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Abstract

Event extraction for the clinical domain is an
under-explored research area. The lack of train-
ing data along with the high volume of domain-
specific terminologies with vague entity bound-
aries makes the task especially challenging.
In this paper, we introduce DICE, a robust
and data-efficient generative model for clinical
event extraction. DICE frames event extraction
as a conditional generation problem and intro-
duces a contrastive learning objective to accu-
rately decide the boundaries of biomedical men-
tions. DICE also trains an auxiliary mention
identification task jointly with event extraction
tasks to better identify entity mention bound-
aries, and further introduces special markers to
incorporate identified entity mentions as trigger
and argument candidates for their respective
tasks. To benchmark clinical event extraction,
we compose MACCROBAT-EE, the first clinical
event extraction dataset with argument anno-
tation, based on an existing clinical informa-
tion extraction dataset, MACCROBAT (Caufield
et al., 2019). Our experiments demonstrate
state-of-the-art performances of DICE for clin-
ical and news domain event extraction, espe-
cially under low data settings.

1 Introduction

Event extraction (EE) is an information extraction
task that aims to identify event triggers and argu-
ments from unstructured texts (Ahn, 2006). The
EE task consists of two subtasks: 1) event detec-
tion, in which the model extracts trigger text and
predicts the event type; and 2) event argument ex-
traction, in which the model extracts argument text
and predicts the role of each argument given an
event trigger and associated event type.

Clinical EE aims to extract clinical events, which
are occurrences at specific points in time during
a clinical process, such as diagnostic procedures,
symptoms, etc. The arguments for such events are
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A 45 - year - old lady sought dermatology 
consultation for severely tender 
erythematous vesicles and bullae over back , 
chest and arms .

Sign symptom

Detailed 
description

Texture

Biological 
structure

Biological 
structure

Biological 
structure

Event trigger nodule
Event type Sign_symptom
Detailed description abnormal
Area 0.8 x 1.5 cm
Biological structure left upper lung lobe

Event trigger computed tomography

Event type Diagnostic_
procedure

Biological 
structure chest

Sign_symptom

Diagnostic_procedure

A man presented with an abnormal nodule measuring 0.8 x 1.5 cm in the
left upper lung lobe imaged through chest computed tomography scanning.

Figure 1: Illustration of a SIGN_SYMPTOM event
triggered by “nodule” with multiple arguments
including an AREA argument “0.8x1.5cm”, and a
DIAGNOSTIC_PROCEDURE event whose predicate is
“computed tomography” described by argument “chest”
of role BIOLOGICAL_STRUCTURE.

entities that modify or describe properties of these
events (Caufield et al., 2019). Figure 1 shows an
example sentence with two clinical events. The
overwhelming volume and details of clinical in-
formation necessitate clinical EE, which benefits
many downstream tasks such as adverse medical
event detection (Rochefort et al., 2015), drug dis-
covery (Wang et al., 2009), clinical workflow opti-
mization (Hsu et al., 2016), and automated clinical
decision support (Yadav et al., 2013).

However, there are several non-trivial challenges
of clinical EE compared to general domain EE.
First, most triggers and arguments of clinical events
consist of domain-specific terms that are more than
50% longer than the general domain on average,
as shown in Table 1, and have vague boundaries
because most clinical mentions1 contain several de-
scriptors. For instance, given the text span “massive
heart attack”, “heart attack” should be identified as
the trigger (instead of “massive heart attack” or “at-
tack”) because it refers to a specific condition, and
“massive” is an argument of the role type SEVER-
ITY. However, when we consider “right common
carotid artery”, the entire text span describes a bio-
logical structure, and thus it functions as an argu-
ment of the role type BIOLOGICAL_STRUCTURE

despite “right” and “common” being descriptors
1Clinical mentions are defined as meaningful text spans of

occurrences or their properties (Caufield et al., 2019).
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for “carotid artery”. The second challenge is the
diversity and density of clinical arguments: there
are on average 10 unique argument roles for each
clinical event type compared to 3.7 in the general
domain. Finally, it is challenging to obtain high-
quality annotated data for clinical events due to
both patient privacy concerns and the cost of ex-
pert annotations. Due to these challenges, there
have been no clinical EE datasets with argument
annotations to the best of our knowledge.

