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Abstract

Named entity recognition (NER) is the task
to detect and classify entity spans in the text.
When entity spans overlap between each other,
the task is named as nested NER. Span-based
methods have been widely used to tackle nested
NER. Most of these methods get a score matrix,
where each entry corresponds to a span. How-
ever, previous work ignores spatial relations
in the score matrix. In this paper, we propose
using Convolutional Neural Network (CNN)
to model these spatial relations. Despite being
simple, experiments in three commonly used
nested NER datasets show that our model sur-
passes several recently proposed methods with
the same pre-trained encoders. Further analy-
sis shows that using CNN can help the model
find more nested entities. Besides, we find that
different papers use different sentence tokeniza-
tions for the three nested NER datasets, which
will influence the comparison. Thus, we re-
lease a pre-processing script to facilitate future
comparison. 1

1 Introduction

Named Entity Recognition (NER) is the task to
extract entities from raw text. It has been a fun-
damental task in the Natural Language Processing
(NLP) field. Previously, this task is mainly solved
by the sequence labeling paradigm through assign-
ing a label to each token (Huang et al., 2015; Ma
and Hovy, 2016; Yan et al., 2019). However, this
method is not directly applicable to the nested NER
scenario, since a token may be included in two or
more entities. To overcome this issue, the span-
based method which assigns labels to each span is
introduced (Eberts and Ulges, 2020; Li et al., 2020;
Yu et al., 2020).

∗Equal contribution.
†Corresponding author.

1Code is available at https://github.com/yhcc/CNN_
Nested_NER

a
(1-3)

c
(1-4)

c
(1-5)

d
(2-3)

o
(2-4)

c
(2-5)

d
(3-3)

d
(3-4)

b
(3-5)

e
(5-5)

c
(5-6)

c
(5-7)

c
(5-6)

o
(6-6)

c
(6-7)

c
(5-7)

c
(6-7)

e
(7-7)

Is1 New2 York3 University4 in5 United6 States7

Is1

New2

York3

University4

in5

United6

States7

ao center span backend tokens clash 
with the center span

b front tokens clash 
with the center span c containing the center 

span

d contained by the center 
span e no clash

Figure 1: All valid spans of a sentence. We use the
start and end tokens to pinpoint a span, for instance,
“(2-4)” represents “New York University”. Spans in the
two orange dotted squares indicates that the center span
can have the special relationship (different relations are
depicted in different colors) with its surrounding spans.
For example, the span “New York” (2-3) is contained
by the span “New York University” (2-4). Therefore,
the “(2-3)” span is annotated as “d”.

Eberts and Ulges (2020) use a pooling method
over token representations to get the span repre-
sentation, and then conduct classification on this
span representation. Li et al. (2020) transform the
NER task into a Machine Reading Comprehension
(MRC) form, they use the entity type as the query,
and ask the model to select spans that belong to
this entity type. Yu et al. (2020) utilize the Biaffine
decoder from dependency parsing (Dozat and Man-
ning, 2017) to convert the span classification into
classifying the start and end token pairs. However,
these work does not take advantage of the spatial
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correlations between adjacent spans.
As depicted in Figure 1, spans surrounding a

span have special relationships with the center span.
It should be beneficial if we can leverage these spa-
tial correlations. In this paper, we use the Biaffine
decoder (Dozat and Manning, 2017) to get a 3D
feature matrix, where each entry represents one
span. After that, we view the span feature matrix
as a spatial object with channels (like images) and
utilize Convolutional Neural Network (CNN) to
model the local interaction between spans.

We compare this simple method with recently
proposed methods (Wan et al., 2022; Li et al., 2022;
Zhu and Li, 2022; Yuan et al., 2022). To make sure
our method is strictly comparable to theirs, we ask
the authors for their version of data. Although all of
them use the same datasets, we find that the statis-
tics, such as the number of sentences and entities,
are not the same. The difference is caused by the
usage of distinct sentence tokenization methods,
which will influence the performance as shown in
our experiments. To facilitate future comparison,
we release a pre-processing script for ACE2004,
ACE2005 and Genia datasets.

