
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 747–761

July 9-14, 2023 ©2023 Association for Computational Linguistics

Modular Visual Question Answering via Code Generation

Sanjay Subramanian1 Medhini Narasimhan1 Kushal Khangaonkar1
Kevin Yang1 Arsha Nagrani2 Cordelia Schmid2 Andy Zeng2

Trevor Darrell1 Dan Klein1

1UC Berkeley 2Google Research
{sanjayss,medhini,kushaltk,yangk,trevordarrell,klein}@berkeley.edu,

{anagrani,cordelias,andyzeng}@google.com

Abstract

We present a framework that formulates
visual question answering as modular code
generation. In contrast to prior work on
modular approaches to VQA, our approach
requires no additional training and relies on
pre-trained language models (LMs), visual
models pre-trained on image-caption pairs,
and fifty VQA examples used for in-context
learning. The generated Python programs
invoke and compose the outputs of the visual
models using arithmetic and conditional logic.
Our approach improves accuracy on the COVR
dataset by at least 3% and on the GQA dataset
by 2% compared to the few-shot baseline that
does not employ code generation.

1 Introduction

The scope of reasoning needed for visual question
answering (VQA) is vast, and demands the synthe-
sis of many skills – from grounding language to pix-
els (Goyal et al., 2017; Radford et al., 2021; Zhai
et al., 2022) and spatial reasoning (Hudson and
Manning, 2019) to commonsense and knowledge-
based reasoning (Marino et al., 2019). Consider the
question “Is the carriage to the right of a horse?”.
To consistently answer such questions correctly, a
system must recognize that the question is the con-
junction of two subquestions: “Is there a horse?”
and “Is the carriage to the right of the horse?”
Scaling the typical finetuning paradigm to all possi-
ble combinations of reasoning skills is prohibitively
expensive in annotation cost and makes it difficult
to add skills to an already-trained system.

Modular approaches, on the other hand – from
classic methods (Krishnamurthy and Kollar, 2013),
to differentiable neural module networks (NMNs)
(Andreas et al., 2016; Hu et al., 2017; Saqur and
Narasimhan, 2020)) – offer a potential route to
leverage and scale to the compositional nature of
visual reasoning as a means to generalize: i.e., in-
finite use of finite means. However, the modules

of an NMN must still be trained jointly on a large
dataset, and are also restricted in that they (i) re-
quire a parser, which must be modified if modules
are added or removed from the system, and (ii)
require retraining if a module is replaced.

In this work, we investigate an alternative class
of modular VQA approaches, whereby building on
the recent advent of highly capable out-of-the-box
language models (LMs) (Chen et al., 2021; Ouyang
et al., 2022) and visual language models (VLMs)
(Li et al., 2022), we develop systems that formulate
VQA as a program synthesis problem. Specifically,
our method CodeVQA, illustrated in Figure 1, uses
code-writing LMs to take questions as input, and
outputs code to (i) orchestrate a series of visual
primitive APIs that wrap around VLMs to probe
the image for specific pieces of visual informa-
tion (e.g., captions, pixel locations of entities, or
image-text similarity scores), and (ii) reason about
that information with the full expression of Python
code (e.g. arithmetic, logic structures, feedback
loops, etc.) to arrive at an answer. From a practical
perspective, the modularity of CodeVQA combined
with the few-shot prompting capabilities of LMs
enable it to adapt to a broad range of desired VQA
label distributions without additional model train-
ing, and benefits from replacing individual modules
with improved versions as they become available.

We evaluate CodeVQA in the few-shot VQA set-
ting, which has seen a great deal of recent work
(Alayrac et al., 2022; Jin et al., 2021; Yang et al.,
2021; Tiong et al., 2022). Our method outperforms
previous approaches by at least 3% on the COVR
dataset (Bogin et al., 2021), which requires rea-
soning over multiple images, and by 2% on the
GQA dataset (Hudson and Manning, 2019). Our
results suggest that the benefits of modularity with
recent off-the-shelf models can be realized in VQA
without additional model training.1

1Our code and annotated programs will be available at
https://github.com/sanjayss34/codevqa.

747

https://github.com/sanjayss34/codevqa

Code Generation

horse_exists = query(img, "Is there
a horse?")
answer = "no”

if horse_exists == "yes":
carriage_pos_x,carriage_pos_y =

get_pos(img,"carriage")
horse_pos_x, horse_pos_y =

get_pos(img, "horse")
if carriage_pos_x > horse_pos_x:

answer = "yes”’

Question:
Is the carriage to the
right of a horse? Answer:

No

Codex
(Few–Shot Prompting)

In-Context Examples
Image 1: On which side of
the picture is the rug?
img = open_image("Image1.jpg")
rug_pos_x, rug_pos_y =
get_pos(img, "rug")
if rug_pos_x < (LEFT+RIGHT)/2:

answer = "left"
else:

answer = "right”
. . .

query(img,“Is there a horse?”)

Execute Code

get_pos(img,“carriage”) get_pos(img,“horse”)

carriage_pos_x < horse_pos_x

returns 5, 11 returns 12, 11

returns “yes”

Captions:
1. 'a police horse pulled by a fire policeman in a

wagon’,
2. 'man riding a horse drawn carriage pulling horse

next to a officer’, …

Figure 1: CodeVQA Overview. CodeVQA first prompts Codex with in-context examples that break down a given question into
Python code. Using just the question, Codex generates an executable program that composes pre-defined visual modules using
conditional logic, arithmetic, etc. The visual module, query answers a question by captioning the image and using an LM to
answer based on the captions. get_pos retrieves the location of the object. Here, CodeVQA correctly identifies the question as a
conjunction of a query and a spatial comparison and arrives at the right answer.

