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Abstract

Existing methods for event causality identifi-
cation (ECI) focus on mining potential causal
signals, i.e., causal context keywords and event
pairs. However, causal signals are ambiguous,
which may lead to the context-keywords bias
and the event-pairs bias. To solve this issue, we
propose the counterfactual reasoning that ex-
plicitly estimates the influence of context key-
words and event pairs in training, so that we are
able to eliminate the biases in inference. Exper-
iments are conducted on two datasets, the result
demonstrates the effectiveness of our method.

1 Introduction

Event causality identification (ECI) aims to identify
causal relations between event pairs. For example,
given the sentence “The earthquake generated a
tsunami.", an ECI system should identify that a
causal relation holds between the two mentioned
events, i.e., earthquake cause−→ tsunami. A good ECI
system is able to discover a large number of causal
relations from text and hence supports lots of intel-
ligence applications, such as commonsense causal
reasoning (Luo et al., 2016), narrative story genera-
tion (Mostafazadeh et al., 2016), and many others.

Existing methods focus on mining potential
causal signals, including causal context keywords
(Liu et al., 2020; Zuo et al., 2021a) and causal
event pairs (Zuo et al., 2020, 2021b; Cao et al.,
2021), to enhance ECI. By mining potential causal
signals, these methods improve the coverage of
unseen events and causal relations, which is the
reason for their success. However, they face the
risk of amplifying the role of potential signals, re-
sulting in biased inference.

Due to the polysemy of language, causal signals
are ambiguous. The occurrence of those signals
does not always indicate that causality is estab-
lished. That is, ambiguous context keywords and
event pairs may lead to the context-keywords bias
and the event-pairs bias in ECI. Specifically, in

Sentence Label

A 6.1-magnitude earthquake which hit the Indonesian province of Aceh on
Tuesday killed at least one person, injured dozens and destroyed buildings,
sparking panic in a region devastated by the quake-triggered tsunami of 2004.

0

Table 1: The example comes from the development set
of EventStroyLine (Caselli and Vossen, 2017).

most cases, “(earthquake, tsunami)” in the training
set occurs as a causal event pair, but in the sentence
which is from the development set, as shown in
Table 1, this event pair is not causal. Similarly,
ambiguous keywords, such as “generate", do not
always indicate causality (Xie and Mu, 2019a,b).
Relying heavily on those ambiguous signals may
make an ECI model learn the spurious correlation
(Pearl, 2009) between ambiguous signals and la-
bels. In other words, existing methods may overfit
those ambiguous causal signals in training, and
tends to predict a causal relation once the ambigu-
ous signals appear when inference.

To solve this issue, it is intuitively to explic-
itly estimate the influence of context keywords and
event pairs in training, so that we can mitigate those
biases in inference. Motivated by this idea and ex-
isting dataset-debiasing works (Niu et al., 2021;
Tian et al., 2022; Qian et al., 2021), we introduce
factual and counterfactual reasoning for ECI. The
factual reasoning takes the entire samples as in-
put, which captures the combined features between
context keywords and the event pairs, with the side-
effect of learning features of biases. The coun-
terfactual reasoning considers the two situations
where only context keywords or event pairs are
available. Intuitively, in counterfactual reasoning, a
model can only make predictions based on context
keywords or event pairs, so that the biases can be
identified. In inference, we use counterfactual rea-
soning to estimate context-keywords bias and event-
pairs bias, then subtract the biases from the factual
predictions. To achieve this goal, we must locate
the exact position of context keywords in a sen-
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tence1. But this is difficult because it requires ex-
tensive manual annotation. To avoid this, we adopt
a model-based strategy. Considering the powerful
feature extraction ability of pre-trained language
models (PLMs), if we feed an event-removed sen-
tence into PLMs, PLMs should be able to pay the
most attention to the important context keywords.
Based on this assumption, we split a sentence into
two exclusive parts: an event-masked context and
an event pair. They are fed into the counterfactual
reasoning module to learn the context-keywords
bias and event-pairs bias.

To summarize, we consider the spurious corre-
lation problem in ECI, which may make an ECI
model overfit on ambiguous causal signals. To mit-
igate this problem, we propose a counterfactual
reasoning mechanism for ECI. To the best of our
knowledge, this is the first work that studies ECI
from a counterfactual perspective. We conduct ex-
tensive experiments on two benchmark datasets.
The result shows that our method is effective.

