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Abstract

While embedding-based methods have been
dominant in language clustering for multilin-
gual tasks, clustering based on linguistic fea-
tures has not yet been explored much, as it
remains baselines (Tan et al., 2019; Shaffer,
2021). This study investigates whether and how
theoretical linguistics improves language clus-
tering for multilingual named entity recogni-
tion (NER). We propose two types of language
groupings: one based on morpho-syntactic fea-
tures in a nominal domain and one based on a
head parameter. Our NER experiments show
that the proposed methods largely outperform
a state-of-the-art embedding-based model, sug-
gesting that theoretical linguistics plays a sig-
nificant role in multilingual learning tasks.

1 Introduction

Language clustering has been used to facilitate an
effective cross-lingual transfer for low-resource lan-
guages in various tasks, such as machine transla-
tion (Tan et al., 2019). While the majority of recent
clustering approaches depend on embeddings from
language models, linguistic knowledge has not
yet been exploited enough. Previous studies have
merely used descriptive typological features (On-
cevay et al., 2020) and a coarse language family
classification as baselines (Shaffer, 2021). We ar-
gue that there is large room for improvement in
language clustering using linguistics knowledge.

This study examines two language classifications
based on theoretical linguistics and tests their effec-
tiveness in multilingual NER. Multilingual NER is
selected because comparison models are available
from Shaffer (2021), namely an embedding-based
classification and a language family classification.
Although there are datasets available for NER in
various languages (Tedeschi et al., 2021; Adelani
et al., 2021; Rahimi et al., 2019), our study focuses
on Indo-European languages because there is a rich
body of research in theoretical linguistics.

Our classification approaches draw on morpho-
syntactic parameters proposed primarily in theoret-
ical syntax. The first classification is based on a
language tree created by Ceolin et al. (2021), which
reflects various morpho-syntactic parameters in a
nominal domain. The second classification uses the
head parameter (Chomsky, 1981), which indicates
the “head” of a phrase in relation to its comple-
ments. We select these parameters because NER is
a task that identifies mentions and types of named
entities that are mostly nouns.

We show that clustering languages based on
such parameters results in more effective language
groupings beyond the state-of-the-art embedding-
based method. Moreover, our clustering ap-
proaches demonstrate comparable or better perfor-
mance than a model trained with all Indo-European
languages (hence regardless of a substantial differ-
ence in the data size). These results suggest that
theoretical linguistics has a promising potential in
multilingual NLP tasks.

2 Related Work

In the current age of globalization, collecting infor-
mation using various languages is getting more
important than ever. Multilingual models have
gained increasing attention for this purpose. Re-
cently, pre-trained large-scale multilingual mod-
els using neural networks, such as Multilingual
BERT (mBERT) (Devlin et al., 2019) and XLM-
RoBERTa (Conneau et al., 2020), have provided
competitive results. However, the amount of la-
beled data available for fine-tuning these multi-
lingual models is highly skewed toward “major”
languages. In fact, there are more than 2,000
low-resource languages with little or no labeled
data (Joshi et al., 2020).

To alleviate the problem with low-resource lan-
guages, cross-lingual transfer learning has been
proposed (Artetxe and Schwenk, 2019). The aim
of this method is to adapt a language model trained
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with high-resource languages to low-resource lan-
guages. Various transfer learning methods have
been proposed. For example, Patil et al. (2022) pro-
posed a technique using subword units (byte pair
encoding (Sennrich et al., 2016)). Ri and Tsuruoka
(2022) investigated which conditions make cross-
lingual transfer learning possible by conducting
artificial language experiments.

Language clustering is another kind of transfer
learning method mainly used in machine transla-
tion. Tan et al. (2019) compared clustering by lan-
guage family and by embeddings and reported that
the embedding-based clustering better improved
translation accuracy. Oncevay et al. (2020) pro-
posed a language clustering method that integrates
syntactic features of WALS (Dryer and Haspel-
math, 2013) and embeddings from machine transla-
tion models. As for NER, Shaffer (2021) compared
clustering by language family and by embeddings
and reported that the embedding-based clustering
outperformed language family clustering. In sum,
clustering by linguistic prior was used as baselines,
and these baselines did not attain better results than
the ones with embeddings.

Other than language clustering, linguistic knowl-
edge has been widely used in various NLP
tasks (O’Horan et al., 2016; Gerz et al., 2018; Ponti
et al., 2019). For example, some approaches use ty-
pological or phylogenetic features in multilingual
fine-tuning for cross-lingual transfer (Lin et al.,
2019; Pires et al., 2019; Dhamecha et al., 2021;
de Vries et al., 2022). Likewise, language family
information or typological features, such as word
order, have been used in various kinds of multilin-
gual tasks, such as machine translation (Saleh et al.,
2021; Chronopoulou et al., 2022), dependency pars-
ing (Ammar et al., 2016), and pre-training (Fu-
jinuma et al., 2022).

Crucially, however, the linguistic information
used in all these studies is limited to the extent of
language family and typological features which are
directly observable. No studies using more pro-
found linguistic knowledge have been conducted.
Therefore, it remains to be seen whether and to
what extent linguistic knowledge other than lin-
guistic family and typological features could help
improve clustering for multilingual tasks.

3 Language Clustering using Parameters
of Theoretical Linguistics

3.1 Linguistic Parameters

As shown in Section 2, multiple studies have at-
tempted to use linguistic priors for multilingual
NLP tasks. However, the knowledge used in these
studies remains descriptive and unable to represent
the internal nature of language.

Thus, we use “linguistic parameters” proposed
by Chomsky (1981) in theoretical linguistics for
our clustering to capture the characteristics of lan-
guage that cannot be seen superficially and cannot
be captured by phylogenetic comparison of lan-
guages. As seen in Sections 3.3 and 3.4, linguistic
parameters are morpho-syntactically more detailed
and abstract than typological features in WALS
that have been used in the previous studies. We
apply these parameters to our clustering methods
and conduct experiments on multilingual NER.