Our contributions can be summarized as follows.

• We find that the adjacent spans have special
correlations between each other, and we pro-
pose using CNN to model the interaction be-
tween them. Despite being very simple, it
achieves a considerable performance boost in
three widely used nested NER datasets.

• We release a pre-processing script for the three
nested NER datasets to facilitate direct and
fair comparison.

• The way we view the span feature matrix as a
spatial object with channels shall shed some
light on future exploration of span-based meth-
ods for nested NER task.

2 Proposed Method

In this section, we first introduce the nested NER
task, then describe how to get the feature matrix.
After that, we present the CNN module to model
the spatial correlation on the feature matrix. A
general framework can be viewed in Figure 2.

2.1 Nested NER Task
Given an input sentence X = [x1, x2, . . . , xn] with
n tokens, the nested NER task aims to extract all
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Figure 2: The proposed method in this paper. Use
several blocks of CNN to model the spatial correlations
between neighbor spans.

entities in X . Each entity can be expressed as a
tuple (si, ei, ti). si, ei are the start, end index of
the entity. ti ∈ {1, . . . , |T |} is its entity type and
T = {t1, ..., tn} is entity types. As the task name
suggests, entities may overlap with each other, but
different entities are not allowed to have crossing
boundaries. For a sentence with n tokens, there are
n(n+ 1)/2 valid spans.

2.2 Span-based Representation
We follow Yu et al. (2020) to formulate this task
into a span classification task. Namely, for each
valid span, the model assigns an entity label to it.
The method first uses an encoder to encode the
input sentence as follows:

H = Encoder(X),

where H ∈ Rn×d, and d is the hidden size. Various
pre-trained models, such as BERT (Devlin et al.,
2019), are usually used as the encoder. For the
word tokenized into several pieces, we use max-
pooling to aggregate from its pieces’ hidden states.

Next, we use a multi-head Biaffine de-
coder (Dozat and Manning, 2017; Vaswani et al.,
2017) to get the score matrix R as follows:

Hs = LeakyReLU(HWs),

He = LeakyReLU(HWe),

R = MHBiaffine(Hs,He)
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# Param.
(Million)

ACE2004 ACE2005

P R F1 P R F1

Data from Li et al. (2022)
W2NER (2022)[BERT-large] 355.4 87.33 87.71 87.52 85.03 88.62 86.79
Ours[BERT-large] 345.1 87.8238 87.4020 87.6118 86.3961 87.2434 86.8245

w.o. CNN[BERT-large] 343.6 86.5448 87.0941 86.8121 84.8826 86.9933 85.9227

Data from Wan et al. (2022)
SG (2022)[BERT-base] 112.3 86.70 85.93 86.31 84.37 85.87 85.11
Ours[BERT-base] 110.5 86.8561 86.4536 86.6522 84.9449 85.4027 85.1616

w.o. CNN[BERT-base] 109.1 85.7946 85.7812 85.7822 82.9121 84.8923 83.8916

Data from Zhu and Li (2022)
BS (2022)[RoBERTa-base] 125.6 88.43 87.53 87.98 86.25 88.07 87.15
Ours[RoBERTa-base] 125.6 87.7727 88.2836 88.0314 86.5878 87.9446 87.2548

w.o. CNN[RoBERTa-base] 125.2 86.7127 87.4042 87.0518 85.4839 87.5459 86.5026

Data from this work
W2NER (2022)[BERT-large]† 355.4 87.1711 87.7019 87.4311 85.7830 87.8124 86.7721

Ours[BERT-large] 345.1 87.9830 87.5022 87.7416 86.2665 87.5631 86.9123

w.o. CNN[BERT-large] 343.6 86.6068 86.4836 86.5419 84.9134 87.3926 86.1330

BS (2022)[RoBERTa-base]† 125.6 87.3240 86.8416 87.0824 86.5838 87.8459 87.2032

Ours[RoBERTa-base] 125.6 87.3341 87.2925 87.3116 86.7029 88.1654 87.4226

w.o. CNN[RoBERTa-base] 125.2 86.0936 86.8823 86.4817 85.1767 88.035 86.5638

Table 1: Experiment results and the number of parameters for different models in the ACE2004 and ACE2005
datasets. Models in the same block use the same data. The subscript means the standard deviation (e.g 87.7318

means 87.73±0.18). † means our reproduction with their publicly available code.

