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Abstract

Neural metrics for machine translation eval-
uation, such as COMET, exhibit significant
improvements in their correlation with hu-
man judgments compared to traditional met-
rics based on lexical overlap, such as BLEU.
Yet neural metrics are, to a great extent,
“black boxes” that return a single sentence-level
score without transparency about the decision-
making process. In this work, we develop and
compare several neural explainability meth-
ods and demonstrate their effectiveness for
interpreting state-of-the-art fine-tuned neural
metrics. Our study reveals that these met-
rics leverage token-level information that can
be directly attributed to translation errors, as
assessed through comparison of token-level
neural saliency maps with Multidimensional
Quality Metrics (MQM) annotations and with
synthetically-generated critical translation er-
rors. To ease future research, we release our
code at https://github.com/Unbabel/COMET/
tree/explainable-metrics.

1 Introduction

Reference-based neural metrics for machine trans-
lation evaluation are achieving evergrowing suc-
cess, demonstrating superior results over traditional
lexical overlap-based metrics, such as BLEU (Pa-
pineni et al., 2002) and CHRF (Popović, 2015),
in terms of both their correlation with human
ratings and their robustness across diverse do-
mains (Callison-Burch et al., 2006; Smith et al.,
2016; Mathur et al., 2020; Kocmi et al., 2021;
Freitag et al., 2022). However, lexical overlap-
based metrics remain popular for evaluating the
performance and progress of translation systems
and algorithms. Concerns regarding trust and in-
terpretability may help explain this (Leiter et al.,
2022): contrary to traditional metrics, neural met-
rics are considered “black boxes” as they often use
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Figure 1: Illustration of our approach. In this example,
the metric assigns the translation a low score. We aim
to better understand this sentence-level assessment by
examining the correspondence between our token-level
explanations and human annotated error spans.

increasingly large models (e.g., the winning metric
of the WMT 22 Metrics shared task was a 10B
parameter model (Freitag et al., 2022)).

While some recent work has focus on explaining
the predictions made by reference-free quality es-
timation (QE) systems (Fomicheva et al., 2021;
Zerva et al., 2022), explaining reference-based
metrics has remained a largely overlooked prob-
lem (Leiter et al., 2022). It is an open question
whether the observations from studies of explain-
able QE carry over to this scenario. Thus, in this
work, we fill that gap by turning to state-of-the-
art reference-based metrics—we aim to interpret
their decision-making process by exploiting the
fact that these metrics show consistently good cor-
relations with Multidimentional Quality Metrics
(MQM) (Freitag et al., 2021, 2022; Sai et al., 2022),
which are fine-grained quality assessments that re-
sult from experts identifying error spans in transla-
tion outputs (Lommel et al., 2014). We hypothesize
that reference-based metrics leverage this token-
level information to produce sentence-level scores.
To test this hypothesis, we assess whether our expla-
nations – measures of token-level importance ob-
tained via attribution and input attribution methods
such as attention weights and gradient scores (Tre-
viso et al., 2021; Rei et al., 2022b) – align with

1089

https://github.com/Unbabel/COMET/tree/explainable-metrics
https://github.com/Unbabel/COMET/tree/explainable-metrics
ricardo.rei@unbabel.com


human-annotated spans (Fomicheva et al., 2021,
2022; Zerva et al., 2022), as illustrated in Figure 1.

Our analysis focuses on two main vectors: (i) un-
derstanding the impact of the reference information
on the quality of the explanations; and (ii) finding
whether the explanations can help to identify po-
tential weaknesses in the metrics. Our main contri-
butions are:
• We provide a comparison between multiple ex-

plainability methods for different metrics on all
types of evaluation: src-only, ref-only, and
src+ref joint evaluation.

• We find that explanations are related to the un-
derlying metric architecture, and that leveraging
reference information improves the explanations.

• We show that explanations for critical translation
errors can reveal weaknesses in the metrics.