3.2 Selection of Tasks and Languages

This study selects NER as the target task for com-
parison with Shaffer’s (2021) study, which tried
to improve the performance of multilingual NER
by clustering languages based on embeddings and
language family.

We use 25 languages that belong to the Indo-
European language family because there is a suffi-
cient amount of annotated data available for NER,
and there is a rich body of literature in theoretical
linguistics.

Table 1 lists the languages used in this study.
Each language is represented by its ISO 639-1 lan-
guage code1, which is summarized in Appendix
(Table 10). In the previous study (Shaffer, 2021),
sub-families such as Celtic were not used, despite
that their NER data are available. To conduct more
comprehensive experiments, we select languages
from a broader range of sub-families.

3.3 Clustering based on Nominal Parameters

NER is a task that identifies and classifies entities
in texts. Since the named entities are mostly rep-
resented as noun phrases, clustering languages by
features related to a noun phrase would be effective
for training. Thus, we focus on morpho-syntactic
parameters that capture cross-linguistic similarities
and differences in a nominal domain.

1http://www.infoterm.info/standardization/iso_
639_1_2002.php
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Sub-family Languages Shaffer (2021)

Romance ro, fr, es, pt, it, scn fr, es, it
Germanic af, nl, de, is, en, da, no, fo de, en, da

Greek el -
Slavic bg, pl, ru, sl, hr ru

Indo-Iranian ps, mr, hi hi
Celtic cy, ga -

Table 1: The languages used in this study and Shaffer
(2021).

Figure 1: Language tree by Ceolin et al. (2021).

To cluster languages by nominal parameters, we
use a language tree proposed by Ceolin et al. (2021).
They classified Indo-European languages based on
94 morpho-syntactic parameters in a nominal do-
main. An example of nominal parameters, “gram-
maticalized gender” is shown in (1).
(1) a. il

the.MASC
libro
book.MASC

b. la
the.FEM

macchina
car.FEM

In languages such as Italian, the gender of definite
articles varies depending on the gender of nouns as
seen in (1a, 1b).

This parameter is just one example and many
other types of parameters are considered in (Ce-
olin et al., 2021): e.g., the presence/absence of the
definite article added to the relative clause and the
presence/absence of genitive markings using an
adposition. These parameters have often been dis-
cussed in theoretical syntax, but many of them are
not included in descriptive studies, such as WALS.
The relevant language tree is shown in Figure 1,
which was created by Ceolin et al. (2021) based on
the inter-lingual distances.2

To make clusters, we incrementally combine sub-
families close to each other in the language tree.
For example, to create 3 clusters, we first combine

2https://github.com/AndreaCeolin/Boundaries

# Sub-family

1 Germanic, Slavic, Hellenic, Romance
2 Indo-Iranian
3 Celtic

Table 2: Clustering by Figure 1 (number of clusters: 3).

Figure 2: Head-initial (left) and head-final (right) of
pre/postpositional phrase (PP).

Germanic and Slavic because they are close to each
other in the tree (Figure 1). Hellenic and then Ro-
mance are merged into the German-Slavic group.
Celtic and Indo-Iranian remain as independent clus-
ters. Table 2 summarizes these 3 clusters. For our
experiments, the number of clusters is determined
by the elbow method described in Section 4.2.

3.4 Clustering based on the Head Parameter
To identify named entities in text, a language model
may use contextual information surrounding the
noun phrases. Since a noun phrase is often a part
of a verb phrase as an object or a part of an adposi-
tional phrase (i.e., a pre/postpositional phrase) that
represents location, clustering languages by this
kind of structural information may lead to a more
effective clustering.

Based on this hypothesis, the same 25 Indo-
European languages are clustered by the head pa-
rameter. The head parameter determines where the
head (the “core” element) of a phrase is placed in
the phrase structure. For example, in the case of a
pre/postpositional phrase (PP), if it is head-initial,
the head, i.e., the preposition (P), precedes the noun
phrase (NP), and vice versa (see Figure 2).

The crucial difference from previous descriptive
work such as WALS is that the word order of mod-
ifiers (e.g., adverbs for verbs and adjectives for
nouns) is irrelevant, but the order of the head (e.g.,
V in VP) and its complement (e.g., NP for V in VP)
is crucial under the head parameter. This is differ-
ent from the word order classifications in WALS,
where the order of the head is no more or less sig-
nificant than that of modifiers and the notion of
head is much less clear. Thus, the head parameter
offers a simpler and more abstract framing of word
order in a phrase, which crucially focuses on the
position of the head and its complement in a phrase.
Table 3 shows the classification based on the head
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Head Parameter Sub-Family

Mainly Head-Initial Romance, Slavic, Germanic,
Greek, Celtic

Mainly Head-Final Indo-Iranian

Table 3: Clustering based on the head parameter (num-
ber of clusters: 2).

parameter.

4 NER Experiments

We conduct experiments on NER using the two
clustering methods described in Section 3.

4.1 Experimental Setup

There are several datasets available for NER exper-
iments, such as WikiNEuRal (Tedeschi et al., 2021)
and MasakhaNER (Adelani et al., 2021). Among
them, we select the WikiAnn dataset3 (Rahimi
et al., 2019) because it has an extensive coverage of
Indo-European languages, where these languages
have been well-documented in theoretical linguis-
tics. The WikiAnn dataset consists of Wikipedia
articles for 176 languages that are automatically
annotated with three types of named entities: LOC
(location), PER (person), and ORG (organization).