where Ws,We ∈ Rd×h, h is the hidden size,
MHBiaffine(·, ·) is the multi-head Biaffine de-
coder2, and R ∈ Rn×n×r, r is the feature size.
Each cell (i, j) in the R can be seen as the feature
vector v ∈ Rr for the span. And for the lower tri-
angle of R (where i > j), the span contains words
from the j-th to the i-th (Therefore, one span will
have two entries if its length is larger than 1).

2.3 CNN on Feature Matrix
As shown in Figure 1, the cell has relations with
cells around. Therefore, we propose using CNN to
model these interactions. We repeat the following
CNN block several times in our model:

R′ = Conv2d(R),

R′′ = GeLU(LayerNorm(R′ +R)),

where Conv2d, LayerNorm and GeLU are the 2D
CNN, layer normalization (Ba et al., 2016) and
GeLU activation function (Hendrycks and Gimpel,
2016). The layer normalization is conducted in the
feature dimension. A noticeable fact here is that
since the number of tokens n in sentences varies,
their Rs are of different shape. To make sure results
are the same when R is processed in batch, the 2D
CNN has no bias term, and all the paddings in R
are filled with 0.

2The detailed description is in the Appendix A.1.

2.4 The Output

We use a perceptron to get the prediction logits P
as follows: 3

P = Sigmoid(Wo(R+R′′) + b),

where Wo ∈ R|T |×r, b ∈ R|T |, P ∈ Rn×n×|T |.
And then, we use golden labels yij and the binary
cross entropy to calculate the loss as:

LBCE = −
∑

0≤i,j<n

yij log(Pij),

More special details about our proposed method
during training and inference procedure are de-
scribed in Appendix A.

3 Experiment

3.1 Experimental Setup

To verify the effectiveness of our proposed method,
we conduct experiments in three widely used nested
NER datasets, ACE 20044 (Doddington et al.,
2004), ACE 20055 (Walker and Consortium, 2005)
and Genia (Kim et al., 2003).

3We did not use the Softmax because in the very rare case
(such as in the ACE2005 and Genia dataset), one span can
have more than one entity tag.

4https://catalog.ldc.upenn.edu/LDC2005T09
5https://catalog.ldc.upenn.edu/LDC2006T06
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Besides, we choose recently published papers as
our baselines. To make sure our experiments are
strictly comparable to theirs, we ask the authors for
their versions of data. The data statistics for each
paper are listed in the Appendix B. For ACE2004
and ACE2005, although all of them use the same
document split as suggested (Lu and Roth, 2015),
they use different sentence tokenizations, result-
ing in different numbers of sentences and entities.
To facilitate future research on nested NER, we
release the pre-processing code and fix some to-
kenization issues to avoid including unannotated
text and dropping entities. While for the Genia
data, there are some annotation conflicts. For ex-
amples, one document with the bibliomisc MED-
LINE:97218353 is duplicated in the original data,
and different work has different annotations on it.
We fix these conflicts. We replicate each experi-
ment five times and report its average performance
with standard derivation.

# Param.
(Million)

Genia

P R F1

Data from Li et al. (2022)
W2NER (2022) 113.6 83.10 79.76 81.39
Ours 112.6 83.1824 79.708 81.4011

w.o. CNN 111.1 80.664 79.767 80.215

Data from Wan et al. (2022)
SG (2022) 112.7 77.92 80.74 79.30
Ours 112.2 81.0548 77.8765 79.4220

w.o. CNN 111.1 78.6041 78.3552 78.4716

Data from Yuan et al. (2022)
Triaffine (2022) 526.5 80.42 82.06 81.23
Ours 128.4 83.379 79.4315 81.358

w.o. CNN 111.1 80.8723 79.4723 80.1616

Data from this work
W2NER† 113.6 81.5861 79.1149 80.3223

Ours 112.6 81.5221 79.1718 80.3313

w.o. CNN 111.1 78.5928 79.8514 79.2212

Table 2: Experiment results and the number of param-
eters for different models in the Genia Dataset. All
models use the BioBERT-base (Lee et al., 2020) as en-
coder. Models in the same block use the same data.
The subscript means the standard deviation (e.g 81.4011
means 81.40±0.11). † means our reproduction with
their publicly available code.

