputs and outputs (Raffel et al.,
2020). For example, refer to Figure 19, in trans-
lation tasks, inputting "translate English to Ger-
man" followed by a [sequence] results in the model
producing the translated [sequence]. Similarly,
for summarization tasks, inputting "summarise"
along with the [sequence] generates a summary
of the [sequence]. This method establishes a uni-
fied Text-to-Text format for NLP tasks, expressed
as [Prefix + SequenceA] → [SequenceB], en-
abling the use of the same model, loss function,
training process, and decoding process across all
NLP tasks with different prefix information.

To accomplish this, a powerful language model
that genuinely comprehends language is required.
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The Google team developed a strategy to deter-
mine the optimal model architecture and parame-
ters, ultimately creating a robust baseline. First,
they examined three popular model architectures.
The encoder-decoder Transformer (Vaswani et al.,
2017), also known as a seq2seq model (left panel of
Figure 20), comprises two layer stacks: the encoder
processes the input sequence and encodes each
token, while the decoder generates a new output
sequence with each token based on the decoding
input and previous output sequences. The language
model architecture (middle one of Figure 20), akin
to the decoder in an encoder-decoder Transformer,
predicts output at each time-step based on previous
time-step predictions, with GPT-2 being a typical
Example The Prefix LM (language model) incor-
porates fully-visible masking applied to the pre-
fix, rendering the architecture more effective for a
wide range of text-to-text tasks shown in the left
panel of Figure 20. Following experimentation, the
Google team determined that the encoder-decoder
architecture is the most suitable for the text-to-text
framework, thus adopting it for T5 (Raffel et al.,
2020).

Subsequently, they used masked language mod-
elling (BERT-style) as an unsupervised pre-training
method. Similar to BERT, but using masks to re-
place spans surrounding the original masked tokens
as corruption strategies, with a 15% corruption rate
and 3 corrupted span length according to experi-
mental results.

After utilising multi-task learning to train with
the C4 (Colossal Clean Crawled Corpus) dataset,
which comprises hundreds of gigabytes of clean
English text extracted from the web, the Google
team acquired the best pre-trained language model,
T5, among numerous combinations of model archi-
tecture, training methods, and various parameters.

C.1 Prompt-Based Learning

Prompt Construction The first step involves cre-
ating a prompting function fprompt(·), which trans-
forms the input x into a prompted x′ = fprompt(x)
(Liu et al., 2023). This function entails two stages:
(1) Designing a template, a string containing an
input slot [X] for the input x and an answer slot [Z]
for the generated answer, which is mapped to the
output y. (2) Filling the slot [X] with the input x.

In the case of temporal classification for treat-
ment "a total abdominal hysterectomy," the tem-
plate could be structured as "[Input] Here is the clin-

ical record, treatment a total abdominal hysterec-
tomy [Z] during the hospitalisation." Additionally,
templates can be categorised based on the position
of the empty slot, such as close (prompts with slots
in the middle of the text) or prefix prompts (slots
appearing before the entity) z (Liu et al., 2023).

Answer Selection Subsequently, the language
model (LM) is used to identify the highest-
probability text ẑ. Liu et al. (Liu et al., 2023)
characterises Z as a collection of acceptable values
for z, indicating that the LM determines the most
probable answer z from the set of answers Z. This
process is also referred to as answer engineering
or verbalisation (we will consistently use the terms
verbalizer2 and verbalization).

The verbalizer can be regarded as a mapping be-
tween one or many distinct tokens and unique class
labels. The embedding generated at the <[MASK]>
position by using PLM is through a large language
model head or classifier, and prediction of the to-
kens from verbalizer class labeled are obtained. In
the previous temporal classification example, Z =
"is", "is not" corresponds to class labels Y = ON,
OFF.