In this paper, we present DICE, a Data-effIcient
generative model for Clinical Event extraction.2

We build upon existing prompt-based generative
event extraction models to formulate EE as a
sequence-to-sequence text generation task (Hsu
et al., 2022; Ma et al., 2023b). To handle the spe-
cial challenges of clinical EE, DICE 1) introduces a
mention identification-enhanced EE model, which
specializes in clinical mention identification by per-
forming contrastive learning to distinguish correct
mentions from the ones with perturbed mention
boundary, training an auxiliary mention identifica-
tion module to learn implicit mention properties,
and adding explicit mention markers to hint men-
tion boundaries; 2) performs independent queries
for each argument role to better handle long-tail
argument roles.

To address the training data availability issue,
we introduce MACCROBAT-EE, the first clinical
event extraction dataset with argument information,
which we derive from clinical experts’ annotation
on PubMed clinical case reports.

We benchmark DICE on MACCROBAT-EE
against several recent event extraction models. Ex-
periments show that DICE achieves state-of-the-art
clinical event extraction results on MACCROBAT-
EE, and we observe a larger performance gain un-
der low-resource settings. Moreover, DICE also
achieves better performance on the ACE05 dataset,
demonstrating its generalizability to other domains.

Our contributions are threefold: 1) We develop
DICE, a mention-enhanced clinical event extraction
model that better identifies mention boundaries and
is scalable to many argument roles; 2) We con-
struct the first clinical event extraction dataset with
argument annotations; 3) Our model achieves state-
of-the-art performance on clinical and news EE and
demonstrates more significant performance gains
under low-resource settings.

2Please refer to https://derek.ma/DICE for code and
data.

2 Related Works

2.1 General Domain Event Extraction

Many prior works formulate EE as token-level
classification tasks and trained in an ED-EAE
pipeline-style (Wadden et al., 2019; Yang et al.,
2019; Ma et al., 2021b) or optimized jointly
(Li et al., 2013; Yang and Mitchell, 2016; Lin
et al., 2020; Nguyen et al., 2022a). Recent work
formulates the EE task as text generation with
transformer-based pre-trained language models
that prompt the generative model to fill in synthetic
(Paolini et al., 2021; Huang et al., 2021; Lu et al.,
2021; Li et al., 2021) or natural language templates
(Huang et al., 2022; Hsu et al., 2022; Ma et al.,
2022; Ye et al., 2022). These generative EE
models are not optimized to handle complicated
domain-specific mentions. To our knowledge,
there is no existing approach to clinical EE using a
text generation formulation, which we hypothesize
is due to both data unavailability and to the
aforementioned domain challenges.

2.2 Event Extraction in Biomedical Domain

Biomedical EE is a type of biomedical IE tasks
(Soysal et al., 2017; Fu et al., 2020; Xu et al.,
2023). Existing approaches to biomedical EE
(Huang et al., 2020; Trieu et al., 2020; Wadden
et al., 2019; Ramponi et al., 2020; Wang et al.,
2020) typically focus on extracting interactions or
relationships between biological components such
as proteins, genes, drugs, diseases and outcomes re-
lated to these interactions (Ananiadou et al., 2010).
The mentions in these biological component in-
teractions are short, distinctive biomedical terms
and do not have rich event type-argument role on-
tologies because of the lack of interaction types
present in the datasets (Ohta et al., 2011; Kim
et al., 2011, 2013; Pyysalo et al., 2011, 2012). Li
et al. (2020) develop a clinical event extraction
model, but it only handles single-word events with-
out considering arguments (Bethard et al., 2016).
Our work addresses these concerns by introducing
MACCROBAT-EE as well as providing a bench-
mark in a previously under-explored domain.

3 Clinical Domain Event Extraction

3.1 Task Formulation

We follow the framework of prior works that
decomposes the EE task into Event Detection
(ED) and Event Argument Extraction (EAE),
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while introducing our novel Mention Identification
module as an auxiliary task performed alongside
both the ED and EAE modules. ED subtask takes
a sentence (passage) as input to extract event
triggers and predict event types. The trigger must
be a sub-sequence of the passage and the event
type must be one of the nevent_type pre-defined
types. The EAE subtask takes a tuple of (passage,
event trigger, event type), and extracts ar-
guments from passage and predicts the argument
role. Each event type holds a pool of nevent_type

arg_role
argument roles as defined in the event ontology.