3.2 Main Results

Results for ACE2004 and ACE2005 are listed in
Table 1, and results for Genia is listed in Table 2.
When using the same data from previous work, our
simple CNN model surpasses the baselines with
less or similar number of parameters, which proves

that using CNN to model the interaction between
neighbor spans can be beneficial to the nested NER
task. Besides, in the bottom block, we reproduce
some baselines in our newly processed data to facil-
itate future comparison. Comparing the last block
(processed by us) and the upper blocks (data from
previous work), different tokenizations can indeed
influence the performance. Therefore, we appeal
for the same tokenization for future comparison.

FEPR FERE NEPR NERE

ACE2004
Ours 86.90.2 87.30.5 88.40.6 88.80.9

w.o. CNN 86.30.8 86.80.3 89.40.8 86.61.3

ACE2005
Ours 86.20.6 88.30.1 91.40.5 89.00.8

w.o. CNN 85.20.7 87.90.3 91.30.5 86.20.8

Genia
Ours 81.70.2 79.40.2 71.71.6 75.51.3

w.o. CNN 79.00.3 80.00.1 72.71.2 64.81.0

Table 3: The precision and recall for flat and nested
entities in the test set of three datasets. Compared with
models without CNN (“w.o. CNN”), the most improved
metric is bold. By using CNN, the recall for nested
entities improve significantly. The subscript means the
standard deviation (e.g 88.80.9 means 88.8±0.9).

3.3 Why CNN Helps

To study why CNN can boost the performance
of the nested NER datasets, we split entities into
two kinds. One kind is entities that overlap with
other entities, and the other kind is entities that do
not. We design 4 metrics NEPR, NERE, FEPR and
FERE, which are flat entity precision, flat entity re-
call, nested entity precision and nested entity recall,
respectively.6, and list the results in Table 3. Com-
pared with models without CNN, the NERE with
CNN improve for 2.2, 2.8 and 10.7 on ACE2004,
ACE2005 and Genia respectively. Namely, much
of the performance improvement can be ascribed
to finding more nested entities. This is expected as
the CNN can be more effective for exploiting the
neighbor entities when they are nested.

4 Related Work

Previously, four kinds of paradigms have been pro-
posed to solve the nested NER task.

The first one is the sequence labeling frame-
work (Straková et al., 2019), since one token can be

6The detailed calculation description of the 4 metrics lo-
cates in the Appendix D.
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contained in more than one entities, the Cartesian
product of the entity labels are used. However, the
Cartesian labels will suffer from the long-tail issue.

The second one is to use the hypergraph to effi-
ciently represent spans (Lu and Roth, 2015; Muis
and Lu, 2016; Katiyar and Cardie, 2018; Wang and
Lu, 2018). The shortcoming of this method is the
complex decoding.

The third one is the sequence-to-sequence
(Seq2Seq) framework (Sutskever et al., 2014;
Lewis et al., 2020; Raffel et al., 2020) to gener-
ate the entity sequence. The entity sequence can be
the entity pointer sequence (Yan et al., 2021; Fei
et al., 2021) or the entity text sequence (Lu et al.,
2022). Nevertheless, the Seq2Seq method suffers
from the time-demanding decoding.

The fourth one is to conduct span classification.
Eberts and Ulges (2020) proposed to enumerate all
possible spans within a sentence, and use a pool-
ing method to get the span representation. While
Yu et al. (2020) proposed to use the start and end
tokens of a span to pinpoint the span, and use the
Biaffine decoder to get the scores for each span.
The span-based methods are friendly to parallelism
and the decoding is easy. Therefore, this formu-
lation has been widely adopted (Wan et al., 2022;
Zhu and Li, 2022; Li et al., 2022; Yuan et al., 2022).
However, the relation between neighbor spans was
ignored in previous work.