2 Counterfactual ECI

Previous ECI methods may overfit the ambiguous
context keywords and event pairs, making biased
inferences. We use counterfactual reasoning to
eliminate this issue. Our method is depicted in
Figure 1, which consists of a factual reasoning
module and a counterfactual reasoning module.

2.1 Factual Reasoning Module

Factual reasoning learns the influence of entire ECI
samples, following the traditional ECI paradigm.
Here we present two classical methods.

Fine-tuning PLMs For ECI We first fine-tune
PLMs as a basic backbone. Given a sentence with a
mentioned event pair (denoted as e1 and e2), we use
PLMs, e.g., BERT (Devlin et al., 2018), to encode
the sentence and the event pair. Then the embed-
dings of [CLS], e1 and e2

2 are concatenated and
applied with a non-linear transformation to obtain
the hidden representation of the factual reasoning:

hECI = tanh(W⊤
f ([h[CLS];he1 ;he2 ])), (1)

where W⊤
f ∈ R3d×d, hECI ∈ Rd, d is the hidden

size of BERT. hECI is then projected with a linear
layer W⊤

p ∈ Rd×2 to make a binary classification:
PECI = softmax(W⊤

p hECI). (2)

1The positions of event pairs are already annotated.
2An event is annotated as a text span, so the average-

pooling operation is applied to obtain the event embedding.

Figure 1: In the upper part, we split a sample into an event
pair and an event-masked context. In the bottom part, we show
the training and inference process of our method.

Knowledge-Enhanced ECI Existing works
prove that knowledge is helpful for ECI. So we
develop a knowledge-enhanced backbone. Given
(e1, e2), we retrieve the related knowledge tu-
ples3 for e1 and e2 respectively, namely Kei =
{τ1ei , τ2ei , · · · , τNi

ei }, where i = 1, 2 denotes the
event index, τ = (h, t) denotes a knowledge tuple
(head, tail), N1 and N2 is the number of knowl-
edge tuples. We obtain the knowledge-enhanced
features of e1 and e2 by average-pooling on the
embeddings of corresponding knowledge tuples:

hK
ei =

1

Ni

Ni∑

j=1

W⊤
k [hj

ei ; t
j
ei ], (3)

where i = 1, 2, h and t denote the embeddings of
a tuple (h, t), Wk ∈ R2d×d is trainable. Then the
knowledge-enhanced event representations hK

e1 and
hK
e2 are concatenated with hECI (Equation 1), and

input into a MLP to make a binary classification:
PK

ECI = softmax(MLP([hECI;h
K
e1 ;h

K
e2 ])). (4)

Finally, the cross-entropy loss is applied to PECI
and PK

ECI to train the two backbones. Factual rea-
soning learns combined features between the con-
text and the event pair, but biases may be entangled
into the combined features. Next, we propose coun-
terfactual reasoning to capture the entangled biases.

2.2 Counterfactual Reasoning Module

To estimate the context-keywords bias and the
event-pairs bias in training, we split a sentence into
two exclusive parts: an event-masked context and
an event pair. For each part, we use counterfactual
reasoning to estimate the corresponding bias.

2.2.1 Estimating Context-Keywords Bias
We consider the counterfactual situation where only
the event-masked context is available. We input the
context into PLMs, and let PLMs automatically at-
tend to the important context keywords. The [CLS]
token embedding h[CLS] is used as the representa-
tion of the event-masked context. Note that h[CLS]

3Details can be seen in Appendix A.
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is different from h[CLS] (Equation 1) because the
event pair is removed in the current situation. We
obtain the hidden state of the current situation by:

hC = tanh(W⊤
f ([h[CLS];ΦE ;ΦE ])), (5)

where Wf is the shared parameter (Equation 1),
ΦE ∈ Rd is a learnable constant, and represents
the void input events. The insight of this setting is
that if we have no information about the event pair,
we would like to make inference by random guess.
Then hC is projected to make binary classification:

PC = softmax(W⊤
ChC), (6)

where WC is trainable, PC estimates the influence
of the context-keywords bias.