2 Explaining Neural Metrics

We aim to explain sentence-level quality assess-
ments of reference-based metrics by producing
token-level explanations that align to translation
errors. In what follows, we describe the metrics
and how we produce the explanations that we study.

2.1 Metrics

We focus our analysis on two state-of-the-art
neural metrics: COMET (Rei et al., 2020) and
UNITE (Wan et al., 2022).1 While both metrics
use a multilingual encoder model based on XLM-
R (Conneau et al., 2020), they employ distinct
strategies to obtain sentence-level quality scores.
On the one hand, COMET separately encodes the
source, translation and reference to obtain their re-
spective sentence embeddings; these embeddings
are then combined to compute a quality score. On
the other, UNITE jointly encodes the sentences
to compute a contextualized representation that is
subsequently used to compute the quality score.
Interestingly, UNITE is trained to obtain qual-
ity scores for different input combinations: [mt;
src] ( SRC ), [mt; ref] (REF), and [mt; src;
ref] (SRC+REF). In fact, when the input is SRC ,
UNITE works like TransQuest (Ranasinghe et al.,
2020); REF, like BLEURT (Sellam et al., 2020);
and SRC+REF, like ROBLEURT (Wan et al., 2021).

1Ensembles composed of these two metrics were re-
spectively ranked second and third in WMT 2022 Metrics
shared task. The winner of WMT 2022 Metrics task — MET-
RICXXL — is not publicly available (Freitag et al., 2022).

2.2 Explanations via Attribution Methods

In this work, we produce explanations using attri-
bution methods that assign a scalar value to each
translation token (i.e. a token-level attribution) to
represent its importance. While many input attribu-
tion methods exist and have been extensively stud-
ied in the literature (Ribeiro et al., 2016; Shrikumar
et al., 2017; Sundararajan et al., 2017; Jain and
Wallace, 2019; Atanasova et al., 2020; Zaman and
Belinkov, 2022), we focus specifically on those
that have been demonstrated to be effective for
explaining the predictions of QE models (Treviso
et al., 2021; Fomicheva et al., 2022; Fernandes
et al., 2022; Zerva et al., 2022) and extend them to
our reference-based scenario. Concretely, we use
the following techniques to extract explanations:2

• embed–align: the maximum cosine similar-
ity between each translation token embedding
and the reference and/or source token embed-
dings (Tao et al., 2022);

• grad ℓ2: the ℓ2-norm of gradients with respect
to the word embeddings of the translation to-
kens (Arras et al., 2019);

• attention: the attention weights of the transla-
tion tokens for each attention head of the en-
coder (Treviso et al., 2021);

• attn × grad: the attention weights of each head
scaled by the ℓ2-norm of the gradients of the
value vectors of that head (Rei et al., 2022b).

3 Experimental Setting

MQM annotations. We use MQM annotations
from the WMT 2021 Metrics shared task (Fre-
itag et al., 2021),3 covering three language pairs
— English-German (en→de), English-Russian
(en→ru), and Chinese-English (zh→en) —in two
different domains: News and TED Talks. For each
incorrect translation, human experts marked the
corresponding error spans. In our framework, these
error spans should align with the words that the
attribution methods assign higher importance to.

2For all attention-based methods, we ensemble the expla-
nations from the top 5 heads as this has shown to improve
performance consistently over selecting just the best head (Tre-
viso et al., 2021; Rei et al., 2022b). Moreover, we use the full
attention matrix, instead of relying only on cross attention
information.

