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Abstract
This work examines the use of contradiction
in natural language inference (NLI) for ques-
tion answering (QA). Typically, NLI systems
help answer questions by determining if a po-
tential answer is entailed (supported) by some
background context. But is it useful to also
determine if an answer contradicts the con-
text? We test this in two settings, multiple
choice and extractive QA, and find that systems
that incorporate contradiction can do slightly
better than entailment-only systems on certain
datasets. However, the best performances come
from using contradiction, entailment, and QA
model confidence scores together. This has im-
plications for the deployment of QA systems in
domains such as medicine and science where
safety is an issue.

1 Introduction

Safety in NLP systems is unresolved, particularly
in biomedical and scientific contexts where hallu-
cination, overconfidence, and other problems are
major obstacles to deployment (Ji et al., 2022; Kell
et al., 2021). One active area of research to solve
these issues is natural language inference (NLI)
(Li et al., 2022). NLI is the task of determining
whether a hypothesis is true (entailed), false (con-
tradicted), or undetermined (neutral) given some
premise.

Current NLI systems typically focus only on
entailment to verify hypotheses—they calculate
the degree to which a hypothesis is supported by
the premise. But the premise can provide another
signal: contradiction. Regardless of how well a
hypothesis is entailed by the context, it can also
be more or less contradicted, which could affect
whether it is accepted or rejected. Contradictions
are an important signal indicating whether some
statement might be unacceptable given a premise.
In some cases where we might not know if a state-
ment is supported, we should still ensure we are
rejecting statements that are outright contradicted.

Figure 1: A QA model is used to produce answers which
are reformulated as hypotheses to determine if they are
entailed or contradicted by a premise. The answers are
ranked by NLI class scores to select the best answer.

We wondered if adding this signal to a ques-
tion answering (QA) system might improve per-
formance and safety. To this end, we propose a
method that reformulates answers from the QA
system as hypotheses for NLI, calculates the en-
tailment, contradiction, and neutrality of each hy-
pothesis, and then selects the best one based on a
combination of these results (Figure 1). We show
that across 16 QA datasets (9 multiple choice and 7
extractive), the best approach is to use entailment,
contradiction, and confidence scores together. Us-
ing only contradiction is roughly on par with, and
sometimes better than, using only entailment.

1.1 Related work

NLI for question answering has been explored by
several authors in various settings; see Paramasi-
vam and Nirmala (2021) for an overview.

One of these settings is selective question an-
swering for extractive QA, where selective refers
to abstention when the system is not confident
enough in its answer (Kamath et al., 2020). Chen
et al. (2021) have found that NLI systems are able
to verify the predictions made by a QA system
in this setting, but their result is limited to only
selecting a top k% of answers. Moreover, they
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do not provide an approach for improving overall
performance, nor do they show the effect of incor-
porating contradiction directly (but do so indirectly
by analyzing non-entailed passages).

In the related setting of multiple choice QA and
fact checking, Mishra et al. (2021) have explored
the use of entailment, finding that NLI models do
well at these tasks by themselves, but can perform
even better when they are adapted to in-domain
data and longer premises. Yet their method uses
only a two-class NLI set up (entailed or not en-
tailed), which doesn’t tell us much about directly
using the contradiction signal. Pujari and Gold-
wasser (2019) does incorporate the contradiction
signal showing the power of contradiction to im-
prove machine comprehension but does not analyze
its effects separately from entailment.

Other QA settings in which NLI has been used
include open domain (Harabagiu and Hickl, 2006)
and multi-hop (Trivedi et al., 2019). Thus far, ap-
proaches tend to focus on entailment. To our knowl-
edge, our work is the first to directly assess using
contradictions for QA isolated from entailment.

Outside of question answering, a domain that
uses contradictions is factual consistency—the
task of ensuring that a collection of utterances is
faithful to a source document. Li et al. (2022) pro-
vide an overview. Typically, entailment is still the
main focus, but Laban et al. (2022) propose an
NLI-based method to ensure the consistency of a
summary with a source document using contradic-
tion and neutral scores in addition to entailment,
beating out previous systems.

Other researchers have used contradictions
to identify consistency errors across Wikipedia
(Schuster et al., 2022; Hsu et al., 2021) or gen-
erate credible character dialogue (Nie et al., 2021;
Song et al., 2020).