2.2.2 Estimating Event-Pairs Bias

Next, we consider the counterfactual situation
where only the event pair (e1, e2) is available.
Through PLMs, we get the event embeddings of
he1 and he2 . Note that he1 and he2 is different
from he1 and he2 (Equation 1) because the context
is invisible in the current situation. We obtain the
hidden state of the current situation by:

hE = tanh(W⊤
f ([ΦC ;he1 ;he2 ])), (7)

where ΦC is a learnable constant, and represents
the void input context. Then hE is projected with
a linear layer to make binary classification:

PE = softmax(W⊤
EhE), (8)

where WE is trainable, PE estimates the influence
of the event-pairs bias.

2.3 Training and De-biased Inference

We jointly train the factual and counterfactual rea-
soning modules, the final loss is:

Loss = LossFactual + αLossC + βLossE . (9)

LossFactual is over PECI or PK
ECI. LossC is over

PC and LossE is over PE . α and β are two trade-
off coefficients that balance the two types of biases.
Note that we share the encoding process (Equation
1) between factual and counterfactual modules, but
we do not backpropagate LossC and LossE to the
encoder, as shown in Figure 1. This is because
we require the counterfactual reasoning module to
make predictions only based on the event-masked
context or the event pair, and has no information
about the missing part.

After training, the counterfactual reasoning
module will learn the bias-estimation mechanism.
Therefore, we can make de-biased inference by:

y ← argmaxy(PFactual − αPC − βPE), (10)

where PFactual can be PECI or PK
ECI .

3 Experiment

3.1 Experimental Settings

Datasets include EventStoryLine (ESL) (Caselli
and Vossen, 2017) and Causal-TimeBank (CTB)
(Mirza et al., 2014). ESL contains 22 topics, and
1770 of 7805 event pairs are causally related. CTB
contains 184 documents, and 318 of 7608 event
pairs are causally related. We conduct the 5-fold
and 10-fold cross-validation on ESL and CTB re-
spectively. The last two topics of ESL are used as
the development set for two tasks. All of this is the
same as previous works for fairness. Evaluation
metrics are Precision (P), Recall (R) and F1-score
(F1). All parameters are searched according to the
F1 on the Dev set. The compared baselines in-
clude KMMG (Liu et al., 2020), KnowDis (Zuo
et al., 2020), LearnDA (Zuo et al., 2021b), LSIN
(Cao et al., 2021) and CauSeRL (Zuo et al., 2021a).
When implementing our factual reasoning models,
we adopt BERT(base), which is same as previous
methods. We denote our two factual backbones
as BERT and BERTK . Details about experimental
settings can be seen in Appendix B.

3.2 Overall Result and Ablation Study

The overall result is shown in Table 2. We have
the following observations. (1) BERTK has a sim-
ilar result with compared baselines, and performs
better than BERT. This coincides with previous
works that knowledge is helpful for ECI. (2) Our
CF-ECI method achieves consistent improvement
when deployed on BERT or BERTK . This shows
the effectiveness of our method. (3) Compared with
the previous methods, our method has a higher pre-
cision score. This is because we make a de-biased
inference, which is able to reduce the false-positive
predictions, hence improve the precision. (4) Uti-
lizing knowledge may reduce the precision score,
because irrelevant knowledge may be introduced.
This coincides with LSIN (Zuo et al., 2021a).

Ablation Study We conduct ablation study to
investigate the influence of context-keywords
de-biasing (§ 2.2.1) and event-pairs de-biasing
(§ 2.2.2). The result is shown in Table 2. No matter
what backbone (BERT or BERTK) is used, after
ablating “EPB" or “CKB", the ablated variant has
a performance drop. This indicates that ambiguous
context-keywords and event-pairs have adversely
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influence of ECI. By making de-biased inference,
our CF-ECI achieves the best performance. In ad-
dition, we observe that the context-keywords bias
is more severe than the event-pairs bias, which in-
dicates that the trained models tend to use superfi-
cially keywords for inference. The possible reason
is that this strategy inevitably leverages ambiguous
keywords that are potential biases, though it can
capture some causal keywords as good evidence.