2 Related Work

Several recent approaches for reasoning tasks con-
sist of an LM that writes programs and an inter-
preter for these programs. Liang et al. (2022) ap-
plies this approach to robotics. Cheng et al. (2023)
introduces a framework for reasoning jointly over
tables, text, and images, where the images are rep-
resented by image captions. Subramanian et al.
(2022) used a syntactic parser and hard-coded rules
rather than an LM to aggregate outputs from CLIP
(Radford et al., 2021) for zero-shot referring ex-
pression comprehension; their finding that CLIP is
not useful for spatial keywords motivates our code
generation approach to spatial reasoning.
Concurrent with our work, other papers have in-
troduced similar frameworks for multi-hop VQA
(Gupta and Kembhavi, 2022; Surís et al., 2023).
These papers conflate the benefit of program syn-
thesis with the benefits of the LM, in-context ex-
amples, and vision models used as primitives. By
contrast, we analyze the effect of program synthesis
by comparing CodeVQA against a strong LM-based
few-shot baseline using the same in-context exam-
ple selection method. Moreover, while these frame-
works rely on supervised VQA or object detection
models, we show that we can obtain comparable
performance (on the GQA dataset) using only the
LM and models pre-trained on image-text pairs.

3 Few-shot VQA via Code Generation

In visual question answering (VQA), the inputs to
the system are an image and a question and the
output is a textual answer. We consider the few-
shot VQA setting in which the system has access
to only a small number (50) of human-annotated

VQA instances.
Overview. Fig 1 illustrates our approach. Given an
image and a corresponding question, CodeVQA first
generates a Python program using just the ques-
tion. It then executes this program, using the image
when necessary, to predict the answer. We first
define the set of code primitives that our system
uses (§ 3.1). Then we describe how we generate
a program that composes these primitives based
on the question (§ 3.2). Finally, we enumerate the
pre-trained models that we employ (§ 3.3).

3.1 Code Primitives

Primitives define basic operations over the image or
over text that are often useful for VQA. In CodeVQA,
we use three primitives, which are defined be-
low. Each of these primitives is implemented us-
ing image-text matching (ITM), image-text con-
trastive (ITC), and image-captioning models, each
of which can be trained with only image-caption
pairs. The difference between ITM and ITC is that
ITC computes separate image and text embeddings
and takes a dot product, while ITM performs early
fusion on the image and text features and is thus
more computationally expensive. We note that our
framework is not tied to this choice of primitives
and can support other, more complex primitives
that could draw on other aspects of the program-
ming language and third-party libraries.

query(image, question) This function an-
swers a question about the given image. Our imple-
mentation of this function is based on PnP-VQA
(Tiong et al., 2022) and PICa (Yang et al., 2021)
and is implemented with the following steps: (1)
using the ITM model, compute the GradCAM (Sel-

748

varaju et al., 2016) between the question and the
image (averaged over question tokens), (2) sample
K = 20 image patches based on their GradCAM
score, (3) generate a captions from the sampled
patches using the captioning model, (4) Repeat
steps (2) and (3) until C unique captions have been
generated, and (5) predict the answer by prompting
an LM with the question, captions, and in-context
examples. The in-context examples in step (5) are
selected as described in § 3.2. When the dataset
involves reasoning over multiple images, each in-
context example has the captions for all images.

get_pos(image, text) This function com-
putes the GradCAM between the given text tokens
and the image using the ITM model and returns
the (x, y) pair that maximizes the GradCAM value.
Note that this application of GradCAM is different
from the one in query since we do not average
over all question tokens. See Appendix B for more
information on how we compute GradCAM maps.

find_matching_image(images, text) In the
setting where multiple images are associated with
each question, there are questions that refer specifi-
cally to one image (e.g. “What is the woman hold-
ing?”). This function can be used to select the most
relevant image from the set. It is implemented
by scoring each image with the text using the ITC
model and picking the image with the highest score.

3.2 Code generation

In the first stage of CodeVQA, we generate a Python
program based on the question. Using Python over
a domain-specific language is advantageous be-
cause (1) it supports arithmetic as well as control
flow including loops and if statements (Liang et al.,
2022)–all of which we use in our programs–and (2)
large LMs for code generation (e.g. Codex (Chen
et al., 2021)) have been trained on a large amount
of Python code.

We construct a prompt that consists of an in-
struction, constants that define the dimensions
of the image, and import statements and API
documentation (as a code comment) that spec-
ify the available functions. In addition to the
prompt, the input to the LM also includes expert-
annotated programs for several in-context ex-
amples. An in-context example for few-shot
prompting on the COVR dataset is shown be-
low (question in gray, the program is highlighted).

Image Set 1: How many images contain exactly
2 pink shoes??
images = open_images("ImageSet1.jpg")
count = 0
for image in images:

two_pink_shoes = query(image, "Are
there exactly 2 pink shoes?")

if two_pink_shoes == "yes":
count += 1

answer = count

For an example of the rest of the prompt for the
LM, see Appendix A. When executing the gener-
ated program results in a runtime error, we return
call query on the image and the original question
(including captions for all images if the instance
involves multiple images).