2 Methods

We tested the effect of contradictions in two QA
settings and a total of sixteen question-answer
datasets. Our approach is broadly similar to both
Chen et al. (2021) and Mishra et al. (2021) in that
we use most of the same datasets for evaluating
NLI reranking for multiple choice QA and extrac-
tive QA. Unlike both, we incorporate contradiction
directly as a signal for reranking answers.

Briefly, for each dataset, we used pretrained QA
models to produce answers and confidence scores
for the dataset’s questions. We refer to the confi-

dence scores below as QA. We then trained QA2D
models (where QA2D stands for "question-answer
to declarative") to turn the answers into the declar-
ative hypothesis format required for NLI. For ex-
ample, the question-answer pair "What is the most
abundant metal in the Earth crust? Copper." might
be rephrased as "The most abundant metal in the
Earth crust is copper" (see Appendix D for more
details).

With the question contexts as premises, we
then used NLI models to classify every premise-
hypothesis pair into three classes, each with an
associated score: entailed (E), contradicted (C),
and neutral (N). After that, we trained logistic re-
gression calibration models to find which linear
combination of the four scores—QA, E, C, and
N—was best able to pick the answers accurately.

When evaluating performance, we applied the
selective QA approach from Kamath et al. (2020)
to rank answers using combinations of the four
scores, and then consider only those that the model
was most confident in answering. We compared
selecting the top 20% and 50%. In the multiple
choice setting, it was also possible to rank all po-
tential answers according to the four scores, unlike
in the extractive QA setting where the QA model
produced only one answer per question, so we eval-
uated performance with that approach as well (see
appendix A for details).

3 Experimental setting

In the multiple choice setting, we tested 9 datasets.
Two of them are in-domain, since the pretrained
QA models we used were finetuned on them.
Specifically, we used a RoBERTa large model (Liu
et al., 2019) finetuned on the RACE dataset (Lai
et al., 2017), as well as two DeBERTa v3 variants,
base and xsmall (He et al., 2021a), finetuned on the
SciQ dataset (Welbl et al., 2017).

In the extractive QA setting, we used 7 datasets:
five from the MRQA 2019 task (Fisch et al., 2019),
as well as SQuAD 2.0 (Rajpurkar et al., 2018) and
SQuAD adversarial (Jia and Liang, 2017). The
SQuAD model is the in-domain dataset: it was
used to pretrain (Rajpurkar et al., 2016) the two QA
models we used, DistillBERT (Sanh et al., 2020)
and BERT-Large (Devlin et al., 2019). Like Chen
et al. (2021), we used the Natural Questions dataset
for calibration.

In both settings, all datasets contain the relevant
context that can be used by the QA models to select
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answers. More detail on the datasets and QA mod-
els is available in appendices B and C respectively.

See appendices D, E, and F for details on the
QA2D, NLI, and calibration models. Our models
follow the setups described in Kamath et al. (2020),
Chen et al. (2021), and Mishra et al. (2021). The
main interesting detail is that the calibration models
were trained on a holdout set of 100 samples from a
single domain, using logistic regression, as in Chen
et al. (2021).

4 Results

4.1 Multiple choice setting

For most multiple choice datasets, the best
accuracy—when ranking all potential answers—is
attained when using a calibrated model combin-
ing QA confidence, entailment, and contradiction
(QA+E+C in Table 1). Only for the in-domain case
(RACE-C) does the uncalibrated RoBERTa-RACE
model perform on par with that. Using QA scores
combined with either entailment (QA+E) or con-
tradiction (QA+C) achieves similar performance,
with contradiction winning by a small margin:
84.33% average accuracy compared to 84.31%.

To inspect these trends further, we performed a
correlation analysis of the NLI classes and QA con-
fidence scores with the correct answer (appendix
G). We found that besides QA confidence, it is the
contradiction score that has the strongest correla-
tion with the correct answer. The analysis also
showed that the neutral class score (N) had almost
no effect, which is why it is omitted in all results.

When using the selective QA approach and eval-
uating only the 20% of 50% most confident an-
swers, the best performance is attained with the
QA+C combination (Table 2). This model is the
only one that beats just using the QA confidence
score on average. It is stronger than QA+E+C and
QA+E for both coverage percentages.