The function ffill(x
′, z) fills the slot [Z] in

prompt x’ with a potential answer z. Lastly, the
probability of the corresponding filled prompt is
calculated using a PLM P (·; θ), as shown in Eq. 2:

ẑ = searchz∈ZP (ffill(x
′, z); θ) (2)

The search function could use argmax for the
highest-scoring output or sampling to randomly
generate outputs according to the LM’s probability
distribution (Liu et al., 2023).

Answer Mapping The final step maps the
highest-scoring answer ẑ to the highest-scored out-
put ŷ. While this step might not be crucial in binary
classification, it is necessary for tasks like trans-
lation or sentiment analysis with multiple words
(e.g., "good", "wonderful", "perfect") mapped to
the same class (e.g., "++"). Thus, a mapping pro-
cess between the answer and the true output value
is required (Ding et al., 2021).

D Parameters and Settings

The code below shows how to load the PLM of
T5 and tokenizer in OpenPrompt: “ plm, tokenizer,
model_config, WrapperClass = load_plm ("t5", "t5-
base") ”

2
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E More Discussion on PLM Outputs

The dataset we used is derived from clinical notes,
implying that in real life, there are indeed more
positive labels than negative ones. In some cases,
having a high recall may be more important than
having high precision. For instance, in medical
diagnosis, it could be crucial to identify all patients
with a specific disease (high recall) to ensure they
receive appropriate treatment, even if some healthy
patients are misclassified as having the disease (low
precision). It is unclear whether recall is more im-
portant than precision in the context of temporal
information of treatment. However, doctors can ad-
just the model’s preference based on their specific
situations.

It is not surprising that T5 outperforms the other
models in the comparison. Firstly, T5 is the most
recent model among the three and has been exten-
sively tested by Raffel et al. (Raffel et al., 2020)
to evaluate its advantages and disadvantages rela-
tive to the other architectures. Their results suggest
that T5’s encoder-decoder architecture performs
better than BERT and GPT-2 in certain tasks. our
experiment also demonstrates that T5 has a slight
advantage over BERT and, more notably, GPT-2,
which exhibit comparable performance.

Secondly, although it is not universally true that
"bigger models are better" in the NLP field, Ope-
nAI has made significant strides in showcasing the
effectiveness of larger models in recent years. The
development of models such as GPT-2, GPT-3, and,
more recently, Megatron-Turing, has demonstrated
that models with more parameters can improve
performance on a variety of natural language pro-
cessing tasks, as illustrated in Figure 10. In our
experiment, we used bert-base-uncased, which has
110M parameters, and the gpt-2 model with 117M
parameters. However, T5-base model has 220M
parameters, twice as many as bert-base-uncased.
Therefore, T5 is the best model for temporal classi-
fication in the clinical domain when compared to
the other two models.

F PBL with Differed Input Text

One intuitive method to create prompts is to manu-
ally craft templates based on human understanding.
For instance, we can create a cloze-style manual
template using Code 3, where the < [MASK] >
token appears in the middle of the template. Ac-
cording to the code example, the < [MASK] >
token can be filled with “is" or “is not”.

Figure 10: Development of Model in NLP Recently
(from COMP34312 week5 slides)

Listing 3: Example of cloze manual template
text = ’<[clinical_record]> In this

paragraph of the note,
<[treatment]> <[mask]> used between
admission and discharge time.’

Another popular manual template approach is
the question prompt shown in Figure 4, in which
the < [MASK] > token is placed at the end. In this
template, a discriminative statement or question is
presented, such as "Question: this treatment was
used between admission and discharge time. Is it
correct?" Combined with the clinical context input,
the PLM decides whether the statement is correct.
Therefore, the possible answers for < [MASK] >
can be "yes" or "no".

Listing 4: Example of manual template with question
text = ’<[clinical_record]> Question:

<[treatment]> were used between
admission and discharge time. Is it
correct? <[mask]>’

In the previous work, Gu et al. (2021) report
a mixed template tokens and soft tokens in some
yields better than manual and soft template, and
Taylor et al. (Taylor et al., 2022) propose that soft
template working with soft verbalizer perform the
best on ICD9 Triage task in clinical domain.