Since all annotated programs cannot fit into a
single input to the model, we must select which
programs to use as in-context examples for each
test question. Following Wang et al. (2022), we use
sentence embeddings2 to retrieve the most similar
questions for each test question.

3.3 Component models

Our approach relies on four pre-trained models:
a code generation model, an ITM model, an ITC
model, an IC model, and a question-answering LM
for answering questions based on captions. We use
the code-davinci-002 model (Chen et al., 2021)
via the OpenAI API for both generating programs
and for question-answering. We use the BLIP mod-
els (Li et al., 2022) finetuned for ITM, ITC, and
captioning.

4 Experiments

4.1 Implementation Details

See Appendix C for implementation details.

4.2 Datasets

The GQA dataset (Hudson and Manning, 2019)
contains multi-hop questions generated from
human-annotated scene graphs of individual im-
ages in Visual Genome (Krishna et al., 2016). The
COVR dataset (Bogin et al., 2021) contains multi-
hop questions about sets of images in the Visual
Genome and imSitu (Yatskar et al., 2016) datasets.
These questions are synthetically generated from
templates and are then paraphrased by humans. Un-
less otherwise specified, we present results on the
paraphrased questions. The NLVR2 dataset (Suhr

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

749

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

Model
GQA COVR NLVR2
Acc. Acc. Acc.

Finetuned
VisualBERT – 57.9 67.0
VinVL-Base 65.1 – 83.1

Zero-shot
FewVLM 29.3 – –
PnP-VQA 42.3 – –

Few-shot
FewVLM 35.7 – –
Few-shot PnP-VQA 46.6 45.8 63.4
CodeVQA (ours) 49.0 50.7 64.0

Table 1: Results on GQA (testdev), COVR (test), and
NLVR2 (test-public) datasets from CodeVQA, Few-shot
PnP-VQA, and prior work VisualBERT (Li et al., 2019),
VinVL-Base (Zhang et al., 2021), FewVLM (Jin et al.,
2021), PnP-VQA (Tiong et al., 2022) FewVLM ran-
domly samples 16 few-shot examples. Our method out-
performs all few-shot methods from prior work. Highest
few-shot scores for each full dataset are in bold.

et al., 2019) contains statements about pairs of im-
ages, and the task is to determine whether each
statement is true or false (we rephrase the state-
ments as questions before feeding it to the methods
that we evaluate). Appendix G has further details
about the datasets. For each of the three datasets,
we wrote programs for 50 questions randomly sam-
pled from the corresponding training set. Unless
stated otherwise, we put 12 in-context examples
in a prompt for a single-image dataset and 6 in-
context examples in a prompt for a multi-image
dataset (since including captions for multiple im-
ages increases the necessary context size for each
example). We report the exact-match accuracies of
the lower-cased answers.

4.3 Baseline

Our baseline is an adaptation of PnP-VQA (Tiong
et al., 2022) to the few-shot setting. We refer to it as
“Few-shot PnP-VQA.” This baseline is equivalent
to running the five-step query procedure described
in § 3.1 for every question. We also compare to
zero-shot and few-shot methods from prior work.

4.4 Results

Table 1 shows the results on the three datasets.
CodeVQA has the highest accuracy among the few-
shot techniques. It has markedly better perfor-
mance on COVR, which makes sense because in
this dataset, the baseline approach must combine
information across image captions for multiple im-
ages when given a single prompt. On the other

hand, our method loops over the images and queries
a single image at a time or selects the image most
relevant to the question. Indeed, Table 3 shows that
CodeVQA has the greatest advantage on instances
involving 4 or 5 images.

Fig. 2 shows a qualitative comparison of
CodeVQA and the baseline Few-shot PnP-VQA on
the COVR dataset. CodeVQA answers the question
correctly by answering a simpler question for each
image and comparing the answers, while Few-shot
PnP-VQA answers incorrectly despite producing
captions with the necessary information.

4.5 Ablations

Table 2 compares embedding-based retrieval of in-
context examples with random retrieval. CodeVQA’s
improvement over Few-shot PnP-VQA is greater
when in-context examples are retrieved by embed-
ding. Embedding-based retrieval offers a system-
atic way to collect relevant in-context examples
rather than curating a single set of examples as in
Gupta and Kembhavi (2022).

In Appendix E, we include ablations for the
question-answering LM and for the number of
shots in the prompt as well as results on val-
idation sets. Table 4 shows that CodeVQA
improves over Few-shot PnP-VQA when ei-
ther code-davinci-002 or text-davinci-003 is
used as the question-answering LM. Table 5 shows
roughly constant accuracy as the number of in-
context examples is varied.

Retrieval Method Few-shot PnP-VQA CodeVQA

text-davinci-003
Random 48.15 49.9
Embedding 49.4 52.5

code-davinci-002
Random 49.5 50.7
Embedding 52.1 55.3

Table 2: Comparing Example Retrieval Techniques on
2000 GQA validation examples. Italicized GPT model name
denotes the model used as the question-answering LM.