An overview of our experiments is shown in
Figure 3. First, the training sets of all languages
in a cluster are concatenated and fed into a pre-
trained language model for fine-tuning. We use
XLM-RoBERTa-base4 (Conneau et al., 2020) as
the pre-trained language model. This model has
270M parameters and was trained on 2.5TB of
CommonCrawl data in 100 languages. Then, the
evaluation set of each language in the cluster is
used to evaluate and calculate an F1 score. We
perform this evaluation for each cluster using the
seqeval framework (Nakayama, 2018) three times
and calculate the mean F1 score and standard de-
viation. For all experiments, we set the batch size
to 32, the maximum length of the input to 512, and
the learning rate to 5e-5 and conduct three epochs
of fine-tuning. We use NVIDIA V100 SXM2 on
ABCI5 as our computing resource, and the average
time cost for fine-tuning is approximately one hour.

In our experiments, we select three classifica-
tions as baselines. The first is monolingual in
which each language is taken as a single cluster.

3https://huggingface.co/datasets/wikiann
4https://huggingface.co/xlm-roberta-base
5https://abci.ai/

The second is a clustering based on embeddings,
and the last is Indo-European all languages (IE-all).
Since all the target languages shown in Table 1 are
phylogenetically classified into the Indo-European
family, using “language family” for clustering cor-
responds to using a single cluster consisting of all
languages in this study.

4.2 Clustering based on Embeddings

We use the embedding-based clustering method
proposed by Shaffer (2021) for comparison. An
overview of embedding-based clustering is shown
in Figure 4.

First, a pre-trained language model is fine-
tuned with a language identification task using the
WikiAnn training sets. We trained XLM-RoBERTa-
base for 3 epochs, setting the batch size to 32, the
random seed to 42, and the learning rate to 5e-5.
Following Shaffer (2021), we tried a single seed
for this preliminary experiment. Language identifi-
cation is the task of predicting which language the
input text is written. We use all 25 languages in
Table 1.

Next, each sentence in the WikiAnn validation
sets is given to the fine-tuned XLM-RoBERTa
model to obtain embeddings from the [CLS] tokens.
Based on the obtained embeddings, clustering is
performed recursively by agglomerative clustering.
We then label the cluster for each input sentence
and choose the most frequent cluster for each lan-
guage among its sentences.

Table 4 shows the resulting clusters using 1,000
and 10,000 samples from the validation set for each
language in the WikiAnn dataset. 1,000 and 10,000
are the maximum number of inputs from the vali-
dation sets, respectively. For languages that have
the validation samples for less than the limits, all
samples are used to obtain embeddings.

The optimal number of clusters is determined
to be 3 by the elbow method (Thorndike, 1953)
when comparing with the clustering method using
the nominal parameters described in Section 3 (see
Section 5.1 for the experimental results with other
numbers of clusters {2, 4, 5}). The elbow method
is used to align our embedding-based method with
Shaffer’s (2021) study, to make a comparison with
the clusterings by the nominal parameters. The
number of clusters is aligned to 2 to generate clus-
ters when compared with the clustering method
using the head parameter.
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Figure 3: Outline of our experiments on named entity recognition.

Figure 4: Overview of embedding-based clustering a la Shaffer (2021): The details of this method are described in
Section 4.2.

Languages
# 1,000 samples 10,000 samples

1 cy, ga, ps, mr, hi, ro, fr, bg,
pl, ru, sl, hr, af, nl, de, is, en,
da, no, fo

ga, ro, fr, es, pt, it, scn, pl,
sl, hr, de, en

2 es, pt, it, scn mr, hi, ru, af, nl, is, da, no,
fo

3 el cy, ps, el, bg

Table 4: Embedding-based clustering results when us-
ing 1,000 and 10,000 samples from validation sets from
the WikiAnn dataset (number of clusters: 3).

4.3 Results

Table 5 shows the comparisons in the NER eval-
uations of monolinguals and the clusterings us-
ing the nominal parameters, embeddings (1,000
and 10,000 samples), and all languages in Indo-
European family (IE-all). Table 6 shows the results
with the head parameter.

We first compare the NER evaluations of the
clusterings based on the morpho-syntactic parame-
ters and embeddings. The NER evaluations using
the nominal parameters (Table 5) show that the

clustering by the nominal parameters is superior
to that of by embeddings. More than 70% of all
the target languages attained the better scores. The
clustering based on the head parameter (Table 6)
outperformed the embedding-based clusterings as
well, achieving the best scores in 80% of the target
languages.

We then compare our methods using morpho-
syntactic parameters with a model using all the
Indo-European languages (IE-all). As for the num-
ber of languages that achieved the best score, 11
languages attained better scores with the clustering
by the nominal parameters. This is slightly lower
than the scores with the IE-all, which was 14 lan-
guages (Table 5). The clustering based on the head
parameter scored the best in that approximately
70% of all the target languages outperformed the
model with the IE-all (Table 6).

5 Analysis

5.1 Quantitative Analysis
Our parameter-based methods significantly outper-
formed the embedding-based method as in Section
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3 clusters
lang #train mono noun #1000 #10000 IE-all

cy 10,000 91.09 91.57 91.73 92.42 92.95
ga 1,000 76.51 85.72 84.11 84.43 84.90
ps 100 0.00 55.92 54.68 53.32 52.22
mr 5,000 85.50 86.96 87.93 88.58 88.34
hi 5,000 86.06 86.89 89.18 89.90 89.47
ro 20,000 92.64 94.32 94.04 93.98 94.18
fr 20,000 88.99 91.04 90.74 90.53 91.05
es 20,000 89.19 91.51 91.34 90.52 91.63
pt 20,000 90.24 92.11 91.79 91.43 92.15
it 20,000 90.79 92.22 91.93 91.52 92.06

scn 100 1.18 80.08 75.58 77.12 81.04
el 20,000 90.07 91.21 90.40 90.07 91.04
bg 20,000 92.48 93.25 92.64 93.34 93.42
pl 20,000 89.86 91.34 91.12 91.22 91.43
ru 20,000 88.52 89.96 89.32 90.02 89.88
sl 15,000 93.02 93.89 93.65 93.88 93.86
hr 20,000 90.90 92.05 91.88 92.06 92.02
af 5,000 89.06 91.19 91.51 90.75 91.80
nl 20,000 90.64 92.59 91.74 92.17 92.49
de 20,000 87.47 88.59 88.13 88.31 88.70
is 1,000 73.98 87.54 86.75 87.44 88.29
en 20,000 82.27 84.12 84.22 83.97 84.01
da 20,000 91.73 93.15 92.59 93.03 93.04
no 20,000 91.98 93.32 93.14 93.24 93.49
fo 100 0.00 86.61 86.35 87.44 87.69

Table 5: Nominal parameters clustering evaluations
(F1). Each score is the mean over 3 training runs. The
highest score for each language is indicated in bold.