During manual template engineering, some in-
teresting findings were made. Initially, the manual
template was designed as "<clinical note>. Ques-
tion: <treatment> was used during hospitalisation.
Is it correct?". While this appeared sufficient, upon
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analysing errors in the testing data, a particular ex-
ample revealed that the treatment in question was
used during the patient’s last hospitalisation but
not the current one. Consequently, the template
was modified to specify "between admission and
discharge time", which better emphasised the tem-
poral aspect.

Furthermore, certain errors were identified due
to complex language logic. During this period,
chatGPT was a popular topic in NLP domain,
and the GPT-3.5 model demonstrated remarkable
question-answering abilities. we input a template
(shown in Figure 11) to the chatGPT and the chat-
GPT model provided an incorrect response, despite
giving an accurate explanation, which is not self
coherent. This indicates that GPT-3.5 and the T5
model have difficulty capturing information from
words such as "attempt" and "but".

By comparing the results of the cloze (Example
3) and question prompt (Example 4) in the manual
template, it was found that the question prompt
performed better. This suggests that the PLM may
be more proficient in judging discriminative state-
ments or providing answers after processing the
entire input sentence. The (Mixed, Manual) pair
also performed well, possibly because the gener-
ated soft tokens, based on the input sentence and
fixed template tokens, provided guidance for the
model to better select an answer from the set of
possible responses.

F.0.1 Different Input Text

Experiments of Different Input Text In this ex-
periment, the input length for clinical records was
modified by controlling the number of sentences
in the input text using a sentence window size, as
well as the number of sentences before and after
the target sentence.

Discussion and Summary of Different Input
Text The results displayed in Table.8 indicate that
as the number of input sentences increases, both
the F1 score and balanced accuracy improve. How-
ever, when the input text becomes too long, such
as the entire clinical text, the performance slightly
declines. It was found that a window size of 6, com-
prising 3 sentences before the target sentence, the
target sentence itself, and 2 sentences after, yielded
the best F1 score and balanced accuracy of 91.79
and 75.08, respectively.

G PBL vs Traditional Fine-tuning

G.0.1 Summary of Prompt-based Learning
Evaluation

In conclusion, the prompt-based learning paradigm
experiments led to the establishment of a bench-
mark for the best-performing prompt model. The
hyperparameter details are provided in Table.9. In
the following section, this model will be compared
to the traditional fine-tuning paradigm using a few-
shot learning approach.

G.1 Prompt Learning versus Traditional
Fine-tuning

In this section, we present a benchmark compar-
ison between Prompt-based Learning (PBL) and
Traditional Fine-tuning (FT) under few-shot set-
tings. Table 10 displays the selected hyperparame-
ters for Fine-tuning. we chose to focus on a mixed
template approach, which combines a manually de-
signed template for the task with soft and trainable
tokens. Since few-shot scenarios can introduce bias
and variance that significantly affect performance,
we aggregated the results from 10 trials and aver-
aged them, providing a more accurate assessment.

The results (Table 7 and Figure 7) indicate that
in the temporal classification task, the traditional
fine-tuning model outperforms the prompt learning
model. The prompt learning model performs better
than the fine-tuning model only when the training
set size is 10 in terms of F1 score, and when the
dataset size is 20, the prompt learning model’s bal-
anced accuracy is slightly higher. This finding is
consistent with Taylor’s work (Taylor et al., 2022),
which showed that prompt learning did not outper-
form fine-tuning in various clinical domain classifi-
cation tasks, such as ICD-9 50, ICD-9 Triage, and
In-hospital mortality. However, in specific classifi-
cation tasks under Frozen PLM conditions, prompt
learning exhibited better performance. In this con-
text, "frozen" refers to the absence of updates to
the model’s weights and parameters during the fine-
tuning process.