Contradiction alone, without QA confidence
scores (C), also beats both entailment alone (E)
and entailment with contradiction (E+C) for both
coverages. These results match our intuition that
the less contradicted an answer, the more likely it
is correct, even in cases where there is uncertainty
about its entailment.

4.2 Extractive QA setting

Similar results occur when evaluating the extractive
QA datasets with 20% and 50% selective coverage
(Table 3). The QA+C model does better than QA

alone, and C alone does better than E+C or E alone,
indicating the importance of the contradiction sig-
nal here too. However, entailment seems to matter
more for extractive QA, as the best F1 score overall
was from QA+E in the 20% coverage case, and
QA+E+C in the 50% case.

5 Discussion

Contradiction with background context is a useful
signal that NLP systems can use to infer answers to
questions. This is not necessarily a superior strat-
egy to using entailment, but our results show that
combining these two signals can improve perfor-
mance beyond what QA models can achieve on
their own. These results are interesting because us-
ing contradictions comes with potential benefits for
the safety of NLP systems and, as a result, their de-
ployment in domains such as medicine or science.
Namely, that there are many potential cases where
we are not sure if a statement is entailed directly by
a background context but we may be sure that the
statement is not refuted by a background context.
In two-class NLI settings where we focus only on
entailment, neutral and contradiction are collapsed
together and we don’t have this guarantee.

6 Limitations

Our work comes with some limitations. It is un-
certain whether our results in two specific settings,
multiple choice and extractive QA, would extend
to more general settings for NLI, although the use
of contradictions for factual consistency by Laban
et al. (2022) suggests that they could. Addition-
ally, 3-class NLI is not sufficient to capture all the
natural language relations that might be needed
to verify an answer. As such more challenging
datasets in other settings and more granular NLI
settings should be attempted.

Another limitation involves answer ranking and
the associated computational cost. The main rea-
son we did not test answer ranking in extractive
QA is that we did not generate diverse outputs,
but another reason is that such a procedure grows
prohibitively expensive as the domain becomes
more open. In a fully open domain, ranking would
require a quadratic evaluation for each context
passage against each reformulated answer candi-
date (Schuster et al., 2022). Future work should
look at comparison approaches that amortize this
cost, such as NLI-based dense passage retrieval
(Reimers and Gurevych, 2019).

829



QA Model Cosmos DREAM MCS MCS2 MCT QASC RACE RACE-C SciQ Average
SciQ-base 18.46 43.80 61.99 63.71 44.76 93.41 30.97 27.39 95.28 53.30
SciQ-small 25.46 48.26 60.28 66.04 59.76 90.60 35.56 30.62 98.09 57.18
QA 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.08
QA+E+C 64.72* 83.19* 90.06* 87.59* 91.43* 98.60 77.53* 69.80* 98.21 84.57
QA+E 64.32 82.85* 89.92* 87.29* 91.07 98.49* 77.18 69.66 98.09 84.31
QA+C 64.82 82.75* 89.88* 87.29* 90.83 98.38 77.16 69.80 98.09 84.33

Table 1: Multiple choice setting. Accuracy scores (best per column in bold, second best underlined, statistical
significance (pairwise students t-test) is indicated by asterix) after answer ranking with the mnli-large NLI model.
The top three rows show the accuracy of using only the QA models’ confidence score; "QA" refers to the scores
of the RoBERTa-RACE model, which was used for calibration. The bottom rows add the entailment and/or
contradiction scores to the RoBERTa-RACE score. For other NLI models, and for just E, C, and E+C without
calibration with RoBERTa-RACE, see Table 8 in the appendix.