4.3. This suggests that the parameters in theoretical
linguistics have a yet-to-be-explored potential in
multilingual NLP. This section provides some more
detailed analysis that supports this claim.

Clustering results First, we observe some un-
stable results in the embedding-based clustering.
Table 4 shows that the resulting clusters greatly
differ depending on the number of samples used
to obtain embeddings. Thus, the embedding-based
clustering could lead to inconsistent results and
may not always be the most effective method.

The elbow method Moreover, we found that the
optimal number of clusters determined by the el-
bow method did not result in the best performance
in the embedding-based approach. For example,
while the elbow method identified 3 clusters as op-
timal, the best scores were obtained when the num-
ber of clusters was 5 with 10,000 samples. This in-
dicates that the optimal number of clusters obtained
by the elbow method may not always be the most ef-
fective one, at least in NER.6 Thus, we examine the
results with different numbers of clusters. In partic-

6Shaffer (2021) also used the elbow method to determine
the number of clusters (which was 4) but their experiments
did not test other numbers of clusters.

2 clusters
lang #train mono head #1000 #10000 IE-all

cy 10,000 91.09 93.15 92.22 91.88 92.95
ga 1,000 76.51 85.37 84.11 84.38 84.90
ps 100 0.00 55.92 55.31 55.02 52.22
mr 5,000 85.50 86.96 88.71 88.29 88.34
hi 5,000 86.06 86.89 89.48 89.42 89.47
ro 20,000 92.64 94.43 94.04 94.17 94.18
fr 20,000 88.99 91.10 90.74 90.56 91.05
es 20,000 89.19 91.66 91.34 90.52 91.63
pt 20,000 90.24 92.00 91.79 91.43 92.15
it 20,000 90.79 92.03 91.93 91.52 92.06

scn 100 1.18 77.04 75.58 77.12 81.04
el 20,000 90.07 91.49 90.91 91.28 91.04
bg 20,000 92.48 93.60 93.22 93.34 93.42
pl 20,000 89.86 91.38 91.12 91.33 91.43
ru 20,000 88.52 89.86 89.77 89.98 89.88
sl 15,000 93.02 93.97 93.65 93.95 93.86
hr 20,000 90.90 92.27 91.88 92.07 92.02
af 5,000 89.06 91.70 91.30 91.73 91.80
nl 20,000 90.64 92.56 91.90 92.23 92.49
de 20,000 87.47 89.06 88.13 88.61 88.70
is 1,000 73.98 88.04 87.28 87.63 88.29
en 20,000 82.27 84.37 84.22 84.02 84.01
da 20,000 91.73 93.39 92.76 92.91 93.04
no 20,000 91.98 93.46 93.05 93.34 93.49
fo 100 0.00 88.21 87.58 88.70 87.69

Table 6: Head parameter clustering evaluations (F1).
Each score is the mean over 3 training runs. The highest
score for each language is indicated in bold.

ular, we compare clustering by embeddings and by
the nominal parameters.7 Tables 7 and 8 show the
resulting clusters obtained by the embedding-based
clustering when k = 2, 3, 4, 5 and Table 9 shows
the NER results using these clusters and the results
using the nominal parameters.

Sample size In the results of embedding-based
clustering, the clustering with 10,000 samples al-
ways outperforms the clustering with 1,000 sam-
ples, regardless of the number of clusters. Thus, the
following compares clustering by the nominal pa-
rameters and by the embeddings with 10,000 sam-
ples. Overall, clustering by the nominal parameters
achieved better scores than by embeddings, except
in the case of 5 clusters. When the number of the
clusters is 5, 11 languages achieved better scores in
the nominal parameters while 13 languages did so
in the embedding-based clustering. We think this
difference is due to the biased distribution in Clus-
ter #1 of the embedding-based clustering (Table 8),
i.e., 18 languages out of 25 languages are clustered
together, while the clusters obtained by the nom-

7While there are only 2 clusters available in the head-
parameter classification (i.e., either head-initial or head-final),
we could test different numbers of clusters using the nominal
parameters.
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The number of clusters
# 2 3 4 5

1 cy, ps, mr, hi, el, bg, ru, af, nl,
is, da, no, fo

cy, ps, el, bg cy, ps, el, bg cy, ps, bg

2 ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

3 - mr, hi, ru, af, nl, is, da, no, fo mr, hi, af, nl mr, hi, af, nl
4 - - ru, is, da, no, fo ru, is, da, no, fo
5 - - - el

Table 7: Embedding-based clustering with different cluster numbers (using 1,000 samples).

The number of clusters
# 2 3 4 5

1 cy, ga, ps, mr, hi, ro, fr, el, bg,
pl, ru, sl, hr, af, nl, de, is, en,
da, no, fo

cy, ga, ps, mr, hi, ro, fr, bg, pl,
ru, sl, hr, af, nl, de, is, en, da,
no, fo

cy, ga, ps, mr, hi, ro, fr, pl, ru,
sl, hr, af, nl, de, is, en, da, no,
fo

cy, ga, ps, mr, hi, ro, fr, pl, sl,
hr, af, nl, de, is, en, da, no, fo

2 es, pt, it, scn es, pt, it, scn es, pt, it, scn es, pt, it, scn
3 - el el el
4 - - bg bg
5 - - - ru

Table 8: Embedding-based clustering with different cluster numbers (using 10,000 samples).

inal parameters distribute relatively evenly (Clus-
ter #1{Germanic, Slavic}, #2{Hellenic}, #3{Ro-
mance}, #4{Indo-Iranian}, #5{Celtic}). Despite
of this difference in the training data, clustering by
nominal parameters achieved comparable results.