These results were surprising, as prompt learn-
ing has been frequently reported to be more effec-
tive in few-shot settings in numerous publications.
There could be several reasons for this discrepancy.
First, the soft and trainable tokens in the mixed tem-
plate were not trained using a separate optimizer,
which may have resulted in suboptimal tokens for
the given task. Second, the benchmark for prompt
learning might not be accurate due to computa-
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Figure 11: Example of error analysis with ChatGPT.(“tap” is the treatment)

Sentences window size (sentences before, sentences after) F1 score of ON class B.Accy.
1 (0,0) 88.13 64.24
2 (0,1) 89.58 65.89
3 (1,1) 90.89 72.07
4 (1,2) 91.60 73.29
5 (2,2) 91.93 73.00
6 (3,2) 91.79 75.08
7 (3,3) 91.44 71.71

Whole text 84.86 63.95

Table 8: Performance of Different Input Text (B.Accy.: Balanced Accuracy)

Parameter Value
PLM T5
learning rate 4E-5
batch size 4
epochs 5
optimizer AdamW
template mixed template
verbalizer manual verbalizer
input sentences window size 6 (3,2)

Table 9: Hyperparameter Selection for Prompt-based
Learning

tional resource and time limitations. For instance,
the best PLM and learning rate were determined
based on a manual template and manual verbalizer,
but these selections may not be ideal for mixed
and soft templates. Third, potential biases in the
training process could have impacted the results,
as no validation set was used for prompt learn-
ing, possibly preventing the selection of the best
model during training. Furthermore, averaging the

Parameter Value
PLM BERT
learning rate 2E-5
batch size 4
epochs 5
optimizer AdamW
input sentences window size 6 (3,2)

Table 10: Hyperparameter Selection for Fine-tuning

results of 10 trials might not provide a sufficiently
accurate assessment, and more trials could be nec-
essary. Fourth, in a few-shot learning scenario,
useing a language model pre-trained on medication
and clinical domain data might be more beneficial
for clinical classification tasks. Finally, prompt-
based learning is a relatively new paradigm with
much-untapped potential, whereas traditional fine-
tuning has a well-developed training and tuning
process.

Upon examining errors from the test dataset of
prompt-based learning, specifically for both "ON"
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Figure 12: Example of an error in OFF class

Figure 13: Example of an error in ON class

and "OFF" classes as shown in Figures 12 and 13,
it becomes evident that determining whether a treat-
ment was administered during hospitalisation can
be challenging. The input content often lacks suffi-
cient temporal information to clearly indicate the
treatment status. Furthermore, there are instances
of ambiguity in the dataset annotations, which com-
plicates the classification task. The sentence tense
and specific temporal expressions might be the only
cues for understanding the event timeline, even for
human readers, without considering the broader
context of the document. It is also worth noting
that discharge summaries are typically prepared at
the end of a patient’s hospital stay, and as such,
they do not describe the hospitalisation period as
the present. These observations highlight the com-
plexities involved in classifying temporal relation-
ships in clinical texts and the need for further im-
provements in methods to effectively address such
challenges.

H Learning Structures

Figure 21 illustrates the general architecture of
OpenPrompt, which allows for modifications to the
PLM-related class (purple block) and the prompt-
related class (blue block).

Figure 14: BERT Architecture (Vaswani et al., 2017)
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Figure 15: Differences in Rre-training Model Architectures (Devlin et al., 2018)

Figure 16: BERT Input Representation (Devlin et al., 2018)

Figure 17: Overall Pre-training and Fine-tuning Procedures for BERT (Devlin et al., 2018)

Figure 18: Architecture of GPT2 (Radford et al., 2018)
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Figure 19: Text-to-text Framework (Raffel et al., 2020)

Figure 20: Different Transformer Architecture (Raffel et al., 2020)

Figure 21: OpenPrompt Overall Architecutre (Ding et al., 2021)

183