3https://github.com/google/
wmt-mqm-human-evaluation

1090

https://github.com/google/wmt-mqm-human-evaluation
https://github.com/google/wmt-mqm-human-evaluation


METRIC
EXPLAINABILITY en→de zh→en en→ru Avg.
METHOD AUC R@K AUC R@K AUC R@K AUC R@K

src-only⋆ evaluation

UNITE
SRC

embed–align[mt, src] 0.587 0.339 0.644 0.281 0.583 0.167 0.604 0.262
grad ℓ2 0.572 0.293 0.535 0.200 0.620 0.169 0.576 0.221
attention 0.636 0.322 0.612 0.253 0.612 0.189 0.620 0.254
attn × grad 0.707 0.376 0.639 0.294 0.633 0.211 0.660 0.294

ref-only evaluation

UNITE
REF

embed–align[mt, ref] 0.658 0.396 0.667 0.328 0.635 0.218 0.653 0.314
grad ℓ2 0.596 0.319 0.571 0.260 0.661 0.202 0.609 0.261
attention 0.637 0.344 0.670 0.335 0.652 0.224 0.653 0.301
attn × grad 0.725 0.425 0.667 0.380 0.660 0.248 0.684 0.351

src,ref joint evaluation

UNITE
SRC+REF

embed–align[mt, src; ref] 0.650 0.383 0.670 0.330 0.618 0.213 0.646 0.309
grad ℓ2 0.595 0.325 0.579 0.257 0.643 0.191 0.606 0.257
attention 0.657 0.421 0.670 0.383 0.649 0.223 0.659 0.342
attn × grad 0.736 0.421 0.674 0.383 0.671 0.248 0.693 0.351

COMET

embed–align[mt, src] 0.590 0.371 0.674 0.314 0.577 0.220 0.614 0.301
embed–align[mt, ref] 0.694 0.425 0.696 0.355 0.647 0.275 0.679 0.352
embed–align[mt, src; ref] 0.688 0.416 0.697 0.357 0.622 0.279 0.669 0.350
grad ℓ2 0.603 0.312 0.540 0.252 0.604 0.185 0.582 0.250
attention 0.604 0.351 0.592 0.259 0.633 0.209 0.608 0.268
attn × grad 0.710 0.365 0.633 0.278 0.662 0.244 0.669 0.295

Table 1: AUC and Recall@K of explanations obtained via different attribution methods for COMET and UNITE
models on the MQM data. ⋆Although UNITE SRC is a src-only evaluation metric, it was trained with reference
information (Wan et al., 2022).

Models. For COMET, we use the latest publicly
available model: wmt22-comet-da (Rei et al.,
2022a).4 For UNITE, we train our own model
using the same data used to train COMET in or-
der to have a comparable setup5. We provide full
details (training data, correlations with human an-
notations, and hyperparameters) in Appendix A.
Overall, the resulting reference-based UNITE mod-
els (REF and SRC+REF) are on par with COMET.

Evaluation. We want our explanations to be di-
rectly attributed to the annotated error spans, in the
style of an error detection task. Thus, we report
Area Under Curve (AUC) and Recall@K.6 These
metrics have been used as the main metrics in pre-
vious works on explainable QE (Fomicheva et al.,
2021, 2022; Zerva et al., 2022).

4 Results

4.1 High-level analysis

Explanations are tightly related to the under-
lying metric architecture. The results in Ta-

4https://huggingface.co/Unbabel/
wmt22-comet-da

5Our implementation differs from the original work by
Wan et al. (2022), See Appendix A for full details.

6In this setup, Recall@K is the proportion of words with
the highest attribution that correspond to translation errors
against the total number of errors in the annotated error span.

ble 1 show that the predictive power of the at-
tribution methods differ between UNITE and
COMET: attn × grad is the best method for UNITE-
based models, while embed–align works best for
COMET.7 This is expected as UNITE constructs
a joint representation for the input sentences, thus
allowing attention to flow across them; COMET,
in contrast, encodes the sentences separately, so it
relies heavily on the separate contextualized embed-
dings that are subsequently combined via element-
wise operations such as multiplication and abso-
lute difference. Interestingly, embed–align and
attn × grad were the winning explainability ap-
proaches of the WMT 2022 Shared-Task on Quality
Estimation (Zerva et al., 2022). This suggests that
explainability methods developed for QE systems
can translate well to reference-based metrics. We
provide examples of explanations in Appendix C.