NER results with IE-all We have also run the
NER experiments using all the Indo-European lan-
guages (see IE-all in Tables 5 and 6). Since this
contains the largest training samples in our exper-
iments, the performance would have been better
than the other methods using clusters that normally
contain the smaller training data. However, the
nominal parameters showed comparable results,
and the head parameter outperformed better than
the IE-all. Together with the comparison results
from the embedding-based method above, we ar-
gue that the parameters from theoretical linguistics
have a potential to mitigate the data sparsity prob-
lem that has been present in the multilingual NLP
tasks.

Methodological compatibility Another point to
note is that some languages seem to be more com-
patible with a particular method than others. For
example, one of low-resource languages, Pashto
(ps) and some high-resource languages, such as
Romanian (ro) and Danish (da), showed the best
scores when using the clusters obtained by our
parameter-based approach. On the other hand,
Siciliano (scn) with the IE-all and relatively low-
resource languages such as Marathi (mr) and Hindi

(hi) with the embedding-based clustering demon-
strated the best scores. These results indicate that
different methods might have captured different as-
pects of languages regardless of the amount of data
and that linguistic properties effective in clustering
may differ depending on language.

5.2 Qualitative Analysis

This section attempts to provide some qualitative
analysis based on the predictions obtained in the
NER evaluations. We use the prediction data in
English from our results of the head parameter
clustering (Table 3) and the embedding-based clus-
tering with 10,000 samples (Table 4). In the fol-
lowing examples, h indicates a prediction result
from the head parameter clustering, which is cor-
rect. The notation e indicates a prediction from the
embedding-based clustering, which is incorrect.

In (2h), the named entity representing an organi-
zation (ORG) “Allen Fieldhouse” appears after the
preposition “at”. It is clearly predictable to English
speakers that words representing location (LOC)
or ORG appear after “at”, while it is less likely
with words describing person (PER). However, the
type of entity was not correctly predicted with the
embedding-based clustering (2e). The correct pre-
diction in (2h) seems reasonable if identification of
the head along with its complement could facilitate
inferring the contexts where a named entity occurs.
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2 clusters 3 clusters 4 clusters 5 clusters
lang #train noun #1000 #10000 noun #1000 #10000 noun #1000 #10000 noun #1000 #10000

cy 10,000 91.57 92.22 91.88 91.57 91.73 92.42 91.57 91.73 91.98 91.57 91.27 92.64
ga 1,000 85.72 84.11 84.38 85.72 84.11 84.43 85.72 84.11 84.53 85.72 84.11 85.13
ps 100 53.97 55.31 55.02 55.92 54.68 53.32 55.92 54.68 55.37 55.92 52.97 53.54
mr 5,000 88.34 88.71 88.29 86.96 87.93 88.58 86.96 87.38 88.09 86.96 87.38 88.13
hi 5,000 90.09 89.48 89.42 86.89 89.18 89.90 86.89 88.66 89.70 86.89 88.66 88.98
ro 20,000 94.32 94.04 94.17 94.32 94.04 93.98 93.69 94.04 94.02 93.69 94.04 94.06
fr 20,000 91.01 90.74 90.56 91.04 90.74 90.53 90.39 90.74 90.52 90.39 90.74 90.32
es 20,000 91.38 91.34 90.52 91.51 91.34 90.52 90.96 91.34 90.52 90.96 91.34 90.52
pt 20,000 92.14 91.79 91.43 92.11 91.79 91.43 91.57 91.79 91.43 91.57 91.79 91.43
it 20,000 92.16 91.93 91.52 92.22 91.93 91.52 91.54 91.93 91.52 91.54 91.93 91.52

scn 100 76.54 75.58 77.12 80.08 75.58 77.12 76.77 75.58 77.12 76.77 75.58 77.12
el 20,000 91.18 90.91 91.28 91.21 90.40 90.07 91.18 90.40 90.07 90.07 90.07 90.07
bg 20,000 93.44 93.22 93.34 93.25 92.64 93.34 93.18 92.64 92.48 93.19 92.58 92.48
pl 20,000 91.45 91.12 91.33 91.34 91.12 91.22 91.19 91.12 91.23 91.18 91.12 91.24
ru 20,000 90.01 89.77 89.98 89.96 89.32 90.02 89.97 89.18 89.66 89.81 89.18 88.52
sl 15,000 93.79 93.65 93.95 93.89 93.65 93.88 93.93 93.65 93.61 93.78 93.65 93.81
hr 20,000 92.12 91.88 92.07 92.05 91.88 92.06 91.91 91.88 92.14 91.97 91.88 91.91
af 5,000 91.16 91.30 91.73 91.19 91.51 90.75 91.46 90.73 91.18 91.37 90.73 91.14
nl 20,000 92.62 91.90 92.23 92.59 91.74 92.17 92.26 90.86 92.14 92.14 90.86 92.20
de 20,000 88.51 88.13 88.61 88.59 88.13 88.31 88.25 88.13 88.33 88.25 88.13 88.38
is 1,000 87.65 87.28 87.63 87.54 86.75 87.44 87.92 86.51 87.77 87.51 86.51 87.71
en 20,000 84.11 84.22 84.02 84.12 84.22 83.97 83.75 84.22 83.89 83.83 84.22 83.89
da 20,000 93.10 92.76 92.91 93.15 92.59 93.03 93.00 92.43 92.78 92.92 92.43 92.99
no 20,000 93.48 93.05 93.34 93.32 93.14 93.24 93.31 92.79 93.27 93.24 92.79 93.17
fo 100 87.01 87.58 88.70 86.61 86.35 87.44 88.70 87.72 87.76 86.78 87.72 88.33

Table 9: Nominal parameter clustering evaluations for the number of clusters {2, 3, 4, 5} (F1). Each score is the
mean over 3 training runs. In each number of clusters, the highest score for each language is indicated in bold.