Dataset QA +E+C QA+C QA+E E+C E C QA
20% CosmosQA 77.55 91.12 76.88 69.18 68.34 83.25 88.61

DREAM 98.28 98.77 98.28 96.32 96.32 96.81 98.28
MCScript 99.82 99.46 99.82 99.64 99.64 99.46 99.82
MCScript-2.0 99.58 99.72 99.45 99.17 99.03 97.37 99.58
MCTest 100 99.40 100 100 100 99.40 98.81
QASC 100 100 100 100 100 100 100
RACE 94.93 96.69 94.72 92.44 92.24 90.17 98.24
RACE-C 88.73 92.96 89.44 85.21 85.92 86.62 93.66
SciQ 100 100 100 100 100 100 100
Average 95.43 97.57 95.40 93.55 93.50 94.79 97.45

50% CosmosQA 80.29 81.70 76.94 75.80 70.64 80.63 76.47
DREAM 95.10 96.86 94.90 93.63 93.63 93.63 96.67
MCScript 98.57 98.64 98.28 98.00 97.93 97.14 98.78
MCScript-2.0 96.40 98.23 95.84 94.68 94.40 96.01 98.01
MCTest 99.52 99.76 99.52 99.05 99.05 99.76 99.52
QASC 100 100 100 99.78 99.78 99.78 100
RACE 90.11 92.68 89.99 87.71 87.38 85.23 93.88
RACE-C 85.11 84.83 85.39 78.37 78.37 77.25 87.36
SciQ 100 100 100 100 100 99.74 100
Average 93.90 94.74 93.43 91.89 91.24 92.13 94.52

Table 2: Multiple choice setting. Accuracy scores (best per row in bold, second best underlined) for selective QA
with 20% and 50% coverage of the dataset. Calibrations and QA confidence are all from RoBERTa-RACE, where
RACE is the in-domain dataset.

Dataset QA+E+C QA+C QA+E E+C E C QA
20% BioASQ 85.04 83.10 85.06 74.22 74.22 75.47 82.99

HotpotQA 86.62 85.89 86.69 80.60 80.60 79.82 85.33
Natural Questions 91.84 92.18 91.68 79.89 79.87 82.09 90.98
SQuAD 98.26 98.76 92.37 98.17 92.48 90.88 99.04
SQuAD-adv 43.99 43.57 43.98 43.74 43.60 42.81 39.83
SQuAD2 37.64 36.07 37.56 37.43 37.31 37.68 30.52
TriviaQA 81.33 80.36 81.21 65.53 65.25 69.13 80.68
Average 74.96 74.19 74.99 67.68 67.62 68.27 72.77

50% BioASQ 76.13 75.51 76.04 71.49 71.49 72.97 75.49
HotpotQA 79.37 78.95 79.30 77.43 77.43 77.31 78.74
Natural Questions 84.53 83.24 84.48 74.96 74.93 78.62 82.47
SQuAD 96.98 97.01 96.97 91.58 91.52 91.19 97.00
SQuAD-adv 41.80 41.49 41.16 42.76 42.79 42.03 40.26
SQuAD2 29.41 28.77 28.45 34.43 34.14 34.39 26.18
TriviaQA 74.30 74.23 74.37 65.05 64.93 68.08 74.21
Average 68.93 68.46 68.68 65.39 65.32 66.37 67.76

Table 3: Extractive QA setting. F1 scores (best per row in bold, second best underlined) for selective QA with 20%
and 50% coverage of the dataset. Calibrations and QA confidence are from the BERT-large model, where SQuAD
is the in-domain dataset. For similar results on the smaller DistillBERT model, see Table 10 in the appendix.
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A Answer ranking procedure

In the multiple choice setting, we performed an
answer ranking procedure to pick the answer to a
given question among a set of alternative answers
N , using both NLI class scores and QA confidence
scores. (This is distinct from the selection proce-
dure for the top 20% or 50% of answers we used
in both settings.)

Similar to Harabagiu and Hickl (2006), answers
are ranked based on the highest probability from
the calibration model σ, given a linear combination
of the QA or NLI scores given an answer n ∈ N
answer set. When a single feature is used, such
as an NLI class or the QA score, no calibration
is made and σ is simply the identity of the confi-
dence score. In the case of contradiction only, σ is
the inverse of the contradiction confidence score,
indicating the least contradicted answer is being
selected. Formally, our approach can be described
as:

argmax
N

σ(QAn;NLIn)

where QAn is the QA model confidence score for
answer n, and NLIn represents the various NLI
class scores for n.

We did not use this approach in extractive QA,
because we found that asking the model for the
top K = 4 answer produced almost the same four
answer alternatives with slightly different spans
each time.