Reference information boosts explainability
power. Table 1 also shows that, across all met-
rics, using reference information brings substantial
improvements over using only the source informa-
tion. Moreover, while reference-based attributions
significantly outperform source-based attributions,
combining the source and reference information to

7In Appendix B, we provide a comparison between the
explanations obtained via embed–align with COMET and with
its pretrained encoder model, XLM-R.
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Figure 2: Performance of the best attribution methods
for COMET, UNITE REF and UNITE SRC+REF in
terms of Recall@K on translations with critical errors:
negations (NEG), hallucinations (HALL), named entity
errors (NE), and errors in numbers (NUM).

obtain token-level attributions does not consistently
yield superior results over using the reference alone.
Notably, the best attribution method for COMET

does not require any source information. This is
interesting: in some cases, reference-based met-
rics may largely ignore source information, relying
heavily on the reference instead.

4.2 How do the explanations fare for critical
translation errors?

The MQM data analyzed until now consists primar-
ily of high quality translations, with the majority of
annotated errors being non-critical. However, it is
important to assess whether our explanations can
be accurately attributed to critical errors, as this
may reveal potential metric shortcomings. To this
end, we employ SMAUG (Alves et al., 2022)8, a
tool designed to generate synthetic data for stress-
testing metrics, to create corrupted translations that
contain critical errors. Concretely, we generate
translations with the following pathologies: nega-
tion errors, hallucinations via insertions, named
entity errors, and errors in numbers.9

Explanations identify critical errors more eas-
ily than non-critical errors. Figure 2 shows
that explanations are more effective in identify-
ing critical errors compared to other non-critical
errors (see Table 1). Specifically, we find sig-
nificant performance improvements up to nearly
30% in Recall@K for certain critical errors. Over-
all, hallucinations are the easiest errors to identify
across all neural metrics. This suggests that neural

8https://github.com/Unbabel/smaug
9We corrupt fully correct translations that are not an exact

copy of the reference translation. Moreover, as the full suit of
SMAUG transformations can only be applied to English data,
we focus solely on zh→en translations. Overall, the synthetic
dataset consists of 2610 translations. Full statistics about the
corrupted data and examples are shown in Appendix A.2.

metrics appropriately identify and penalize halluci-
nated translations, which aligns with the findings
of Guerreiro et al. (2022). Moreover, explanations
for both UNITE models behave similarly for all er-
rors except numbers, where the source information
plays a key role in improving the explanations. No-
tably, contrary to what we observed for data with
non-critical errors, COMET explanations are less
effective than those of UNITE REF and UNITE
SRC+REF for identifying critical errors.

Explanations can reveal potential metric weak-
nesses. Figure 2 suggests that COMET explana-
tions struggle to identify localized errors (nega-
tion errors, named entity errors and discrepancies
in numbers). We hypothesize that this behavior
is related to the underlying architecture. Unlike
UNITE-based metrics, COMET does not rely on
soft alignments via attention between the sentences
in the encoding process. This process may be key
to identify local misalignments during the encod-
ing process. In fact, the attention-based attributions
for UNITE metrics can more easily identify these
errors. COMET, however, encodes the sentences
separately, which may result in grammatical fea-
tures (e.g. numbers) being encoded similarly across
sentences (Chi et al., 2020; Chang et al., 2022). As
such, explanations obtained via embedding align-
ments will not properly identify these misalign-
ments on similar features. Importantly, these find-
ings align with observations made in (Amrhein and
Sennrich, 2022; Raunak et al., 2022). This show-
cases how explanations can be used to diagnose
and reveal shortcomings of neural-based metrics.