4.6 Analysis

Figure 3 breaks down accuracy by question type.
CodeVQA’s greatest improvement (roughly 30%) is
in the subset consisting of questions about left/right
or top/bottom object positions. There is also an
improvement in “and” and “or” questions. This
improvement could be related to the recent finding
that LMs benefit from converting multi-hop into

750

Context:
Image 1: A train sitting at a large yellow station. A
train is pulling into the train station at a platform.
A yellow train is parked at a train dock.
Image 2: A locomotive moving down a snowy road.
Train train red box on train train train up train
cargo train red train train red. A train traveling
through a snowy city next to a red light.
===
Q: Is it true that the train next to a platform and
the train near the snow are in the same color?
A:

Question: Is it true that the train
next to a platform and the train
near the snow are in the same
color?
Ground Truth Answer: no

images = open_images("ImageSet7.jpg")
platform_image = find_matching_image(images,
"train next to a platform")
snow_image = find_matching_image(images,
"train near the snow")
platform_train_color = query(platform_image,
"What color is the train?")
snow_train_color = query(snow_image, "What
color is the train?")
if platform_train_color == snow_train_color:

answer = "yes"
else:

answer = "no"

CodeVQA Few-shot PnP-VQA

Answer: no Answer: yes

Figure 2: Qualitative Comparison. CodeVQA correctly answers this question from COVR by breaking it into simpler questions,
answering each separately, and comparing the answers. Few-shot PnP-VQA answers incorrectly, even though the captions
contain the necessary information. (Note that CodeVQA also generates captions, which are not shown here.)

single-hop questions (Press et al., 2022).3

Number of images
1 2 3 4 5

of Instances 12 915 828 696 4440
Few-shot PnP-VQA 91.7 51.5 48.3 47.0 46.9
CodeVQA 75.0 53.3 48.7 53.2 53.4

Table 3: Accuracy by number of images per instance on
COVR validation set.

We analyzed sources of error in CodeVQA on 100
examples in the COVR validation set for which
CodeVQA answered incorrectly: irrelevant cap-
tions (31%), mistake in find_matching_image
(12%), program generation error (14%), question-
answering error (25%), predicted answer could
be considered correct (14%), ground-truth is un-
clear/incorrect (16%), and numerical error (1%).
Note that these categories are not mutually exclu-
sive, and 13 of the 100 examples were marked with
multiple categories. Thus, more errors are due to
execution of the modules than program generation.

5 Conclusion

In this paper, we have introduced a framework for
modular few-shot VQA. Our approach prompts an
LM to generate a Python program that invokes pre-
trained visual modules and composes the outputs of
these modules to predict the answer. Unlike previ-
ous modular VQA techniques, this framework does
not require (re-)training modules or a parser. Also,
obtaining interpretable module outputs from previ-
ous modular approaches is nontrivial (Subramanian
et al., 2020), whereas in our approach the modules
are frozen and thus interpretable. CodeVQA can also
be viewed as expanding pipelined systems (Zeng
et al., 2022) to the full expression of code. Our ap-

3Accuracy on this kind of question can also be improved
by improving the LM. For instance, using text-davinci-003
as the LM for QA closes the gap between Few-shot PnP-VQA
and CodeVQA on “and” questions in GQA.

Figure 3: Accuracy by question type in GQA test
set. CodeVQA (blue) outperforms Few-shot PnP-VQA
(orange) on the spatial, and, or questions. “Spatial”
refers to questions focusing on left/right or top/bottom
relations or object positions.

proach exhibits empirical gains, motivating future
work on modular few-shot VQA.

6 Limitations

While the initial results are promising, the accuracy
of our method remains lower than human VQA ac-
curacy and models finetuned on the VQA datasets,
which suggests that there may still be substantial
progress that must be made before few-shot VQA
methods with code synthesis are useful for practi-
cal real world applications. Also, further work is
needed on extending the framework to additional
primitives, as the results in Appendix F show that
doing so does not always lead to improvements
over the baseline method. Another limitation of
our approach is that it relies on large capable LMs,
which may be restricted in use due to compute re-
quirements or cost (e.g. via available APIs). We
also focus in this work on benchmarking VQA ca-
pabilities with English as the primary language –
future work may extend this to other languages via
multilingual LMs.

751

7 Acknowledgements

We thank the members of the Berkeley NLP group,
Grace Luo, and the anonymous reviewers for feed-
back on earlier drafts of this paper. We are grateful
to Ben Bogin and Shivanshu Gupta for their as-
sistance in evaluating CodeVQA and Few-shot PnP-
VQA on the private COVR test set. SS, MN, and
TD were supported in part by the DoD, includ-
ing an NDSEG fellowship (for SS) and DARPA’s
LwLL, PTG, and/or SemaFor programs, by the
NSF, and/or by the Berkeley Artificial Intelligence
Research (BAIR) industrial alliance program.

References
Sandhini Agarwal, Gretchen Krueger, Jack Clark, Alec

Radford, Jong Wook Kim, and Miles Brundage. 2021.
Evaluating clip: Towards characterization of broader
capabilities and downstream implications. ArXiv,
abs/2108.02818.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, Andy
Brock, Aida Nematzadeh, Sahand Sharifzadeh, Miko-
laj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a visual language model for few-shot
learning. ArXiv, abs/2204.14198.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Learning to compose neural net-
works for question answering. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1545–1554, San
Diego, California. Association for Computational
Linguistics.

Ben Bogin, Shivanshu Gupta, Matt Gardner, and
Jonathan Berant. 2021. Covr: A test-bed for visu-
ally grounded compositional generalization with real
images. In Conference on Empirical Methods in Nat-
ural Language Processing.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew

Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh Inter-
national Conference on Learning Representations.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904–6913.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi-
sual programming: Compositional visual reasoning
without training. ArXiv, abs/2211.11559.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Kate Saenko. 2017. Learning
to reason: End-to-end module networks for visual
question answering. In Proceedings of the IEEE
international conference on computer vision, pages
804–813.