(2) h. His 46 points tied the record for
most points scored by an opponent at
Allen Fieldhouse.
ORG

e. ... an opponent at Allen Fieldhouse.
PER

In (3e), a named entity consisted of three words
“Arlington National Cemetery” was wrongly pre-
dicted to be split into ORG and LOC. This indicates
that the named entity is not correctly identified as
the complement of “in.” Given this, we conjec-
ture that clustering by the head parameter can be
helpful in correctly predicting the position of the
head in the phrase. Specifically, learning from the
sequences of a P-head followed by its NP comple-
ment may have facilitated identifying the span of
the named entity.

(3) h. He died in 1887 and was buried in
Arlington National Cemetery.
ORG

e. ... in Arlington
ORG

National Cemetery.
LOC

5.3 Annotation Errors in the WikiAnn
Dataset

When examining the incorrect predictions in En-
glish data, we found that the WikiAnn dataset con-
tains some non-negligible annotation errors. From
our sampling-based examination, we estimate that
approximately 1% of annotation errors could be
included in the WikiAnn dataset. Examples of the
annotation errors found in the WikiAnn dataset are
shown in (4) and (5). In (4), Cleveland, Ohio is not
an organization name. In (5), although Sanremo
is a named entity indicating location, the unneces-
sary brackets “[[” could have caused an error in its
annotation.

(4) He was born in Cleveland , Ohio.
ORG

(5) Washhouse in [[Sanremo, Italy,
LOC

...

Since the annotations of the WikiAnn dataset
were machine-generated, some errors could have
occurred in its process. However, these annotation
errors need to be revised to improve the reliability
of NER evaluations.
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6 Conclusion

We have proposed two language clustering meth-
ods based on the morpho-syntactic parameters
proposed in theoretical linguistics. We showed
that these clustering methods outperformed the
embedding-based clustering in multilingual NER
with Indo-European languages. We have also com-
pared the model using all the Indo-European lan-
guages as the training data. Despite the large differ-
ence in the data size, our approach outperformed
this model as well. These results suggest that pa-
rameters in theoretical linguistics have a potential
utility in multilingual NLP tasks and that this direc-
tion is worth exploring.

Future work will extend this approach to other
language families as well as different multilingual
tasks, such as machine translation. Another direc-
tion would be to probe the clusters derived from the
embedding-based method to explore features that
might not have been captured by our approach or
any approaches that make use of explicit linguistic
features.

Limitations

The morpho-syntactic parameters used in this study
are just a fraction of various other linguistic param-
eters that have been proposed in theoretical syntax
(e.g., Roberts 2019). A set of optimal language
parameters for language clustering may vary de-
pending on the target task. It remains to be seen
whether and how various parameters in theoretical
linguistics could improve different NLP tasks. For
example, cross-lingual transfer learning may be
performed more effectively by carefully tailoring
the linguistic parameters to a particular task, like
what we have done for NER.

Related to the above point, one limitation of
our approach would be the fact that some lan-
guages have not yet been investigated well in the-
oretical linguistics, particularly some underdocu-
mented or endangered languages. Even as for well-
documented languages in theoretical linguistics,
some parameters still remain controversial, such
as the so-called NP/DP parameter (e.g., Bošković
2012). Thus, our approach proceeds in tandem
with the advancement of theoretical linguistics.

Ethics Statement

We used a freely available dataset and a pre-trained
model from the Hugging Face Hub for our exper-
iments. We selected a pre-trained model with an

appropriate size (XLM-RoBERTa-base) given our
purpose of use. We needed to perform many rounds
of clustering and fine-tuning for the pre-trained
model. Therefore, we set preliminary experiments
beforehand with a smaller sample size for each step
to ensure that the experiments could be performed
effectively.
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The summary of the languages used in our experi-
ments is shown in Table 10.

Table 11 shows the NER evaluations of head
parameter-based clustering with standard deviation
scores in parentheses.

Tables 12 and 13 represent the NER evaluations
when we set the number of clusters to {2, 3} and

{4, 5}, respectively, with standard deviations in
parentheses (see Section 5.1 for the details).
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ISO 639-1 Code Language Sub-family

cy Welsh Celticga Irish

ps Pashto
Indo-Iranianmr Marathi

hi Hindi

ro Romanian

Romance

fr French
es Spanish
pt Portuguese
it Italian

scn Siciliano

el Greek Hellenic

bg Bulgarian

Slavic
pl Polish
ru Russian
sl Slovenian
hr Serbo-Croatian

af Afrikaans

Germanic

nl Dutch
de German
is Icelandic
en English
da Danish
no Norwegian
fo Faroese

Table 10: The summary of language codes mentioned in this paper, along with the sub-families they belong to.