5 Conclusion

In this paper, we propose using CNN on the score
matrix of span-based NER model. Although this
method is very simple, it achieves comparable or
better performance than recently proposed meth-
ods. Analysis shows exploiting the spatial corre-
lation between neighbor spans through CNN can
help model find more nested entities. And exper-
iments show that different tokenizations indeed
influence the performance. Therefore, it is neces-
sary to make sure all comparative baselines use the
same tokenization. To facilitate future comparison,
we release a new pre-processing script for three
nested NER datasets.

Limitations

While we discover that simply applying CNN on
top of the score matrix of span-based NER model
performs well on the nested NER scenario, there
are still some limitations that are worth discussing.
Firstly, we mainly choose three commonly used

nested NER datasets, which may lack generaliza-
tion. Secondly, we only focus on nested NER tasks
for the spatial relations between spans are more
intuitive and common in nested scenario than those
in flat NER. However, the principle of using CNN
to model the relations is also applicable to spans in
the flat NER task. Future work can take flat NER
into consideration based on our exploration, and
experiments on more datasets.
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A Detailed Proposed Method

A.1 Multi-head Biaffine Decoder

The input of Multi-head Biaffine decoder is two
matrices Hs,He ∈ Rn×h, and the output is R ∈
Rn×n×r. The formulation of Multi-head Biaffine
decoder is as follows

S1[i, j] = (Hs[i]⊕He[j]⊕w|i−j|)W,

{H(k)
s }, {H(k)

e } = Split(Hs), Split(He),

S
(k)
2 [i, j] = H(k)

s [i]UH(k)
e [j]T ,

S2 = Concat(S
(1)
2 , ...,S

(K)
2 ),

R = S1 + S2,

where Hs,He ∈ Rn×h, h is the hidden size,
w|i−j| ∈ Rc is the span length embedding for
length |i − j|, W ∈ R(2h+c)×r, S1 ∈ Rn×n×r,
r is the biaffine feature size, Split(·) equally splits
a matrix in the last dimension, thus, H(k)

s ,H
(k)
e ∈

Rn×hk ; hk is the hidden size for each head, and
U ∈ Rhk×rk×hk , S2 ∈ Rn×n×r, and R ∈
Rn×n×r.

We do not use multi-head for W , because it does
not occupy too many parameters and using multi-
head for W harms the performance slightly.

A.2 Training Loss

Unlike previous works that only use the upper tri-
angle part to get the loss (Yu et al., 2020; Zhu and
Li, 2022), we use both upper and lower triangles to
calculate the loss, as depicted in section 2.4. The
reason is that in order to conduct batch computa-
tion, we cannot solely compute features from the
upper triangle part. Since features from the lower
triangle part have been computed, we also use them
for the output. The tag for the score matrix is sym-
metric, namely, the tag in the (i, j)-th entry is the
same as that in the (j, i)-th.
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Sentence Mention

#Train #Dev #Test Avg. Len #Ovlp. #Train #Dev #Test Avg. Len

ACE2004

W2NER 6,802 813 897 20.12 12,571 22,056 2,492 3,020 2.5
SG 6.198 742 809 21.55 12,666 22,195 2,514 3,034 2.51
BS 6,799 829 879 20.43 12,679 22,207 2,511 3,031 2.51
Ours 6,297 742 824 23.52 12,690 22,231 2,514 3,036 2.64

ACE2005

W2NER 7,606 1,002 1,089 17.77 12,179 24,366 3,188 2,989 2.26
SG 7,285 968 1,058 18.60 12,316 24,700 3,218 3,029 2.26
BS 7,336 958 1,047 18.90 12,313 24,687 3,217 3,027 2.26
Ours 7,178 960 1,051 20.59 12,405 25,300 3,321 3,099 2.40

Genia

W2NER 15,023 1,669 1,854 25.41 10,263 45,144 5,365 5,506 1.97
SG 15,022 1,669 1,855 26.47 10,412 47,006 4,461 5,596 2.07
Triaffine 16,692 - 1,854 25.41 10,263 50,509 - 5,506 1.97
Ours 15,038 1,765 1,732 26.47 10,315 46,203 4,714 5,119 2.0