Models ESL CTB

P(%) R(%) F1(%) P(%) R(%) F1(%)

KMMG 41.9 62.5 50.1 36.6 55.6 44.1
KnowDis 39.7 66.5 49.7 42.3 60.5 49.8
LearnDA 42.2 69.8 52.6 41.9 68.0 51.9
CauSeRL 41.9 69.0 52.1 43.6 68.1 53.2
LSIN 47.9 58.1 52.5 51.5 56.2 52.9

This Paper
BERT 45.8 57.4 50.9 49.8 50.3 50.1
BERTK 43.2 65.8 52.2 48.3 54.5 51.2
CF-ECIBERT 48.7 59.0 53.4∗ 54.1 53.0 53.5∗

CF-ECIBERTK 47.1 66.4 55.1∗ 50.5 59.9 54.8

Ablation Experiment

CF-ECIBERT
: w/o EPB 47.7 57.6 52.2 51.7 53.6 52.6
: w/o CKB 48.0 56.7 52.0 51.1 52.5 51.8

CF-ECIBERTK

: w/o EPB 46.8 63.8 54.0 50.8 56.4 53.4
: w/o CKB 47.0 62.6 53.7 50.2 56.3 53.1

Table 2: The overall and ablation-study result. Scores
with bold denotes the best results. ∗: the significant
test is conducted using paired t-test between our method
and the used backbones, with the level of p = 0.05.
“CKB" denotes the context-keywords de-biasing. “EPB"
denotes the event-pairs de-biasing.

3.3 Further Discussion

Methods ESL CTB

Dev Test Dev Test

BERT 17.75 16.71 20.47 21.02
CF-ECIBERT 02.40 02.09 02.71 02.64

BERTK 17.08 15.70 20.46 21.04
CF-ECIBERTK 02.44 02.25 02.81 02.77

Table 3: The model unfairness result (lower is better)
on the dev-set and test-set of ESL and CTB.

Bias Analysis (Sweeney and Najafian, 2019;
Qian et al., 2021) point out that the unfairness of a
trained model can be measured by the imbalance of
the predictions produced by the model. Following
(Qian et al., 2021), we use the metric imbalance
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Figure 2: F1 scores (%) of identifying unseen events.

Figure 3: The heatmaps of the predictions by BERT and
CF-ECIBERT respectively. Text with the dotted line
denotes the annotated events.

divergence (ID) to evaluate whether a predicted
distribution P is unfair: ID(P,U) = JS(P ||U),
where JS(·) denotes the JS divergence of P and
the uniform distribution U . To evaluate the un-
fairness of a trained model M , we calculate its
ID over all dev or test samples: ID(M) =
1
|D|

∑
x∈D JS(P (x), U), where P (x) can be the

output distribution of a factual (§ 2.1) or counter-
factual (§ 2.2) model. As shown in Table 3, when
deployed on different backbones, our method can
obviously and consistently reduce the ID metric.
This indicates that our method is helpful to elimi-
nate two kinds of biases.

Identifying Unseen Events We explore the
ability of our method to identify unseen events.
We first randomly select 1/3 of ESL documents as
the training set, then divide the remaining docu-
ments into (1) “Both Seen", where two events of a
sample appear in training data; (2) “One Unseen",
where only one event of a sample exists in train-
ing data; (3) “Both Unseen", where both events
are unobserved during training. From Figure 2,
we have following observations. (1) CF-ECI has a
significant improvement on the “Both Unseen" set,
compared with BERT. (2) CF-ECIBERTK

performs
better than CF-ECIBERT on the “Both Seen" set.

Visualization We depict the heatmaps of pre-
dictions by BERT and CF-ECIBERT respectively,
in Figure 3. BERT pays the most attention to the
words: “eqrthquake, spark, quake, tsunami", and
gives a causal prediction with the 97.9% probabil-
ity. In contrast, CF-ECIBERT dispersedly attends
to words and does not find enough causal evidence,
hence it gives a non-causal prediction.
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4 Related Work