B Datasets

Tables 4 (multiple choice) and 5 (extractive QA)
outline the datasets we used. Additional details
such as train size and preprocessing steps are
available in the references provided. When space
doesn’t allow CosmosQA is aliased to Cosmos,
MCScript to MCS, MCScript-2.0 to MCS2, and
MCTest to MCT. The only preprocessing step we
performed was to filter out questions where no con-
text passage is provided. Validation splits (as op-
posed to test splits) are used in the CosmosQA and
QASC cases, since context passages or gold stan-
dard answers are not available for these datasets.

C QA models

Table 6 outlines the pretrained QA models that we
used and the datasets they are trained on. All these
models are publicly available on the Hugging Face
hub under the locations listed. Where space doesn’t
allow, RoBERTa-RACE is aliased as RACE.

We trained the two DeBERTa-v3 models (xs-
mall and base) as shown in Table 7. They were
trained using the Hugging Face trainer API (Wolf
et al., 2020) with an Adam optimizer at a learning
rate of 5.60e-05 with weight decay of 0.01. All
models and inference were performed on 1 Tesla
P100 GPU. Full instructions on reproducibility as
well as trained models are provided in the publicly
available code, including directions to weights and
biases to inspect the training runs, full parameter
set, and evaluation suites.

D QA2D models

A QA2D model reformulates a question-answer
pair to a declarative statement (Demszky et al.,
2018). As noted in Chen et al. (2021) and Mishra
et al. (2021), the QA2D reformulation is critical
to using NLI models in QA since the proposed an-
swer needs to match the format of NLI. We trained
a T5-small model (Raffel et al., 2020) on the dataset
proposed by Demszky et al. (2018) for QA2D since
we found almost no noticeable differences in per-
formance in larger models. This used the same
setup as the DeBERTa-v3 models xsmall and base
(see Table 7).
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Dataset Split Size Reference
CosmosQA validation 2985 Huang et al. (2019)
DREAM test 2041 Sun et al. (2019)
MCScript test 2797 Ostermann et al. (2018)
MCScript-2.0 test 3610 Ostermann et al. (2019)
MCTest test 840 Richardson et al. (2013)
QASC validation 926 Khot et al. (2020)
RACE test 4934 Lai et al. (2017)
RACE-C test 712 Liang et al. (2019)
SciQ test 884 Welbl et al. (2017)

Table 4: Datasets used for the multiple choice setting, including split used and sample size. Validation splits were
used for CosmosQA since the test split is not publicly available, and for QASC since context passages or gold
answers are not available.

Dataset Size Reference
BioASQ 1504 Fisch et al. (2019)
TriviaQA 7785
HotpotQA 5901
SQuAD 10506
Natural Questions 12836
SQuAD2 11871 Rajpurkar et al. (2018)
SQuAD-adv 5347 Jia and Liang (2017)

Table 5: Extractive QA datasets used. Validation sets are used on the SQuAD2.0 and SQuAD adversarial datasets.
MRQA 2019 dev sets are used for the other five datasets.

Unlike Chen et al. (2021), we found that regard-
less of size, these QA2D models struggled with
long questions or questions with complex syntax
and would often leave the answer out of the state-
ment. In order to solve this, constrained decoding
that required the answer to be in the statement was
tried. However, this often produced ungrammat-
ical or nonsensical statements. We settled with
the following heuristic to postprocess QA2D out-
puts: If less than 50% of the tokens in the answer
were in the statement then we appended the an-
swer to the end of the statement. 50% was used to
account for rephrasing the answer or swapping pro-
nouns. While some statements resulted in answer
redundancy, this was better than having hypotheses
which left out the answer.

Future work on QA2D should focus on how
these models can be used outside of the domains
in the dataset provided by Demszky et al. (2018).
Finally it is important to note that erroneous QA2D
outputs could effect the quality of the whole
pipeline see Chen et al. (2021) for a more detailed
analysis of this.

E NLI models

NLI is used to classify whether the reformulated
answer is contradicted, entailed, or neutral with
respect to a context passage. We used the whole
context, as Schuster et al. (2022) and Mishra et al.
(2021) demonstrated that long premises still per-
formed adequate though not as well as sentence-
length premises. Using the whole context avoids
needing to use decontextualization as is required in
Chen et al. (2021).