Drew A. Hudson and Christopher D. Manning. 2019.
Gqa: A new dataset for real-world visual reason-
ing and compositional question answering. 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6693–6702.

Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu
Chen, and Xiang Ren. 2021. A good prompt is
worth millions of parameters: Low-resource prompt-
based learning for vision-language models. ArXiv,
abs/2110.08484.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. 2016. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Interna-
tional Journal of Computer Vision, 123:32–73.

Jayant Krishnamurthy and Thomas Kollar. 2013. Jointly
learning to parse and perceive: Connecting natural
language to the physical world. Transactions of the
Association for Computational Linguistics, 1:193–
206.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H.
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In ICML.

752

https://doi.org/10.18653/v1/N16-1181
https://doi.org/10.18653/v1/N16-1181
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak
Gotmare, Shafiq R. Joty, Caiming Xiong, and Steven
C. H. Hoi. 2021. Align before fuse: Vision and lan-
guage representation learning with momentum distil-
lation. In Neural Information Processing Systems.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
ArXiv, abs/1908.03557.

J. Liang, Wenlong Huang, F. Xia, Peng Xu, Karol Haus-
man, Brian Ichter, Peter R. Florence, and Andy Zeng.
2022. Code as policies: Language model programs
for embodied control. ArXiv, abs/2209.07753.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. 2023. Grounding dino: Marrying
dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual
question answering benchmark requiring external
knowledge. 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
3190–3199.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. ArXiv, abs/2210.03350.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Candace Ross, Boris Katz, and Andrei Barbu. 2020.
Measuring social biases in grounded vision and lan-
guage embeddings. In North American Chapter of
the Association for Computational Linguistics.

Raeid Saqur and Karthik Narasimhan. 2020. Multi-
modal graph networks for compositional generaliza-
tion in visual question answering. In Neural Infor-
mation Processing Systems.

Ramprasaath R. Selvaraju, Abhishek Das, Ramakr-
ishna Vedantam, Michael Cogswell, Devi Parikh, and
Dhruv Batra. 2016. Grad-cam: Visual explanations
from deep networks via gradient-based localization.

International Journal of Computer Vision, 128:336–
359.

Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer
Wolfson, Sameer Singh, Jonathan Berant, and Matt
Gardner. 2020. Obtaining faithful interpretations
from compositional neural networks. In Annual
Meeting of the Association for Computational Lin-
guistics.

Sanjay Subramanian, William Merrill, Trevor Darrell,
Matt Gardner, Sameer Singh, and Anna Rohrbach.
2022. ReCLIP: A strong zero-shot baseline for re-
ferring expression comprehension. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5198–5215, Dublin, Ireland. Association for
Computational Linguistics.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6418–6428, Florence, Italy. Association for
Computational Linguistics.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128.

Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Sil-
vio Savarese, and Steven CH Hoi. 2022. Plug-and-
play vqa: Zero-shot vqa by conjoining large pre-
trained models with zero training. Findings of ACL:
EMNLP.

Zhenhailong Wang, Manling Li, Ruochen Xu, Lu-
owei Zhou, Jie Lei, Xudong Lin, Shuohang Wang,
Ziyi Yang, Chenguang Zhu, Derek Hoiem, Shih-Fu
Chang, Mohit Bansal, and Heng Ji. 2022. Language
models with image descriptors are strong few-shot
video-language learners. ArXiv, abs/2205.10747.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei
Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang. 2021.
An empirical study of gpt-3 for few-shot knowledge-
based vqa. In AAAI Conference on Artificial Intelli-
gence.

Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi. 2016.
Situation recognition: Visual semantic role labeling
for image understanding. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 5534–5542.

Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof
Choromanski, Federico Tombari, Aveek Purohit,
Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vin-
cent Vanhoucke, et al. 2022. Socratic models: Com-
posing zero-shot multimodal reasoning with lan-
guage. arXiv preprint arXiv:2204.00598.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas
Steiner, Daniel Keysers, Alexander Kolesnikov, and
Lucas Beyer. 2022. Lit: Zero-shot transfer with

753

https://doi.org/10.18653/v1/2022.acl-long.357
https://doi.org/10.18653/v1/2022.acl-long.357
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644

locked-image text tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 18123–18133.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual represen-
tations in vision-language models. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5575–5584.

A Code generation prompts

A.1 GQA

The preamble of the prompt (gray)–containing
the instruction, constants, import statements,
and API documentation–and a single in-
context example are shown below (question
in green, program highlighted). In our
main GQA experiments, 12 in-context ex-
amples are used for each evaluation example.
"""Write Python code to answer the questions
about each image."""
Global constants
min x coordinate LEFT = 0
min y coordinate BOTTOM = 0 # max x coordinate
RIGHT = 24 # max y coordinate TOP = 24 from
PIL import Image from utils import open_images,
query, find_matching_image, get_pos
"""
API Reference:
open_image(path: str) -> Image - opens the image
at the path and returns it as an Image object
query(img: Image, question: str) -> str -
queries the image returns an answer to the
question
get_pos(img: Image, object: str) -> (float,
float) - returns the position of the object in
the image """
Image 1: Does the bench look silver and
metallic?
img = open_image("Image1.jpg")
is_silver = query(img, "Does the bench look

silver and metallic?")
is_metallic = query(img, "Does the bench look

metallic?")
if is_silver == "yes" and is_metallic == "yes":

answer = "yes"
else:

answer = "no"