3.2 The MACCROBAT-EE Dataset

Due to high annotation costs and privacy concerns,
dataset availability is a primary bottleneck for clin-
ical EE. We propose a repurposing of an existing
expert-annotated dataset, MACCROBAT (Caufield
et al., 2019),3 to compose a clinical EE benchmark,
MACCROBAT-EE.

The MACCROBAT dataset consists of 200 pairs
of English clinical case reports from PubMed ac-
companying annotation files with partial event an-
notation provided by 6 annotators with prior expe-
rience in biomedical annotations. To our knowl-
edge, this is the only openly accessible collection
of clinical case reports annotated for entities and
relations by human experts. Following existing
sentence-level EE works (Lin et al., 2020), we con-
struct an event extraction dataset with full event
structure, MACCROBAT-EE, which contains anno-
tated span information for entities, event triggers,
event types, event arguments and argument roles
for each sentence. Mentions are defined as mean-
ingful text spans of occurrences and their proper-
ties (Caufield et al., 2019). We include all tagged
mentions in MACCROBAT as entities, and further
specify that mentions tagged as events and their
respective types are included as event triggers and
event types.

To infer event arguments and their roles, which
are not provided in MACCROBAT, we consider non-
event entities that hold a MODIFY relation with
event triggers as arguments, and we use the as-
signed entity types as argument roles. We infer
arguments via the MODIFY relation because its def-
inition of an entity modifying an event matches
well with the argument definition of further char-
acterizing the properties of an event as shown in

3We use the 2020 version of MACCROBAT. We show more
details about MACCROBAT in Appendix B.1.

Appendix B.2. The entity type in MACCROBAT

defines a type of fine-grained physical or procedure
property, which matches the argument role defini-
tion of being a type of participant or attribute of an
event. We traverse all (event type, argument
role) pairs to obtain the argument roles possible
for each event type to create an event ontology, as
shown in Appendix B.3. The definitions of each
event type and argument role written by clinical
experts are provided.

3.3 Data Statistics

Metric ACE05 ERE MACCROBAT-EE

Unique event types 33 38 13
Unique argument roles 22 21 22
Unique arg. roles per event type 4.73 2.87 10
Documents # 599 459 200
Sentences # 20,862 17,114 4,539
Entities # 54,820 46,185 23,898
Trigger mentions # 5,348 7,287 13,128
Argument mentions # 8,102 10,479 8,599
Avg entities # per sentence 3.18 3.20 5.43
Avg events # per sentence 1.34 1.47 3.21
Avg args # per sentence 2.39 2.24 2.67
Avg args per event # 1.48 1.42 0.81
Avg entity word count 1.12 1.10 1.89
Avg trigger word count 1.05 1.06 1.61
Avg argument word count 1.14 1.14 1.72

Table 1: Statistics of MACCROBAT-EE.

In Table 1, we show the statistics for
MACCROBAT-EE as well as the comparable
values for two widely-used EE datasets, ACE05
(Doddington et al., 2004) and ERE-EN (Song
et al., 2015). MACCROBAT-EE differs from
general-domain EE datasets because it contains
fewer sentences and the average occurrences of
entities, triggers, and arguments per sentence are
significantly higher. Note that the average length
of the entities in MACCROBAT-EE is significantly
longer. Besides single-span entities, there are also
nested and discontinuous entities used as event
arguments in MACCROBAT-EE. This demonstrates
that MACCROBAT-EE fills a different niche than
ACE05 and ERE-EN and provides a valuable
benchmark for EE under a clinical setting with high
mention density, and allowing for future work to
adapt clinical case report domain-specific features.