5 Conclusions and Future Work

In this paper, we investigated the use of explain-
ability methods to better understand widely used
neural metrics for machine translation evaluation,
such as COMET and UNITE. Concretely, we an-
alyzed how explanations are impacted by the ref-
erence information, and how they can be used to
reveal weaknesses of these metrics. Our analysis
shows that the quality of the explanations is tightly
related to the underlying metric architecture. In-
terestingly, we also provide evidence that neural
metrics like COMET may heavily rely on reference
information over source information. Additionally,
we show that explanations can be used to reveal
reference-based metrics weaknesses such as fail-
ing to severely penalize localized critical errors.
This opens up promising opportunities for future

1092

https://github.com/Unbabel/smaug


research on leveraging explanations to diagnose
reference-based metrics errors. To support these
studies, we call for future datasets illustrating crit-
ical errors (e.g., challenge sets (Karpinska et al.,
2022)) to be accompanied by annotated error spans.

Limitations

We highlight three main limitations of our work.
First, although we have explored gradient-based

explanations that take the whole network into con-
sideration and have been shown to be faithful in
previous work (Bastings et al., 2021), we do not ex-
plicitly explore how COMET combines the sentence
representations in the feed-forward that precedes
the encoder model to produce the sentence-level
score.

Second, we have shown that combining atten-
tion with gradient information results in the best
explanations for UNITE-based metrics. However,
from a practical standpoint, running inference and
extracting the explainability scores simultaneously
may be more computationally expensive than other
techniques: gradient-based metrics benefit from
GPU infrastructure and require storing all gradient
information.

Third, we have not explored extracting expla-
nations in low-resource settings. That is because
high-quality MQM annotations for such language
pairs are not yet available. Nevertheless, further
research in those settings is needed to access the
broader validity of our claims.
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A Model Details

In Section 2.1, we employed the latest publicly
available model (wmt22-comet-da) for COMET,
which emerged as a top-performing metric in the
WMT 2022 Metrics task (Freitag et al., 2022). To
ensure a comparable setting for UNITE (Wan et al.,
2022), we trained our own model. In doing so, we
utilized the same data employed in the develop-
ment of the COMET model by (Rei et al., 2022a),
without pretraining any synthetic data, as origi-
nally suggested. Additionally, our implementation
did not incorporate monotonic regional attention,
as our preliminary experiments revealed no dis-
cernible benefits from its usage. The hyperparame-
ters used are summarized in Table 3, while Table 4
presents the number of Direct Assessments utilized
during training. Furthermore, Table 5 displays the
segment-level correlations with WMT 2021 MQM
data for the News and TED domains.

Regarding computational infrastructure, a single
NVIDIA A10G GPU with 23GB memory was used.
The resulting UNITE model has 565M parameters
while COMET has 581M parameters.

A.1 Output Distribution
To better understand the output of the models and
what scores are deemed low, we plotted the output
distributions for the two models we used in our
study. The average score for English→German
data is 0.856 for the COMET model and 0.870 for
the UNITE model we trained. From Figure 3 we
can observe the distribution of scores. This means
that the 0.6692 score from the example in Figure 1
corresponds to a low quality output (5th percentile).

A.2 SMAUG Corpus
As we have seen in Section 4.2, we have cre-
ated synthetic translation errors for the following
pathologies: negation errors, hallucinations via in-
sertions, named entity errors, and errors in numbers.
Table 7 presents a summary of the examples created
using SMAUG and in Table 8 we show examples
of each error category.

B Comparison between COMET and
XLM-R Alignments

From Table 1, it is evident that the alignments be-
tween the reference and/or source and the transla-
tion yield effective explanations for COMET. This
raises the question of how these alignments com-
pare to the underlying encoder of COMET before

the fine-tuning process with human annotations. To
investigate this, we examine the results for XLM-R
without any fine-tuning, as presented in Table 2.

Overall, the explanations derived from the align-
ments of COMET prove to be more predictive of
error spans than those obtained from XLM-R align-
ments. This suggests that during the fine-tuning
phase, COMET models modify the underlying
XLM-R representations to achieve better alignment
with translation errors.