A.2 COVR

The preamble of the prompt (gray)–containing
the instruction, constants, import statements,
and API documentation–and a single in-
context example (question in green, pro-
gram highlighted) are shown below. In
our COVR experiments, 6 in-context exam-
ples are used for each evaluation example.
"""Write Python code to answer the questions
about each image."""
Global constants
min x coordinate LEFT = 0
min y coordinate BOTTOM = 0 # max x coordinate
RIGHT = 24 # max y coordinate TOP = 24 from
PIL import Image from utils import open_images,
query, find_matching_image, get_pos
"""
API Reference:
open_image(path: str) -> List[Image] - opens
the images in the given directory and returns
them in a list of Image objects
query(img: Image, question: str) -> str -
queries the region of the image in the given
coordinates and returns an answer
find_matching_image(images: List[Image], text:
str) -> Image - returns the image that best
matches the text
get_pos(img: Image, object: str) -> (float,
float) - returns the position of the object in
the image """
Image Set 1: Is it true that there are more
ladies that are wearing black shirt than men
that are wearing black shirt?
images = open_images("ImageSet1.jpg")
ladies_total = 0
men_total = 0
for image in images:

ladies_exist = query(image, "Is there a
lady?")

if ladies_exist == "yes":
ladies_count = int(query(image, "How

many ladies are wearing black
shirt?"))

ladies_total += ladies_count
man_exist = query(image, "Is there a

man?")
if men_exist == "yes":

men_count = int(query(image, "How
many men are wearing black
shirt?"))

men_total += men_count
if ladies_total > men_total:

answer = "yes"
else:

answer = "no"

B GradCAM

Our computation of GradCAM follows prior work
that uses vision transformers (Tiong et al., 2022;
Li et al., 2021). We are given a question with to-
kens q1, ..., qT and an image that is tokenized into
K ×K patches. We use layer L = 6 to compute

754

GradCAM, following Tiong et al. (2022). We com-
pute a GradCAM map for each token as follows.
Let C ∈ RT×K2

be the cross-attention map from
layer L. Let G ∈ RT×K2

be the gradient of the
image-text matching score with respect to C. Then
the GradCAM map for token i is given by the ith
row of C

⊙
ReLU(G)), where

⊙
denotes ele-

mentwise multiplication. As stated in Section 3.1,
for the query primitive, we take the average Grad-
CAM map across all question tokens, whereas for
the get_pos primitive, we take the average Grad-
CAM map across the input text tokens (which are
part of the question tokens).

C Implementation Details

To generate captions for in-context examples in
each dataset, we run steps 1− 4 for each of the 50
questions in the database of in-context examples.
For GQA experiments, we use C = 7 captions
per image, and for COVR experiments, where each
question is associated with multiple images, we
use C = 3 captions per image.4 We use C = 7
captions for the NLVR2 dataset. Each reported
accuracy result represents a single evaluation run
over the corresponding evaluation set. For NLVR2
and some instances of COVR, the text input is a
statement (to be classified as True/False). We con-
vert each such statement to a question by adding
the prefix “Is it true that” to it and converting the
answer to “yes”/“no.” We use question embeddings
to select 12 examples for GQA and 6 examples for
COVR and NLVR2.

D Qualitative Comparisons

We include qualitative comparisons of our
method CodeVQA to the baseline Few-shot PnP-
VQA (text-davinci-003) in Fig 5. In all the in-
stances, we can see that PnP-VQA produces cap-
tions that are irrelevant to the question, resulting
in incorrect answers. On the other hand, CodeVQA
breaks down the question into a Python code block.
CodeVQA uses if-else conditions along with the pre-
defined visual modules get_pos(image, text)
and query(image, text) to focus on the right
regions of the image, arriving at the correct answer
in an explainable fashion.

Fig. 6 shows two examples from the NLVR-2
dataset where our method CodeVQA answers the

4We chose this number of captions to be the maximum
possible subject to the number of shots and the context size of
the davinci model, which we used as our question-answering
LM in preliminary experiments.

Figure 4: Accuracy by question type in 2000 GQA
validation examples. CodeVQA (blue) outperforms Few-
shot PnP-VQA (orange) on the spatial and or questions.
“Spatial” refers to questions focusing on left/right or
top/bottom relations or object positions.

questions correctly. In the first example, it queries
each of the images for the count of the pandas, and
answers the question correctly based on that. In the
second example, our method breaks the question
down into three simpler queries and an if-else
statement to arrive at the correct answer.

Fig. 7 shows the correct results of our method
on complex multireference questions in the COVR
dataset. CodeVQA is able to break down the logic to
obtain the counts of images with a cake on a white
plate and images with a lemon on a white plate and
then evaluates if the two counts are the same.

In the second more complex example, our
method uses for loops and complex if-else logic
to first locate the images that satisfy the criterion,

“pillows on a couch near a table” and “pillows on
a couch near a bed” to count the individual occur-
rences.

E Additional Quantitative Results

Table 4 shows results on validation sets and
compares the accuracies of CodeVQA and Few-
shot PnP-VQA when using code-davinci-002
and text-davinci-003 as the question-answering
LM.

Table 5 shows how the accuracies of CodeVQA
and Few-shot PnP-VQA vary with the number of
shots in the prompt. Figure 4 shows the break-
down of accuracy by question type for 2000 GQA
validation examples, which we used for initial ex-
perimentation (similar to Figure 3 but on validation
examples). We note that on this sample, Few-shot
PnP-VQA has an advantage on “and” questions.