3.4 Human Verification
We conduct a human annotation to examine the
coverage of the induced arguments and the correct-
ness of their roles. Arguments and their roles in
96% out of 100 randomly sampled events are con-
sidered comprehensive and appropriate by both of
the two annotators with consensus.
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Analysis … <trigger>thrombus</trigger> at the <m>origins of</m> both <m>subclavian arteries</m> … artery. \n
Event type is Sign_symptom. \n Any symptom or clinical finding. \n Event trigger is thrombus. \n 

Argument role is Biological_structure. \n Any part of the body, from the cellular level to general areas.
Argument role name Argument role description

Mention Identification (MI) for argument mentions

Passage

... nwindows

Event Detection (ED)

Event type name Event type description

Passage
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Analysis … CT images showed densely calcified <m>plaque</m> or <m>thrombus</m> at the … artery. \n
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Figure 2: Model design of DICE. We use T5-large (Raffel et al., 2020) as the backbone text generation model for
the two joint models. The ED module extracts event trigger and type, and the EAE module extracts argument and
roles. They are trained jointly with the trigger and argument MI modules for mention-enhanced event extraction.

4 The DICE Event Extraction Model
We formulate EE as a conditional generation task,
so that we can incorporate domain knowledge such
as event type and argument role definitions via
natural language in the input prompt. To tackle the
challenges of clinical EE, we 1) further enhance the
EE model’s specialization in mention identification
by techniques introduced in §4.2 to handle long
clinical mentions with vague boundaries; and
2) perform an independent query for each event
type/argument role for better long-tail performance
in settings with many event types/argument roles
as introduced in §4.1. Figure 2 shows the model
design.

4.1 Seq2seq Components
There are three components: 1) Mention Identifi-
cation (MI) which identifies the candidate pool of
event triggers or event arguments, 2) Event Detec-
tion (ED) which extracts event triggers and predicts
event types, and 3) Event Argument Extraction
(EAE) which extracts arguments and predicts argu-
ment roles. We integrate these components to form
the MI-ED-EAE pipeline (details in §4.3). We use
pre-trained text generation model T5-large (Raffel
et al., 2020) as the backbone LM. The input is a nat-
ural language sequence consisting of the original
input passage and prompt. We design input-output
formats with shared common elements across dif-
ferent tasks to enable synergistic joint optimization,
as all three modules aim to generate a sub-sequence
of the input passage.

Mention Identification (MI). To better align the
MI task with the ED and EAE tasks, the MI mod-

ule extracts all mentions that are candidate event
triggers or arguments from the input passage. The
input is the passage and the output includes all trig-
ger or argument candidates in the input passage
separated by a special token “[SEP]” following
the prefix “Mentions are”. If there are no men-
tions, a placeholder is generated (i.e. “Mentions are<mention>”). We extract mentions by inputting
the entire passage as well as sentence segments
selected by a sliding window with a size of a few
words, which enables shorter outputs and higher
mention coverage. We enforce the condition that
the order of output mentions match the order of
their appearance in the passage. This consistency
helps the generative model to learn its expected
behavior as well as allows for prior mention pre-
dictions to inform subsequent mention predictions.
We keep the full passages in addition to the sliced
sub-sequence during both training and inference to
ensure the longer dependencies are captured.

Event Detection (ED). The ED module extracts
event triggers from the passage. For a given pas-
sage, we construct nevent_type queries. For each
query, we input the concatenation of passage and
the following prompt segments: event type name
and event type description. The output of the ED
task is the concatenation of the event trigger texts
predicted for the queried event type separated by a
special token “[SEP]”, following the prefix “Event
triggers are”. When there is no valid trigger for the
queried event type (which are considered to be neg-
ative samples), a special placeholder is generated
(i.e. “Event triggers are <trigger>”). The balance
between positive and negative samples is a hyper-
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parameter that may be tuned for a better precision-
recall trade-off. We decode the output sequence
and obtain a list of (event type, trigger) pairs.

Event Argument Extraction (EAE). The EAE
module extracts event arguments from queries con-
sisting of the input passage, a given role type, and
a pair consisting of an event trigger and its event
type. We perform nevent_type

arg_roles queries to extract ar-
guments corresponding to each potential argument
role where nevent_type

arg_roles is the number of unique ar-
gument roles for a certain event type. The input
sequence contains passage, event type name, and
event type description segments in addition to:

• Trigger markers which are special tokens (i.e.
“<trigger>” and “</trigger>”) to wrap trigger text
to explicitly provide the trigger position

• Trigger phrase such as “Event trigger is plaque”
• Argument role name for the queried argument

role, such as “Argument role is Severity”
• Argument role description

The expected output begins with a reiteration
(Ma et al., 2023a) of the querying argument
role (e.g. “Severity is”) followed by the concate-
nated predicted argument texts or a placeholder
(“<argument>”) if there are no valid predictions.