2 clusters
lang #train mono head #1000 #10000 family

cy 10,000 91.09 (0.30) 93.15 (0.03) 92.22 (0.37) 91.88 (0.37) 92.95 (0.45)
ga 1,000 76.51 (1.18) 85.37 (0.54) 84.11 (0.61) 84.38 (0.21) 84.90 (0.45)
ps 100 0.00 (0.00) 55.92 (2.84) 55.31 (1.40) 55.02 (0.76) 52.22 (1.31)
mr 5,000 85.5 (0.03) 86.96 (0.39) 88.71 (0.66) 88.29 (0.40) 88.34 (0.37)
hi 5,000 86.06 (0.54) 86.89 (0.30) 89.48 (0.42) 89.42 (0.80) 89.47 (0.45)
ro 20,000 92.64 (0.11) 94.43 (0.27) 94.04 (0.12) 94.17 (0.11) 94.18 (0.03)
fr 20,000 88.99 (0.14) 91.10 (0.09) 90.74 (0.09) 90.56 (0.13) 91.05 (0.15)
es 20,000 89.19 (0.12) 91.66 (0.31) 91.34 (0.10) 90.52 (0.19) 91.63 (0.02)
pt 20,000 90.24 (0.06) 92.00 (0.22) 91.79 (0.07) 91.43 (0.06) 92.15 (0.06)
it 20,000 90.79 (0.21) 92.03 (0.12) 91.93 (0.11) 91.52 (0.07) 92.06 (0.10)

scn 100 1.18 (1.67) 77.04 (1.46) 75.58 (1.20) 77.12 (1.63) 81.04 (2.88)
el 20,000 90.07 (0.15) 91.49 (0.05) 90.91 (0.08) 91.28 (0.17) 91.04 (0.09)
bg 20,000 92.48 (0.07) 93.60 (0.17) 93.22 (0.11) 93.34 (0.03) 93.42 (0.11)
pl 20,000 89.86 (0.08) 91.38 (0.11) 91.12 (0.04) 91.33 (0.10) 91.43 (0.17)
ru 20,000 88.52 (0.14) 89.86 (0.16) 89.77 (0.07) 89.98 (0.12) 89.88 (0.02)
sl 15,000 93.02 (0.04) 93.97 (0.27) 93.65 (0.19) 93.95 (0.10) 93.86 (0.16)
hr 20,000 90.90 (0.22) 92.27 (0.03) 91.88 (0.12) 92.07 (0.13) 92.02 (0.04)
af 5,000 89.06 (0.09) 91.70 (0.31) 91.30 (0.57) 91.73 (0.31) 91.80 (0.20)
nl 20,000 90.64 (0.15) 92.56 (0.23) 91.90 (0.10) 92.23 (0.07) 92.49 (0.07)
de 20,000 87.47 (0.10) 89.06 (0.32) 88.13 (0.05) 88.61 (0.06) 88.70 (0.01)
is 1,000 73.98 (2.36) 88.04 (0.40) 87.28 (0.39) 87.63 (0.56) 88.29 (0.77)
en 20,000 82.27 (0.14) 84.37 (0.15) 84.22 (0.23) 84.02 (0.06) 84.01 (0.09)
da 20,000 91.73 (0.11) 93.39 (0.27) 92.76 (0.09) 92.91 (0.15) 93.04 (0.03)
no 20,000 91.98 (0.13) 93.46 (0.16) 93.05 (0.07) 93.34 (0.20) 93.49 (0.09)
fo 100 0.00 (0.00) 88.21 (1.52) 87.58 (1.09) 88.70 (1.22) 87.69 (0.75)

Table 11: Head parameter clustering evaluations (F1): Each score is the mean over 3 training runs, with a standard
deviation in parentheses. The highest score for each language is indicated in bold.
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2 clusters 3 clusters
lang #train noun #1000 #10000 noun #1000 #10000

cy 10,000 91.57 (0.12) 92.22 (0.37) 91.88 (0.37) 91.57 (0.12) 91.73 (0.03) 92.42 (0.59)
ga 1,000 85.72 (0.04) 84.11 (0.61) 84.38 (0.21) 85.72 (0.04) 84.11 (0.61) 84.43 (0.60)
ps 100 53.97 (3.36) 55.31 (1.40) 55.02 (0.76) 55.92 (2.84) 54.68 (1.07) 53.32 (2.06)
mr 5,000 88.34 (0.35) 88.71 (0.66) 88.29 (0.40) 86.96 (0.39) 87.93 (0.31) 88.58 (0.44)
hi 5,000 90.09 (0.29) 89.48 (0.42) 89.42 (0.80) 86.89 (0.30) 89.18 (0.54) 89.90 (0.29)
ro 20,000 94.32 (0.10) 94.04 (0.12) 94.17 (0.11) 94.32 (0.05) 94.04 (0.12) 93.98 (0.12)
fr 20,000 91.01 (0.04) 90.74 (0.09) 90.56 (0.13) 91.04 (0.03) 90.74 (0.09) 90.53 (0.02)
es 20,000 91.38 (0.18) 91.34 (0.10) 90.52 (0.19) 91.51 (0.08) 91.34 (0.10) 90.52 (0.19)
pt 20,000 92.14 (0.12) 91.79 (0.07) 91.43 (0.06) 92.11 (0.10) 91.79 (0.07) 91.43 (0.06)
it 20,000 92.16 (0.15) 91.93 (0.11) 91.52 (0.07) 92.22 (0.12) 91.93 (0.11) 91.52 (0.07)

scn 100 76.54 (0.92) 75.58 (1.20) 77.12 (1.63) 80.08 (2.69) 75.58 (1.20) 77.12 (1.63)
el 20,000 91.18 (0.21) 90.91 (0.08) 91.28 (0.17) 91.21 (0.01) 90.40 (0.11) 90.07 (0.15)
bg 20,000 93.44 (0.07) 93.22 (0.11) 93.34 (0.03) 93.25 (0.02) 92.64 (0.07) 93.34 (0.15)
pl 20,000 91.45 (0.09) 91.12 (0.04) 91.33 (0.10) 91.34 (0.02) 91.12 (0.04) 91.22 (0.05)
ru 20,000 90.01 (0.08) 89.77 (0.07) 89.98 (0.12) 89.96 (0.18) 89.32 (0.06) 90.02 (0.04)
sl 15,000 93.79 (0.10) 93.65 (0.19) 93.95 (0.10) 93.89 (0.22) 93.65 (0.19) 93.88 (0.09)
hr 20,000 92.12 (0.11) 91.88 (0.12) 92.07 (0.13) 92.05 (0.07) 91.88 (0.12) 92.06 (0.11)
af 5,000 91.16 (0.16) 91.30 (0.57) 91.73 (0.31) 91.19 (0.37) 91.51 (0.40) 90.75 (0.17)
nl 20,000 92.62 (0.02) 91.90 (0.10) 92.23 (0.07) 92.59 (0.17) 91.74 (0.12) 92.17 (0.16)
de 20,000 88.51 (0.04) 88.13 (0.05) 88.61 (0.06) 88.59 (0.13) 88.13 (0.05) 88.31 (0.13)
is 1,000 87.65 (0.23) 87.28 (0.39) 87.63 (0.56) 87.54 (0.24) 86.75 (0.39) 87.44 (0.16)
en 20,000 84.11 (0.29) 84.22 (0.23) 84.02 (0.06) 84.12 (0.09) 84.22 (0.23) 83.97 (0.05)
da 20,000 93.10 (0.11) 92.76 (0.09) 92.91 (0.15) 93.15 (0.18) 92.59 (0.15) 93.03 (0.10)
no 20,000 93.48 (0.06) 93.05 (0.07) 93.34 (0.20) 93.32 (0.13) 93.14 (0.02) 93.24 (0.06)
fo 100 87.01 (0.90) 87.58 (1.09) 88.70 (1.22) 86.61 (0.59) 86.35 (1.26) 87.44 (0.66)