755

Model
GQA COVR

Shots Val Sample Testdev Shots Val Sample Val Test

Few-shot PnP-VQA 12 49.4 44.9 6 51.4 – –
w/ text-davinci-003

CodeVQA (ours) 12 52.5 46.8 6 54.4 – –
w/ text-davinci-003

Few-shot PnP-VQA 12 52.1 46.6 6 49.0 47.8 45.8
w/ code-davinci-002

CodeVQA (ours) 12 55.3 49.0 6 54.5 52.9 50.7
w/ code-davinci-002

Table 4: Validation and test results on GQA and COVR. OpenAI model name (text-davinci-003 or code-davinci-002)
denotes which model was used as the question-answering model. GQA validation sample contains 2000 examples from the GQA
validation set. COVR validation sample contains 1000 examples from the COVR non-paraphrased validation set. Highest scores
on are in bold.

Method
Number of shots

8 12 16

text-davinci-003
Few-shot PnP-VQA 48.3 49.4 49.5
CodeVQA 52.8 52.5 52.7

code-davinci-002
Few-shot PnP-VQA 50.6 52.1 51.2
CodeVQA 55.1 55.3 55.4

Table 5: Accuracy with different numbers of shots on 2000
GQA validation examples.

F Experiments with Additional Primitives

We also experiment with two other primitives, on
datasets involving counting objects or knowledge
retrieval:

find_object(image, object_description)
This function returns a set of references to objects
in the image that match the given description, and
we use it for counting objects. We implement this
function using Grounding DINO (Liu et al., 2023),
which is an open-vocabulary object detector that
is also trained on referring expression comprehen-
sion.
We evaluate this primitive on the VQAv2 dataset
(Goyal et al., 2017), for which we use only this
primitive and query, as well as the COVR and
NLVR2 datasets. We used 12 in-context examples
for the VQAv2 dataset. Table 6 shows the results in-
dicating that using this module for counting rather
than query yields mixed results. Qualitatively, we
observe that the object detector is not always ac-
curate. In particular, the detector may not handle

referring expressions with qualifiers correctly (e.g.
“boats holding people”; on the other hand, a cap-
tion may say that the boats are empty). We also
observe that captions often contain the number of
objects when the number is small, so query can be
effective on counting.

knowledge_query(question) This function re-
turns the answer to a question based on world
knowledge (e.g. “Which football team has won
the most Super Bowls?”). We implement this func-
tion using the same LM that is used for query. In
order to better match the format of the OK-VQA
dataset, we add a large negative bias to the logits
of the following tokens to prevent the LM from
generating them: hyphens, “to”, and ◦. This choice
was made based on preliminary experiments on the
OK-VQA dataset.
We evaluate this primitive on the OK-VQA dataset
(Marino et al., 2019), for which we use only this
primitive and query. We used 7 in-context exam-
ples to be consistent with the OK-VQA results in
Surís et al. (2023). Table 7 provides the results,
showing that for questions involving both visual in-
formation and general knowledge, breaking down
the questions in this way does not lead to improved
accuracy.
For both VQAv2 and OK-VQA, we use the stan-
dard evaluation method associated with the VQAv2
dataset, which takes into account the set of ground-
truth answers for each question.

G Licenses and Other Dataset Details

GQA is licensed under the CC-BY-4.0 license
(https://creativecommons.org/licenses/by/4.0/).
The COVR repository
(https://github.com/benbogin/covr-dataset) is

756

https://creativecommons.org/licenses/by/4.0/
https://github.com/benbogin/covr-dataset

Code:
img = open_image("Image13.jpg")
woman_pos_x, woman_pos_y = get_pos(img,
"woman")
pot_pos_x, pot_pos_y = get_pos(img, "pot")
if pot_pos_x < woman_pos_x:

answer = "left”
else:

answer = "right"

CodeVQA (Ours)Few-shot PnP-VQA

True Answer: Left

Captions:
'a bunch of women in aprons cooking in a
kitchen’,
‘three women in hats and a red hat’,
'women preparing to cook in kitchen cooking
dishes in kitchen’,
'female students learning how to cook in a
home kitchen’, …

Answer: Right Answer: Left

Question: Is the pot to
the left or right of the
woman wearing glasses?

True Answer: No

Code:
LEFT, RIGHT, BOTTOM, TOP = 0, 24, 0, 24
img = open_image("Image13.jpg")
woman_pos_x, woman_pos_y = get_pos(img,
"woman")
if woman_pos_y < (BOTTOM+TOP)/2:

answer = "no”
else:

answer = "yes”

Captions:
'people walk by a building and some people
walking around’,
'a tall sign with people talking to it outside’,
‘the sign for the hotel has a red - and - white
design’,
'a person walking next to a tall pole with a sign
on it next to a’ …

Answer: Yes Answer: No

Question: Is the woman
on the top part of the
picture?

True Answer: No

Code:
img = open_image("Image13.jpg")
apple_exists = query(img, "Do you see an
apple?")
sandwich_exists = query(img, "Do you see a
sandwich?")
if apple_exists == "yes" and sandwich_exists
== "yes":

answer = "yes”
else:

answer = "no"

Captions:
'an apple and two cups of water on a table',
'an apple, a glass lime plate, sitting on a green
green table plate’,
'an apple, two cups, and a paper plate sits on a
table’,
'a big red apple on a paper plate’,
‘an apple is perched beside two plates of
food'…

Answer: Yes Answer: No

Question: Do you see
both an apple and a
sandwich?