4.2 Mention Identification Enhanced EE
We propose techniques to enhance the generative
model’s ability to accurately identify long mentions
with vague boundaries: 1) contrastive learning with
instances of perturbed mention boundaries, 2) ex-
plicit boundary hints with markers and 3) implicit
joint mention representation learning.

Contrastive learning with mention boundary
perturbation. Understanding the role of mention
descriptors and distinguishing the subtle boundary
difference are not specifically optimized during
pre-training or fine-tuning with the text generation
objective. We propose to create such a task and
train the model specifically to recognize the men-
tion with the correct boundaries from a pool of
mentions with similar but shifted boundaries.

Following the seq2seq formulation introduced in
§4.1, we construct N input-output sequence pairs⟨ini, outi⟩ where the input sequence ini consists
of passage and prompt, and the gold output outi
contains the ground-truth mentions, triggers or ar-
guments for MI, ED or EAE respectively. For a
certain input ini, we consider the ground-truth out-
put outi as a positive output (e.g. “Mentions are ...

right common carotid artery”). We create the k neg-
ative instances (i.e. n1

i , ..., n
k
i ) of ini by perturbing

the left and right boundaries of mentions in outi to
add/remove words (e.g. removing “right”, remov-
ing “artery”, or adding “the” before “right” etc.).
We create the negative instances by perturbing out-
put sequences without changing the input, and the
contrastive learning objective applies to MI, ED
and EAE. This results in a group of instances for
ini including both positive and negative instances:
Xi = {⟨outi, ini⟩ , ⟨n1

i , ini⟩ , . . . , ⟨nk
i , ini⟩}. Ap-

plying the process, we obtain instance groups for
all input-output pairs X = {X1, . . . ,XN}.

We use cross-entropy loss LCE to learn to
generate the correct output outi given input ini.
We introduce an InfoNCE loss (Oord et al., 2018)
to learn to identify the positive output (items in
the numerator) from a pool of output candidates
with mention boundary perturbations (items in the
denominator) (Ma et al., 2021a; Meng et al., 2021;
Shen et al., 2020):

LN = 1∣X∣ ∑Xi∈X

⎡⎢⎢⎢⎢⎢⎢⎣
log

f (outi, ini)
∑⟨nj

i ,ini⟩∈Xi
f (nj

i , ini)
⎤⎥⎥⎥⎥⎥⎥⎦

where j ∈ [0,1,2, ..., k] and n0
i is the positive out-

put outi. We define the function f (s, ini) as the
probability of generating a sequence s given input
ini, which is estimated by multiplying logits for
each token of the output produced by the decoder
under the teacher-forcing paradigm while ini is fed
to the encoder. This estimation is normalized by
the output length and produces the output value of
f (s, ini). We combine the two losses into the final
objective L(Θ) = LCE +LN .

Explicit mention marker. Wrapping key spans
with special token markers provides beneficial hints
to the generative model that improve its understand-
ing of how the components of the sentence are asso-
ciated syntactically. We wrap trigger or argument
mentions for the ED and EAE tasks, respectively,
to provide a candidate pool for the identification
task. To minimize the impact of error propaga-
tion of the imperfect MI module on downstream
tasks, we consider two conditions: 1) the ED/EAE
modules with markers must be robust enough to
handle the compromised precision and incomplete
coverage of the gold mentions and 2) the granular-
ity of the candidate pool must not be too coarse
or too fine. To address the first concern, we gen-
erate two versions of the data: one with mention
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markers and one with no markers, and train the
ED/EAE module over the augmented data. This
trains the model to be robust in cases where the MI
module provides imprecise predictions. The sec-
ond concern stems from the too broad a candidate
pool making the markers less informative and too
strict a candidate pool making it difficult for the MI
module to correctly identify mentions. To account
for this issue, we use trigger mentions for the ED
task and argument mentions for the EAE task as
candidate pools as opposed to using words of a
certain part-of-speech or named entities type. The
unique properties of triggers (describing an entire
process or behavior that can be linked to a specific
time) and arguments (concrete details or descriptive
content) make them more useful as candidate sets.