C Examples

In Tables 9 and 10, we show examples of
COMET explanations for Chinese→English and
English→German language pairs, respectively. We
highlight in gray the corresponding MQM annota-
tion performed by an expert linguist and we sort the
examples from highest to lowest COMET scores.
From these examples we can observe the following:

• Highlights provided by COMET explanations
have a high recall with human annotations. In
all examples, subword tokens corresponding to
translation errors are highlighted in red but we
often see that not everything is incorrect.

• Explanations are consistent with scores. For ex-
ample, in the third example from Table 10, the
red highlights do not correspond to errors and in
fact the translation only has a major error griffen .
Nonetheless, the score assigned by COMET is a
low score of 0.68 which is faithful to the explana-
tions that was given even if the assessment does
not agree with human experts.
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METRIC
EXPLAINABILITY en→de zh→en en→ru Avg.
METHOD AUC R@K AUC R@K AUC R@K AUC R@K

XLM-R
embed–align[mt, src] 0.587 0.359 0.668 0.311 0.576 0.199 0.610 0.289
embed–align[mt, ref] 0.671 0.405 0.689 0.345 0.634 0.244 0.664 0.331
embed–align[mt, src; ref] 0.666 0.395 0.690 0.347 0.616 0.242 0.657 0.328

COMET
embed–align[mt, src] 0.590 0.371 0.674 0.314 0.577 0.220 0.614 0.301
embed–align[mt, ref] 0.694 0.425 0.696 0.355 0.647 0.275 0.679 0.352
embed–align[mt, src; ref] 0.688 0.416 0.697 0.357 0.622 0.279 0.669 0.350

Table 2: AUC and Recall@K of explanations obtained via alignments for COMET and XLM-R without any further
fine-tuning on human annotations.

Hyperparameter UNITE COMET

Encoder Model XLM-R (large)
Optimizer AdamW
No. frozen epochs 0.3
Learning rate (LR) 1.5e-05
Encoder LR. 1.0e-06
Layerwise Decay 0.95
Batch size 16
Loss function MSE
Dropout 0.1
Hidden sizes [3072, 1024]
Embedding layer Frozen
FP precision 16
No. Epochs 1 2

Table 3: Hyperparameters used to train UNITE and
COMET checkpoints used in this work. The only differ-
ence between the two is the number of training epochs
due to the fact that, for UNITE, the best validation
checkpoint is the first one.

Language Pair SIZE

zh-en 126947
en-de 121420
de-en 99183
en-zh 90805
ru-en 79280
en-ru 62749
en-cs 60937
fi-en 46145
en-fi 34335
tr-en 30186
et-en 29496
cs-en 27847
en-mr 26000
de-cs 13804
en-et 13376
pl-en 11816
en-pl 10572
lt-en 10315
en-ja 9578
gu-en 9063
si-en 9000
ro-en 9000
ne-en 9000
en-lt 8959
ja-en 8939
en-kk 8219
en-ta 7890
ta-en 7577
en-gu 6924
kk-en 6789
de-fr 6691
en-lv 5810
en-tr 5171
km-en 4722
ps-en 4611
fr-de 3999
Total 1027155

Table 4: Number of direct assessments per language
pair used to train COMET (Rei et al., 2022a) and the
UNITE model used in this work.
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(a) COMET

(b) UNITE SRC

(c) UNITE REF

(d) UNITE SRC+REF

Figure 3: Distribution of scores for all metrics obtained on the MQM data (for all language pairs).
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BLEU CHRF YISI-1 BLEURT UNITE UNITE UNITE COMET

SRC REF SRC+REF wmt22-comet-da

E
N
→

D
E

N
ew

s ρ 0.077 0.092 0.163 0.307 0.274 0.321 0.304 0.297
τ 0.069 0.092 0.144 0.240 0.222 0.248 0.241 0.232

T
E

D ρ 0.151 0.158 0.236 0.325 0.311 0.335 0.338 0.329
τ 0.113 0.146 0.212 0.283 0.264 0.301 0.298 0.278

E
N
→

R
U

N
ew

s ρ 0.153 0.252 0.263 0.359 0.333 0.391 0.382 0.363
τ 0.106 0.178 0.216 0.276 0.276 0.298 0.297 0.293