We used two DeBERTa-based models (He et al.,
2021b) trained on the MNLI dataset (Williams
et al., 2018) (called mnli-base and mnli-large) and
an ALBERT model (Lan et al., 2019) trained on
the ANLI dataset in addition to various other NLI
datasets (called albert-anli) (Nie et al., 2020). Table
6 contains the Hugging Face references to the NLI
models After inference, the confidence scores are
used for answer selection and performance evalua-
tion.

E.1 Model size and approach performance
analysis

Table 8 mirrors Table 1 in the main text, but shows
the accuracy results for uncalibrated E, C, and E+C
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Hugging Face Name
LIAMF-USP/roberta-large-finetuned-RACE RoBERTa-RACE
bert-large-uncased-whole-word-masking-finetuned-squad BERT-Large
distilbert-base-uncased-distilled-squad DistillBERT
ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli albert-anli
microsoft/deberta-base-mnli mnli-base
microsoft/deberta-v2-xxlarge-mnli mnli-large

Table 6: Pretrained QA and NLI models used.

Model Dataset Epochs Score
t5-small Demszky et al. (2018) 20 Rogue1 90.73
deberta-v3-xsmall Welbl et al. (2017) 6 Accuracy 93.99
deberta-v3-base Welbl et al. (2017) 6 Accuracy 91.79

Table 7: The models we trained for or setups with evaluation scores and number of epochs trained.

QA Model Cosmos DREAM MCS MCS2 MCT QASC RACE RACE-C SciQ Average

SciQ-base 18.46 43.80 61.99 63.71 44.76 93.41 30.97 27.39 95.28 53.31
SciQ-small 25.46 48.26 60.28 66.04 59.76 90.60 35.56 30.62 98.09 57.19
RACE 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.09
mnli-large
E+C 44.36 80.94 85.52 84.99 90.60 96.44 64.29 51.40 92.47 76.77
E 36.18 79.03 86.02 79.72 89.88 95.90 62.14 49.72 91.96 74.50
C 59.26 78.98 83.12 84.43 89.29 92.76 62.74 47.05 91.58 76.58
mnli-base
QA + E + C 64.32 82.66 89.63 87.01 90.71 98.27 76.95 69.80 98.09 84.16
QA + E 64.25 82.66 89.63 86.98 90.71 98.27 76.95 69.80 97.96 84.14
QA + C 64.29 82.56 89.63 87.01 90.60 98.16 76.93 69.80 97.96 84.1
E + C 33.03 62.27 76.76 72.11 68.57 92.66 45.16 34.41 88.01 63.66
E 27.81 62.47 79.37 71.94 68.81 92.66 43.48 34.41 88.01 63.22
C 43.45 59.19 70.18 69.97 67.50 81.86 41.81 32.58 87.37 61.55
albert-anli
QA + E + C 64.19 82.56 89.70 87.06 90.48 98.16 76.93 69.80 97.96 84.09
QA + E 64.19 82.56 89.70 87.06 90.60 98.16 76.93 69.80 97.96 84.11
QA + C 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.09
E + C 35.71 68.20 79.55 73.88 77.50 91.79 49.05 39.47 90.82 67.33
E 33.67 68.35 79.91 73.19 77.38 91.90 49.07 39.19 90.94 67.07
C 45.16 63.74 73.58 72.71 73.33 77.86 46.34 38.20 87.24 64.24

Table 8: Accuracy scores in the multiple choice setting for various NLI models used. Calibration was with the
RoBERTA-RACE model.
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in the main mnli-large model, as well as the results
with the other NLI models, mnli-base and albert-
anli. Table 9 shows selective QA accuracy in the
multiple choice setting where answer selection is
done through ranking before we rank answers for
selective QA. Selective QA on extractive QA using
DistillBERT (table 10) shows that QA+E+C does
best in all cases and contradiction only does second
best at 50% coverage.

F Calibration models

Like Kamath et al. (2020) and Chen et al. (2021)
we developed a set of calibration models in order
to perform answer ranking. A calibration model
is trained on a set of posterior probabilities from
downstream models to predict whether an answer
is correct.