MI as an implicit auxiliary task. Existing
works include a named-entity recognition task
to provide additional supervision signals for EE
(Zhao et al., 2019; Zhang et al., 2019; Sun et al.,
2020; Wadden et al., 2019) for other formulations
except for generative models. Since we design all
three extraction tasks (ED, EAE and MI) as gener-
ation tasks, and ED and EAE can be considered as
special MI with certain interest focus, identifying
mentions is a synergistic capability contributing
to performing ED and EAE. Thus, we add trigger
MI and argument MI as auxiliary tasks to jointly
optimize with the ED and EAE tasks, respectively.

4.3 Training and Inference

Schedule sampling. To gently bridge the discrep-
ancy between gold and predicted upstream results
(ED results passed to EAE, trigger/argument MI
results passed to ED/EAE), we adopt the scheduled
sampling technique to perform curriculum learning
(Bengio et al., 2015). We force the downstream
model to deal with imperfect upstream results grad-
ually by decaying the upstream results from the
gold ones to the predicted ones linearly. We per-
form the decay at the beginning of each epoch.

Training. We first train standalone trigger and ar-
gument MI modules to provide mention candidates.
We then train ED+MI joint model and EAE+MI
joint model with auxiliary trigger and argument
MI modules respectively. We also add markers
around trigger/argument mention candidates. For
efficient training, the model uses downsampled neg-
ative instances (i.e. instances with mismatched trig-
ger/argument and event type/argument role).

Inference. We use the trigger and argument men-
tion markers produced by the standalone trigger
and argument MI modules in the downstream
ED+MI and EAE+MI joint models. The event
triggers and their types predicted by the ED+MI
joint model are provided as input to the EAE+MI
joint model in a pipeline fashion.

5 Experiments in the Clinical Domain

We evaluate DICE on MACCROBAT-EE and com-
pare it with existing event extraction models.

5.1 Experimental Setup

Data splits. We divide the 200 MACCROBAT-EE
documents according to an 80%/10%/10% split for
the training, validation, and testing sets, respec-
tively. For low-resource settings, we consider 10%,
25%, 50%, and 75% of the number of documents
used to build the training dataset while retaining the
original validation and testing sets for evaluation.

Evaluation metrics. We follow previous EE
works and report precision, recall and F1 scores
for the following four tasks. 1) Trigger Identifica-
tion: identified trigger span is correct. 2) Trigger
Classification: identified trigger is correct and its
predicted event type is correct. 3) Argument Iden-
tification: identified argument span is correct. 4)
Argument Classification: identified event argument
is correct and its predicted argument role is also
correct.

Variants. We term two variants of our model. We
refer to pipelined ED and EAE modules without
the mention enhancement techniques described in
§4.2, with long-tail argument handling and text gen-
eration cross-entropy loss only as Vanilla DICE,
and the full model as DICE.4

Baselines. We benchmark the performance of the
recent EE models on MACCROBAT-EE, includ-
ing: Text2Event (Lu et al., 2021): a sequence-
to-structure model that converts the input passage
to a trie data structure to retrieve event arguments;
OneIE (Li et al., 2013): a multi-task EE model
trained with global features;5 and DEGREE (Hsu
et al., 2022): a prompt-based generative model
that consists of distinct ED and EAE modules

4We show hyperparameters, implementation and baseline
reproduction details in Appendix D.

5Note that additional entity annotation is used during train-
ing, while it is not used in other models.
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# Model

Trigger Argument

Identification Classification Identification Classification
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

1 Text2Event – – – 66.64 60.57 63.46 – – – 55.29 47.89 51.33
2 OneIE 74.60 74.93 74.77 68.74 68.96 68.85 48.99 52.59 50.72 39.82 42.95 41.32
3 DEGREE 71.91 66.33 69.01 67.59 62.59 65.00 46.84 24.31 32.02 44.75 23.23 30.58

4 Vanilla DICE 65.03 74.08 69.26 60.51 70.28 65.03 49.10 53.60 51.25 45.95 50.76 48.24
5 DICE 73.53 76.98 75.22 68.12 72.97 70.46 55.41 57.87 56.61 53.02 55.03 54.01

Table 2: Event detection and event argument extraction performance (%). The EAE task takes the predicted
event trigger and event type as input from the corresponding ED model in the pipeline style. DICE achieves the
state-of-the-art event trigger and argument identification and classification performance.