T
E

D ρ 0.154 0.268 0.235 0.286 0.239 0.289 0.318 0.308
τ 0.112 0.189 0.204 0.255 0.232 0.262 0.264 0.268

Z
H
→

E
N

N
ew

s ρ 0.215 0.231 0.301 0.428 0.413 0.438 0.426 0.445
τ 0.165 0.188 0.289 0.341 0.331 0.358 0.352 0.371

T
E

D ρ 0.155 0.181 0.287 0.295 0.244 0.301 0.310 0.307
τ 0.113 0.144 0.216 0.246 0.224 0.265 0.266 0.269

Table 5: Segment-level correlations for WMT 2021 MQM annotations over News and TED domains (Freitag et al.,
2021). The metrics are Pearson (ρ) and Kendall Tau (τ ). Results in bold indicate which metrics are top-performing
for that specific language pair, domain and metric according to Perm-Both hypothesis test (Deutsch et al., 2021),
using 500 re-sampling runs, and setting p = 0.05.
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Error Type NUM EXAMPLES

NE 978
NEG 669
HALL 530
NUM 432

Total 2609

Table 6: Number of examples for each category,
synthetically-created using SMAUG (Alves et al.,
2022).

Language Pair TOKENS / SENT. ERRORS / SPANS

en-de 528704 / 15310 25712 / 3567
en-ru 525938 / 15074 17620 / 7172
zh-en 603258 / 16506 43984 / 10042

Table 7: Statistics about MQM data from WMT 2021
Metrics task (Freitag et al., 2021) used in our experi-
ments.
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Source:
格里沃里表示，分析人士对越南所提出的和平倡议给予认可。

Translation:
Grivory said that analysts recognize the peace initiative proposed by Vietnam.
Reference:
Grigory said that analysts endorse the peace initiative proposed by Vietnam.
NE Error:
Grivory said that analysts recognize the peace initiative proposed by Russia .

Source:
英国的这一决定预计将会使西班牙的旅游业大受影响。

Translation:
This decision by the United Kingdom is expected to greatly affect Spain’s tourism industry.
Reference:
This decision by the UK is expected to have a significant impact on tourism in Spain.
NEG Error:
This decision by the United Kingdom is expected to greatly benefit Spain’s tourism industry.

Source:
由于疫情，人们开始在互联网上花费更多的时间。”
Translation:
Because of the epidemic, people are starting to spend more time on the Internet."
Reference:
For reason of the pandemic, people are starting to spend more time on the Internet. ”
HALL Error:
Because we have a lot of friends around during the epidemic, people are starting to spend more time on the
mobile devices than on the Internet."

Source:
展销区将展至7月29日。
Translation:
The exhibition and sales area will be open until July 29.
Reference:
The exhibition will last until July 29.
NUM Error:
The exhibition and sales area will be open until July 2018

Table 8: Synthetically-generated critical errors ( highlighted in gray ) created with SMAUG (Alves et al., 2022) to
assess whether our explanations can be accurately attributed to critical errors.
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Source:
And yet, the universe is not a silent movie because the universe isn’t silent.
Translation:
Und dennoch ist das Universum kein Stummfilm, weil das Universum nicht still ist.
COMET score: 0.8595
COMET explanation:
_Und _dennoch _ist _das _Univers um _kein _Stu mm film , _weil _das _Univers um _nicht _still _ist .

Source:
And yet black holes may be heard even if they’re not seen, and that’s because they bang on space-time like a drum.
Translation:
Und dennoch werden Schwarze Löcher vielleicht gehört , auch wenn sie nicht gesehen werden, und das liegt daran, dass
sie wie eine Trommel auf die Raumzeit schlagen.
COMET score: 0.7150
COMET explanation:
_Und _dennoch _werden _Schwarz e _Lö cher _vielleicht _gehört , _auch _wenn _sie _nicht _gesehen
_werden , _und _das _liegt _daran , _dass _sie _wie _eine _Tro mmel _auf _die _Raum zeit schlagen .