To compare the effect of using different combi-
nations of NLI class confidence scores, we trained
a logistic regression model on linear combinations
of the following features: QA indicates that the
QA model confidence score is being used, E in-
dicates the entailment score, C indicates the con-
tradiction score, and N indicates the neutral score.
Like in Chen et al. (2021), all calibration models
are trained on a holdout set of 100 samples from
a single domain using logistic regression which
predicts, given the confidence scores of the down-
stream models, whether the answer is correct. A
multi-domain calibration approach like in Kamath
et al. (2020) was not used since the focus was a min-
imum experiment to test the viability of leveraging
different NLI classifications.

F.1 Regression Analysis

To illustrate the characteristics of the calibration
models, we present a regression analysis for the
multiple choice setting (Table 11). The results in-
dicate that as the mnli model gets larger, the cali-
bration model uses its NLI confidence scores more.
Importantly, entailment coefficients are stronger
than contradiction coefficients in all cases.

G Correlation Analysis

Since we are using the NLI and QA model scores
to construct the setups above, it is useful to know
how these factors correlate with the correct an-
swer. Table 13 shows how each NLI class cor-
relates both by score and by actual classification
(score > 50%) as compared against QA model con-
fidence score. The multiple choice analysis shows

answers from the RoBERTa-RACE model and the
extractive QA analysis shows answers from the
BERT-large model trained on SQuAD. The correla-
tion analysis presents Spearman rank correlations.

What we see is that in the multiple choice set-
ting, the confidence score has a strong correlation
with the correct answer, which makes sense given
the confidence score is a softmax over the multiple
choice classes. Extractive QA confidence scores
have a much weaker correlation and tend to have
less correlation than entailment has with the cor-
rect answer. Despite the results presented above,
contradiction only has a notable correlation with
the correct answer when the score is used rather
than the classification. This is a point in favor of
our approach of using confidence scores for NLI
rather than classifications.

Interestingly, in the extractive QA case, the neu-
tral class is more negatively correlated when se-
lecting for contradiction when using classification.
Our conjecture would be that in the extractive
QA case, we don’t have much to compare against.
When looking at the per dataset correlations for the
multiple choice setting (Table 12), we see that in
most cases, other than the QA confidence scores,
the contradiction scores have the strongest corre-
lations with the correct answer out of any NLI
class and neutral, as we would expect, tends to
have very weak correlations. We do not present the
per dataset correlation for extractive QA as they
are very weak, which we again hypothesize comes
from having no answers to compare with.
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Dataset QA+E+C QA+E QA+C E+C E C QA
20% CosmosQA 77.55 67.17 83.25 20.10 27.47 67.50 88.61

DREAM 98.28 96.32 96.81 81.13 91.91 93.87 98.28
MCScript 99.82 99.64 99.46 93.02 98.93 96.96 99.82
MCScript-2.0 99.58 99.03 97.37 92.24 97.37 95.01 99.58
MCTest 100 100 99.40 85.12 97.02 97.02 98.81
QASC 100 100 100 97.30 100 99.46 100
RACE 94.93 92.13 90.17 62.73 76.71 75.05 98.24
RACE-C 88.73 85.21 86.62 71.13 74.65 69.01 93.66
SciQ 100 100 100 82.05 100 96.15 100
Avg 95.43 93.28 94.79 76.09 84.90 87.78 97.45

50% CosmosQA 80.29 70.78 80.70 32.17 34.72 64.88 76.47
DREAM 95.10 93.63 93.63 85.20 89.41 88.33 96.67
MCScript 98.57 97.85 97.14 94.71 95.99 92.70 98.78
MCScript-2.0 96.40 94.46 96.07 91.02 91.75 91.69 98.01
MCTest 99.52 98.81 99.76 91.43 95.24 96.19 99.52
QASC 100 99.78 99.78 98.27 98.70 98.49 100
RACE 90.11 87.22 85.23 67.89 71.70 68.18 93.88
RACE-C 85.11 78.09 77.25 66.57 66.85 55.06 87.36
SciQ 100 100 99.74 89.03 96.43 96.43 100
Avg 93.90 91.18 92.14 79.59 82.31 83.55 94.52

Table 9: Selective QA accuracies in the multiple choice setting where answer selection is done through ranking
before we rank answers for selective QA.