Table 4: The statistics used in each paper. “W2NER”9, “SG”, “BS” and “Triaffine” are from Li et al. (2022), Wan
et al. (2022), Zhu and Li (2022) and Yuan et al. (2022), respectively. #Ovlp. means the number of overlapping
mentions. Different papers use different sentence tokenization for ACE2004 and ACE2005, resulting in different
numbers of sentences in each split. To facilitate future comparison, we release a pre-processing script to prepare
ACE2004 and ACE2005. Previously, some entities will be dropped because of sentence tokenization, we avoid
sentence tokenization within an entity and resulting in more entities. And for Genia, different papers use different
train/dev/test splits. Besides, the Genia data has conflicting annotations, we remove these sentences. The data
annotated with “Ours” is obtained by our pre-processing code.

A.3 Inference

When inference, we calculate scores in the upper
triangle part as:

P̂ij = (Pij + Pji)/2,

where i ≤ j. Then we only use this upper triangle
score to get the final prediction. The decoding pro-
cess generally follows Yu et al. (2020)’s method.
We first prune out the non-entity spans (none of
its scores is above 0.5), then we sort the remained
spans based on their maximum entity score. We
pick the spans based on this order, if a span’s bound-
ary clashes with selected spans’, it is ignored.

B Data

We list the statistics for each dataset in Table 4.10

As shown in the table, the number of sentences
and even the number of entities are different for
each paper on the same dataset. Therefore, it is not
fair to directly compare results. For the ACE2004
and ACE2005, we release the pre-processing code
to get data from the LDC files. We make sure
no entities are dropped because of the sentence
tokenization. Thus, the pre-processed ACE2004
and ACE2005 data from this work in Table 4 have
the most entities.

10The number of entities is different from that reported in
their paper, because we found some duplicated sentences in
their data.

And for Genia, we appeal for the usage of
train/dev/test, and we release the data split within
the code repository. Moreover, in order to facilitate
the document-level NER study, we split the Genia
dataset based on documents. Therefore, sentences
from train/dev/test splits are from different docu-
ments, the document ratio for train/dev/test is 8:1:1.
Besides, we find one conflicting document annota-
tion in Genia, we fix this conflict. After comparing
different versions of Genia, we find the W2NER
(Li et al., 2022) and Triaffine (Yuan et al., 2022)
drop the spans with more than one entity tags (there
are 31 such entities). Thus, they have less number
of nested entities than us. While SG (Wan et al.,
2022) includes the discontinuous entities, so they
have more number of nested entities than us.

C Implementation Details

We use the AdamW optimizer to optimize the
model and the transformers package for the pre-
trained model (Wolf et al., 2020). The hyper-
parameter range in this paper is listed in Table 5.

D FEPR FERE NEPR NERE

We split entities into two kinds based on whether
they overlap with other entities, and the statistics
for each dataset are listed in Table 6. When calcu-
lating the flat entity precision (FEPR), we first get
all flat entities in the prediction and calculate their
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ACE2004 ACE2005 Genia

# Epoch 50 50 5
Learning Rate 2e-5 2e-5 7e-6
Batch size 48 48 8
# CNN Blocks [2, 3] [2, 3] 3
CNN kernel size 3 3 3
CNN Channel dim. [120, 200] [120, 200] 200
# Head [1, 5] [1, 5] 4
Hidden size h 200 200 400
Warmup factor 0.1 0.1 0.1

Table 5: The hyper-parameters in this paper.

# Ent. # Flat Ent. # Nested Ent.

ACE2004 3,036 1,614 1,422
ACE2005 3,099 1,913 1,186
Genia 5,119 3,963 1,156

Table 6: The flat and nested entity statistics in the test
set of each dataset.

ratio in the gold. For the flat entity recall (FERE),
we get all flat entities in the gold and calculate their
ratio in the prediction. And we get the nested entity
precision (NEPR) and nested entity recall (NERE)
similarly.
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