Source:
Ash O’Brien and husband Jarett Kelley say they were grabbing a bite to eat at Dusty Rhodes dog park in San Diego on
Thursday, with their three-month-old pug in tow.
Translation:
Ash O’Brien und Ehemann Jarett Kelley sagen, dass sie am Donnerstag im Hundepark Dusty Rhodes in San Diego einen
Happen zu essen griffen , mit ihrem drei Monate alten Mops im Schlepptau.
COMET score: 0.6835
COMET explanation:
_Ash _O ’ Bri en _und _Ehe mann _Ja rett _Kel ley _sagen , _dass _sie _am _Donnerstag _im _Hunde
park _Du sty _Rhod es _in _San _Diego _einen _Happ en _zu _essen _ griff en _ , _mit _ihrem _drei
_Monate _alten _M ops _im _Schle ppt au .

Source:
It was Einstein’s great general theory of relativity.
Translation:
Es war Einsteins große allgemeine Forschungen vor Relativitätstheorie.
COMET score: 0.6692
COMET explanation:
_Es _war _Einstein s _große _allgemein e _Forschung en _vor _Relativ ität s the ori e .

Source:
There’s mask-shaming and then there’s full on assault.
Translation:
Es gibt Maskenschämen und dann ist es voll bei Angriff.
COMET score: 0.2318
COMET explanation:
_Es _gibt _Mask en schä men _und _dann _ist _es _voll _bei _Angriff _ .

Table 9: Saliency map for COMET explanation scores for a set of en→de examples. Comparing the token-level
explanations with the MQM annotation ( highlighted in gray ) reveals the source of correspondence between specific
token-level translation errors and the resulting scores.

1102



Source:
我想告诉大家宇宙有着自己的配乐，而宇宙自身正在不停地播放着。因为太空可以想鼓一样振动。

Translation:
I want to tell you that the universe has its own iconic soundtrack and the universe itself is constantly playing non-stop
because space can vibrate like a drum.
COMET score: 0.8634
COMET explanation:
_I _want _to _tell _you _that _the _univers e _has _its _own _icon ic _soundtrack _and _the _univers e
_itself _is _constantly _playing _non - stop _because _space _can _vibra te _like _a _drum .

Source:
另外,吉克隽逸和刘烨作为运动助理,也围绕运动少年制造了不少爆笑话题。
Translation:
In addition, as sports assistants, Ji Kejunyi and Liu Ye have also created a lot of hilarious topics around sports teenagers.
COMET score: 0.8214
COMET explanation:
_In _addition , _as _sports _assistant s , _Ji _Ke ju nyi _and _Li u _Ye _have _also _created _a _lot _of
_ hila rious _topic s _around _sports _teenager s .

Source:
一番言论让场上的少年和运动领队们都倒吸一口凉气。

Translation:
The remarks made the teenagers and the sports leaders on the field gasp a sigh of relief .
COMET score: 0.7793
COMET explanation:
_The _re marks _made _the _teenager s _and _the _sports _leaders _on _the _field _gas p _a _sig h _of
_relief _ .

Source:
强烈的阳光是如此地刺眼，

Translation:
The intense sunlight is so harsh;
COMET score: 0.7561
COMET explanation:
_The _intense _sun light _is _so _har sh ;

Source:
如今，我们希望能够给这部关于宇宙的宏伟的视觉作品配上声音。

Translation:
Today , we hope to be able to give this magnificent visual work of the universe a sound.
COMET score: 0.7073
COMET explanation:
_Today , _we _hope _to _be _able _to _give _this _magnific ent _visual _work _of _the _univers e _a
_sound .

Table 10: Saliency map for COMET explanation scores for a set of zh→en examples. Comparing the token-level
explanations with the MQM annotation ( highlighted in gray ) reveals the source of correspondence between specific
token-level translation errors and the resulting scores.
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