Table 12: Nominal parameter clustering evaluations with the number of clusters {2, 3} (F1): Each score is the mean
over 3 training runs, with a standard deviation in parentheses. The highest score for each language is indicated in
bold.

4 clusters 5 clusters
lang #train noun #1000 #10000 noun #1000 #10000

cy 10,000 91.57 (0.12) 91.73 (0.03) 91.98 (0.42) 91.57 (0.12) 91.27 (0.34) 92.64 (0.13)
ga 1,000 85.72 (0.04) 84.11 (0.61) 84.53 (0.27) 85.72 (0.04) 84.11 (0.61) 85.13 (0.81)
ps 100 55.92 (2.84) 54.68 (1.07) 55.37 (0.69) 55.92 (2.84) 52.97 (2.53) 53.54 (2.79)
mr 5,000 86.96 (0.39) 87.38 (0.86) 88.09 (0.19) 86.96 (0.39) 87.38 (0.86) 88.13 (0.52)
hi 5,000 86.89 (0.30) 88.66 (0.37) 89.70 (0.09) 86.89 (0.30) 88.66 (0.37) 88.98 (0.38)
ro 20,000 93.69 (0.04) 94.04 (0.12) 94.02 (0.08) 93.69 (0.04) 94.04 (0.12) 94.06 (0.13)
fr 20,000 90.39 (0.03) 90.74 (0.09) 90.52 (0.21) 90.39 (0.03) 90.74 (0.09) 90.32 (0.14)
es 20,000 90.96 (0.13) 91.34 (0.10) 90.52 (0.19) 90.96 (0.13) 91.34 (0.10) 90.52 (0.19)
pt 20,000 91.57 (0.06) 91.79 (0.07) 91.43 (0.06) 91.57 (0.06) 91.79 (0.07) 91.43 (0.06)
it 20,000 91.54 (0.06) 91.93 (0.11) 91.52 (0.07) 91.54 (0.06) 91.93 (0.11) 91.52 (0.07)

scn 100 76.77 (1.32) 75.58 (1.20) 77.12 (1.63) 76.77 (1.32) 75.58 (1.20) 77.12 (1.63)
el 20,000 91.18 (0.13) 90.4 (0.11) 90.07 (0.15) 90.07 (0.15) 90.07 (0.15) 90.07 (0.15)
bg 20,000 93.18 (0.10) 92.64 (0.07) 92.48 (0.07) 93.19 (0.10) 92.58 (0.03) 92.48 (0.07)
pl 20,000 91.19 (0.02) 91.12 (0.04) 91.23 (0.09) 91.18 (0.10) 91.12 (0.04) 91.24 (0.05)
ru 20,000 89.97 (0.15) 89.18 (0.18) 89.66 (0.02) 89.81 (0.20) 89.18 (0.18) 88.52 (0.14)
sl 15,000 93.93 (0.18) 93.65 (0.19) 93.61 (0.02) 93.78 (0.06) 93.65 (0.19) 93.81 (0.06)
hr 20,000 91.91 (0.06) 91.88 (0.12) 92.14 (0.10) 91.97 (0.09) 91.88 (0.12) 91.91 (0.17)
af 5,000 91.46 (0.70) 90.73 (0.05) 91.18 (0.12) 91.37 (0.31) 90.73 (0.05) 91.14 (0.34)
nl 20,000 92.26 (0.11) 90.86 (0.17) 92.14 (0.04) 92.14 (0.14) 90.86 (0.17) 92.20 (0.15)
de 20,000 88.25 (0.09) 88.13 (0.05) 88.33 (0.07) 88.25 (0.21) 88.13 (0.05) 88.38 (0.06)
is 1,000 87.92 (0.83) 86.51 (0.09) 87.77 (0.40) 87.51 (0.37) 86.51 (0.09) 87.71 (0.25)
en 20,000 83.75 (0.19) 84.22 (0.23) 83.89 (0.14) 83.83 (0.03) 84.22 (0.23) 83.89 (0.03)
da 20,000 93.00 (0.05) 92.43 (0.08) 92.78 (0.09) 92.92 (0.10) 92.43 (0.08) 92.99 (0.04)
no 20,000 93.31 (0.11) 92.79 (0.00) 93.27 (0.06) 93.24 (0.07) 92.79 (0.00) 93.17 (0.13)
fo 100 88.70 (1.58) 87.72 (0.82) 87.76 (1.06) 86.78 (2.33) 87.72 (0.82) 88.33 (0.28)

Table 13: Nominal parameter clustering evaluations for the number of clusters {4, 5} (F1): Each score is the mean
over 3 training runs, with a standard deviation in parentheses. The highest score for each language is indicated in
bold.
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