Figure 5: GQA Results. We show example results from the GQA dataset where our method CodeVQA outperforms the baseline
Few-Shot PnP-VQA.

VQAv2 COVR NLVR2

Few-shot PnP-VQA 66.84 47.8 63.4
CodeVQA – 52.9 64.0
CodeVQA 65.91 52.9 66.0

w/ find_object

Table 6: Results with find_object used for counting objects
on VQAv2 (sample of 4000 examples from validation set),
COVR (validation), and NLVR2 (test-public).

licensed under an MIT license (though imSitu im-
ages may not be licensed). The text in both datasets
is written in English. The annotations in NLVR2
are licensed under CC-BY-4.0, but the images in
the dataset are not licensed. The annotations in
VQAv2 are licensed under CC-BY-4.0.
The testdev set of GQA contains 12578 instances.
The test set of COVR contains 7024 instances. The
validation set of COVR contains 6891 instances.
The public test set of NLVR2 contains 6967 in-
stances. The validation set of OK-VQA contains
5046 instances. For VQAv2, we evaluate on a ran-

OK-VQA

Few-shot PnP-VQA 54.1
CodeVQA 53.5

w/ knowledge_query

Table 7: Results with knowledge_query on the OK-VQA
validation set.

dom sample of 4000 examples from the validation
set.
During the development and intermediate evalu-
ations of our method, we evaluated on a random
sample of 200 training examples and a random
sample of 2000 validation examples from GQA, a
random sample of 200 training examples and the
validation set from COVR, a random sample of
2000 training examples from NLVR2, a random
sample of 1200 training examples from OK-VQA,
and a random sample of 2200 training examples
from VQAv2.

757

Code:
panda_count = 0
for image in images:

panda_count += int(query(image, "How many pandas are there?"))
if panda_count == 4:

answer = "yes"
else:

answer = "no”

Answer: Yes

Code:
images = open_images("ImageSet7.jpg")
rows_of_three = query(images[0], "Are the laptops in horizontal rows of three?") == "yes”
open_laptops = query(images[0], "Are there rows of open laptops?") == "yes”
closed_laptops = query(images[0], "Are there rows of closed laptops?") == "yes”
if rows_of_three and open_laptops and closed_laptops:

answer = "yes”
else:

answer = "no”

Answer: No

Question: Is it true that there are four pandas?

Question: Is it true that the left image shows laptops in horizontal rows of three and
includes rows of open laptops and rows of closed laptops?

Figure 6: NLVR2 Results. We show example results from the NLVR-2 dataset of our method CodeVQA.

H Ethics and Impact Statement

One goal of our work is to decrease the need for
(re-)training VQA systems. Achieving this goal
would mean a decrease in carbon emissions from
training models. However, our approach also has a
high inference cost, given the use of large language
models. A decision to employ our approach should
take into consideration this computational cost and
the associated environmental impact.

Another potential positive impact of our ap-
proach is improved interpretability via the gener-
ated programs. These programs offer to people
familiar with Python a record of which visual tasks
the system uses for a given question and how the

system combines the outputs of these tasks to pre-
dict the answer.

Our system relies on pre-trained vision-language
models to predict answers to visual questions. Prior
work (Ross et al., 2020; Agarwal et al., 2021) has
found evidence of social biases in vision-language
models trained on image-captions. Therefore, our
system may exhibit these biases as well. Practition-
ers should be aware of this risk and ideally should
take steps to mitigate this risk when they consider
deploying this system in ways that can impact hu-
man lives.

758

Code:
images = open_images("ImageSet7.jpg")
count = 0
for image in images:
 girl_exists = query(image, "Is there a girl wearing a skirt?")
 if girl_exists == "yes":
 holding_racket = query(image, "Is there a girl holding a racket?")
 if holding_racket == "yes":
 count += 1
answer = count

Answer: 1

Question: What amount of pictures show girls wearing a skirt and holding a racket?

Code:
images = open_images("ImageSet7.jpg")
cake_count = 0
lemon_count = 0
for image in images:
 cake_exists = query(image, "Is there a cake on a white plate?")
 lemon_exists = query(image, "Is there a lemon on a white plate?")
 if cake_exists == "yes":
 cake_count += 1
 if lemon_exists == "yes":
 lemon_count += 1
if cake_count == lemon_count:
 answer = "yes"
else:
 answer = "no”

Answer: No

Question: Are there the same number of images that have a cake on a white plate as there
are images that have a lemon on a white plate?

Figure 7: COVR Results. We show results on the COVR dataset where our method correctly answers the question by
referencing all the images.

759

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

5

�3 A2. Did you discuss any potential risks of your work?
5 and Appendix H

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
3.1

�3 B1. Did you cite the creators of artifacts you used?
3.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix G

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We used VQA datasets for evaluation of VQA approaches, which is clearly in line with intended use.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The questions and answers in these datasets generally refer to simple properties of objects, not ones
that would reveal the identify of people.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Appendix G

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix G

C �3 Did you run computational experiments?
3

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Our approach does not involve training and much of the computation is done by models that we
access via the OpenAI API.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

760

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Some of the implementation details, such as the number of captions are discussed/analyzed in
Appendix C.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix C

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We will provide code upon publication, as stated in a footnote in the Introduction.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

761