Event Causality Identification There are mainly
two types of ECI works: document-level ECI (Gao
et al., 2019; Phu and Nguyen, 2021) and sentence-
level ECI. In this work, we pay attention to the
sentence-level ECI. (Liu et al., 2020) propose to
mask event mentions to mine event-agnostic causal
patterns. (Zuo et al., 2021a) devises self-supervised
methods to learn context-specific causal patterns
from external causal statements. (Zuo et al., 2020,
2021b) utilize causal event pairs to find useful
data from external resources. Nevertheless, these
methods rely on ambiguous causal signals, and
may learn the spurious correlations between am-
biguous causal signals and labels. Different from
these works, we regard ECI from a counterfactual
perspective, and devise a counterfactual inference
module to the spurious correlations in ECI.
Counterfactual Reasoning Counterfactual data
augmentation is a data-level manipulation, which
is effective to mitigate biases in datasets (Wei and
Zou, 2019; Kaushik et al., 2019). However, it needs
extra manual cost of data annotation. A recent trend
is counterfactual reasoning, which imagines the sit-
uation that what will the prediction be if seeing
only the biased part in the input. In this way, the
biases can be distilled and eliminated in the infer-
ence. This strategy avoids data annotation, and
is adopted by many works (Niu et al., 2021; Tian
et al., 2022; Qian et al., 2021). Motivated by these
works, we devise the counterfactual reasoning mod-
ule to make a de-baised ECI inference.

5 Conclusion

We discuss the issue of context-keywords and event-
pairs biases in ECI. To mitigate this problem, we
propose the counterfactual reasoning which explic-
itly estimates the influence of the biases, so that
we can make a de-biased inference. Experimental
results demonstrate the significant superiority of
our method. The robustness and explainability of
our method are also verified by further studies.

6 Limitations

First, we only access limited computation resources
and perform continual pre-training from BERT (De-
vlin et al., 2018), which is not general enough for
every event-related reasoning task. Second, coun-
terfactual reasoning makes our approach conser-
vative in identifying causal relationships, so our

method has a higher precision. However, some
potential causal relationships will be discarded.
How to achieve a good trade-off between preci-
sion and coverage is a problem. In addition, the
way we utilize knowledge is relatively simple, and
it is very likely that we have not made full use of
knowledge. Designing more complex knowledge-
enhanced methods may lead to better results.

7 Ethical Considerations

This work does not involve any sensitive data,
but only crowd-sourced datasets released in pre-
vious works, including Event-StoryLine (Caselli
and Vossen, 2017) and Causal-TimeBank (Mirza
et al., 2014). We believe that our research work
meets the ethics of ACL.
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A Details about Knowledge Retrieving

Following (Liu et al., 2020), we leverage external
knowledge to further improve ECI. We use Con-
ceptNet (Speer et al., 2017) as knowledge base.
In ConceptNet, knowledge is structured as graph,
where each node corresponds a concept, and each
edge corresponds to a semantic relation. For e1
and e2, we search their related knowledge, i.e.,
matching an event with the tokens of concepts in
ConceptNet. Events and concepts are Lemmatized
with the Spacy toolkit to improve the rate of match-
ing. We only consider 12 semantic relations that
are potentially useful for ECI: CapableOf, Causes,
CausesDesire, UsedFor, HasSubevent, HasPrereq-
uisite, Entails, ReceivesAction, UsedFor, Creat-
edBy, MadeOf, and Desires. For each relation, we
retrieve at most two knowledge relations according
to the weights of relations.

B Details about Experimental Settings

B.1 Compared Baselines
• KMMG (Liu et al., 2020), which proposes a

mention masking generalization method and
also utilizes the external knowledge.

• KnowDis (Zuo et al., 2020), a data-
augmentation method that utilizes the dis-
tantly labeled training data.

• LearnDA (Zuo et al., 2021b), a data-
augmentation method with iteratively gen-
erating new examples and classifying event
causality in a dual learning framework.

• LSIN (Cao et al., 2021), a latent-structure
induction network to leverage the external
knowledge;.

• CauSeRL (Zuo et al., 2021a), a self-
supervised framework to learn context-
specific causal patterns from external causal
corpora.

B.2 Implementation Details
Due to the data imbalance problem, we adopt a
over-sampling strategy for training. The early-stop
is used due to the small scale of datasets. We use
the Adam optimizer and linearly decrease learning
rate to zero with no warmup. We use PyTorch
toolkit to conduct all experiments on the Arch
Linux with RTX3090 GPU. All the hyperparame-
ter for two tasks are searched according to the F1

score on the development set. For reproduction, we
set the random seed to 42 for all experiments. The
searched parameters for two datasets are shown in
Table 4.

Parameters ESL CTB

Batch Size 32 32
Learning Rate 5e-5 5e-5
Drop-rate 0.3 0.2
α 0.15 0.25
β 0.35 0.25

Table 4: The used hyperparameters for two datasets.
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