# Mention-enhancing techniques

Trigger Argument

Identification Classification Identification Classification
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

1 Vanilla DICE 65.03 74.08 69.26 60.51 70.28 65.03 70.76 76.48 73.51 66.47 72.71 69.45

2 Vanilla w/ aux. task 69.54 74.59 71.98 65.02 71.00 67.88 73.24 76.48 74.83 68.31 73.03 70.59
3 Vanilla w/ marker 72.91 70.71 71.79 68.58 67.70 68.14 74.27 76.91 75.57 69.66 72.82 71.20
4 Vanilla w/ contrastive 70.02 75.12 72.48 66.93 72.04 69.39 73.86 77.41 75.59 69.92 72.89 71.37
5 Vanilla w/ all three (Full DICE) 73.53 76.98 75.22 68.12 72.97 70.46 75.73 77.62 76.66 71.14 73.91 72.50

6 Vanilla w/ perfect marker† 97.04 94.11 95.55 85.23 88.66 86.91 91.91 90.72 91.31 81.71 86.73 84.14

Table 3: Ablation study of the technique used to incorporate mention information. The argument extraction reported
here uses ground-truth event trigger and type, which removes error propagation from the upstream ED result. † indi-
cates the settings use mention markers to wrap ground-truth mentions and they are not comparable with other lines.

that fill in event type-specific human written tem-
plates. To adapt DEGREE to the new dataset, we
create the ED/EAE templates by concatenating
event type/argument role phrases (e.g. “Biologi-
cal_structure is artery”).

5.2 Overall ED and EAE Results

We show the superiority of DICE in both high-
resource and low-resource settings.

High-resource results. Table 2 shows the results
for high-resource settings. Among the baselines,
OneIE and Text2Event achieve the best F1 score on
trigger extraction and argument extraction respec-
tively. DEGREE reports low performance on the
argument extraction task due to the challenges of
generating long sequences containing all argument
roles. DICE outperforms the baselines on both trig-
ger and argument extraction tasks, with 2.7 points
F1 score improvements for argument classification.

Low-resource results. We show the results of
training in lower-resource settings in Figure 3 and
Appendix C.3. We observe that DICE outperforms
all baselines on all four tasks under all low-resource
settings. The performance gap between DICE and

the baselines increases in the lower training data
percentage settings. In the argument classification
task, DICE outperforms Text2Event by more than
8 (10%) and 9 (25%) points in F1 score.
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Figure 3: Performance on downsampled training data.
We report F1 score (%, y-axis) for each proportion (x-
axis). DICE outperforms all baselines across four tasks.

5.3 Ablation Studies
We show ablation studies about mention-enhancing
techniques and MI module design in this section
and more studies about input prompt segments and
formulation in Appendix C.2.
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Mention-enhancing techniques. We analyze
the effects of the proposed mention-enhancing
techniques in Table 3. We observe contrastive
learning, auxiliary task, and mention markers con-
tribute improvements of 1.92, 1.14 and 1.75 in the
F1 score on argument classification, respectively.
We observe that DICE improves over vanilla DICE

by 5.43 and 3.05 in the F1 score for trigger and ar-
gument classification, respectively. We include an
oracle setting on Line 6 that provides ground-truth
mention markers during inference to illustrate the
influence of the accuracy of the MI module.

# Model Prec. Recall F1

1 Yan et al. (2021) 72.00 72.70 72.30
2 OneIE entity identification module 75.88 77.86 76.86
3 DICE-MI without sliding window 71.71 67.13 69.34
4 DICE-MI without constrative learning 71.80 84.14 77.48
5 DICE-MI 74.20 86.04 79.68

Table 4: Ablation study of MI module design.

MI module design. We compare our MI module
with the representative of sequence tagging model
OneIE, which produces BIO label for each input
token, and state-of-the-art generative named-entity
recognition model Yan et al. (2021), which gener-
ates token indexes, on the entity identification task.
We report the performance in Table 4. The results
show that the sliding window technique signifi-
cantly improves recall (Line 5 vs 3) and contrastive
learning improves overall performance (Line 5 vs
4). Our MI module outperforms all baselines and
achieves the best F1 score.