Dataset QA+E+C QA+E QA+C E+C E C QA
20% BioASQ 70.97 70.41 71.55 74.07 74.07 74.34 68.99

HotpotQA 73.44 73.08 70.88 71.59 71.51 70.41 69.41
Natural Questions 85.59 85.29 85.45 78.46 78.46 80.53 83.27
SQuAD 96.22 96.45 95.77 83.15 83.09 81.37 97.15
SQuAD-adv 40.39 39.75 39.49 40.07 39.56 40.59 31.98
SQuAD2 35.46 35.24 33.64 36.36 36.13 36.66 25.95
TriviaQA 64.96 64.68 64.55 52.67 52.09 52.56 63.98
Avg 66.72 66.41 65.90 62.34 62.13 62.35 62.96

50% BioASQ 65.96 65.92 64.37 63.53 63.53 66.95 64.79
HotpotQA 64.42 64.21 63.65 65.88 65.85 66.91 62.81
Natural Questions 72.28 71.99 70.82 67.54 67.51 74.18 69.95
SQuAD 92.56 92.57 92.34 81.86 82.21 80.95 92.54
SQuAD-adv 33.69 32.90 33.45 38.74 38.22 38.52 31.89
SQuAD2 26.68 25.70 26.00 32.95 32.61 32.83 23.52
TriviaQA 58.40 58.41 58.25 51.43 51.18 52.99 58.25
Avg 59.14 58.81 58.41 57.42 57.30 59.05 57.68

Table 10: SelectiveQA on extractive QA using DistillBERT. Note that QA+E+C does best in all cases and
contradiction only does second best at 50% coverage.
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QA Model NLI Model Combination Confidence Entailment Contradiction Acc
SciQ mnli-base QA + C 4.13 -1.06 0.99

QA + E 3.90 1.37 0.99
QA + E + C 3.83 1.22 -0.76 0.99
E + C 2.56 -1.47 0.86

mnli-large QA + C 3.98 -1.32 0.99
QA + E 3.78 1.55 0.99
QA + E + C 3.65 1.31 -0.97 0.99
E + C 2.63 -1.72 0.91

RACE mnli-base QA + C 3.04 -0.15 0.89
QA + E 3.03 0.27 0.89
QA + E + C 3.02 0.26 -0.14 0.89
E + C 0.73 -0.46 0.75

mnli-large QA + C 2.97 0.00 -0.81 0.89
QA + E 2.91 0.98 0.89
QA + E + C 2.85 0.92 -0.75 0.89
E + C 1.76 -1.12 0.78

Table 11: Regression analysis for each mnli-based nli model with each QA model used calibration with logistic
regression multiple choice settings. Accuracy is the evaluation metric used.

Contradiction Entailment Neutral
Dataset QA Score Class Score Class Score Class
CosmosQA 0.53 -0.34 -0.17 0.05 -0.01 0.21 0.16
DREAM 0.72 -0.57 -0.35 0.54 0.50 -0.11 -0.13
MCScript 0.80 -0.59 -0.42 0.59 0.50 -0.04 -0.08
MCScript2 0.77 -0.50 -0.32 0.41 0.37 -0.04 -0.05
MCTest 0.73 -0.65 -0.47 0.64 0.69 -0.20 -0.15
QASC 0.57 -0.54 -0.28 0.55 0.67 -0.50 -0.26
RACE 0.65 -0.37 -0.20 0.35 0.34 -0.11 -0.11
RACE-C 0.59 -0.24 -0.13 0.18 0.25 -0.09 -0.11
SciQ 0.75 -0.69 -0.47 0.68 0.67 -0.42 -0.19

Table 12: Correlation analysis (Spearman rank correlation) per dataset in the multiple choice setting. RoBERTa-
RACE is used for the QA scores.

Contradiction Entailment Neutral QA
multiple choice Score -0.47 0.37 -0.06 0.71

Class -0.28 0.38 -0.06
extractive QA Score -0.16 0.31 -0.12 0.19

Class -0.15 0.39 -0.29

Table 13: Correlation analysis (Spearman rank correlation) in the multiple choice and extractive QA settings.
RoBERTa-RACE is the QA model used for multiple choice QA scores and BERT-large is used for the extractive QA
scores.
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number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.
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� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.
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