5.4 Error Analysis
We analyze the errors propagated through the 4
steps in the pipeline for DICE using predicted
triggers on the argument classification task which
shows the culmination of the errors propagated
through the pipeline. The results in Figure 4a in-
dicate that the identification sub-tasks, especially
trigger identification, are the performance bottle-
necks.

We further break identification errors into three
types: 1) complete miss: the predicted span has no
overlap with the ground-truth span; 2) partial miss:
the predicted span is a subset of the ground-truth
span; 3) hallucination: the predicted span partially
overlaps with the ground-truth span, but also in-
correctly includes additional tokens. As shown
in Figure 4a, the majority of errors produced by
the trigger identification step are complete misses,
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(a) Proportion of error cases by steps in the pipeline.
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(b) Error produced by each step of the vanilla and full version
of DICE. We show absolute error ratios (wrong predictions
among all predictions, the lower, the better).

Figure 4: Error analysis of the argument classification
task, which shows the culmination of the errors propa-
gated through the pipeline of DICE.

whereas argument identification suffers from both
partial and complete misses. We also observe that
the left boundaries of the trigger and argument
spans are more difficult to identify as 76% of partial
misses and 69% of hallucinations correctly identify
the right boundary but miss the left boundary. This
can be explained by that the dominant word of the
entity is typically on the rightmost (e.g. “attack” in
“heart attack”), whereas the left boundary requires
separating the target entity from its descriptors (e.g.
“massive heart attack”).

We further compare the error types between the
vanilla DICE and full version of DICE with mention
identification enhancement techniques in Figure 4b.
We observe that DICE produces fewer error cases
across all error types in both trigger and argument
identification steps, which supports our assertion
that our mention identification enhancement tech-
niques improve the identification of mentions with
vague boundaries.

5.5 Qualitative Analysis

To identify challenges for future works, we sum-
marize 4 types of common errors made by DICE

and show examples in Table 5. In the first example,
the MI module of DICE only identifies a subse-
quence of the true mention (e.g., “hearing loss”
vs. “bilateral sensorineural high-frequency hear-
ing loss”), leading to a partial miss that shows the
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1 Task: ED Passage: An {audiology evaluation} showed {severe} {bilateral} {sensorineural} {high-frequency} {hearing loss} ( {-70 dB} ).
Ground-truth: (bilateral sensorineural high-frequency hearing loss, Sign_symptom) Pred. of DICE: (hearing loss, Sign_symptom)

2 Task: EAE Passage: The patient underwent a {resection} of the { 15 cm segment IVb } mass [SIGN_SYMPTOM] in {June 2010} .
Ground-truth: (15 cm, Distance), (segment IVb, Biological_structure) Pred. of DICE: (15 cm segment IVb, Biological_structure)

3 Task: ED Passage: Core biopsies from the {breast lump} showed {ductal carcinoma} in situ (sample labelled P1.1).
Ground-truth: (biopsies, Diagnostic_procedure), (ductal carcinoma, Disease_disorder) Pred. of DICE: None

4
Task: EAE Passage: Serum total bilirubin and {tumor markers} , carcinoembryonic antigen [DIAGNOSTIC_PROCEDURE] ( {CEA} ) and
carbohydrate antigen 19-9 [DIAGNOSTIC_PROCEDURE] ( {CA19-9} ), were all {within {normal ranges}} .
Ground-truth: None Pred. of DICE: (within normal ranges, Lab_value) was predicted as the argument for both events.

Table 5: Qualitative analysis. We mark event trigger [EVENT_TYPE], ground-truth mentions and {mention
prediction} made by our MI module.

ED module mistakenly includes incorrect descrip-
tors. In the second example, DICE hallucinates
that a DISTANCE descriptor “15 cm” is part of the
BIOLOGICAL_STRUCTURE “segment IVb”, which
indicates that the EAE module struggles to separate
mention boundaries. In the third example, the first
event “biopsies” is missed by both the ED module
and the MI module. However, despite the MI mod-
ule correctly identifying “ductal carcinoma” as a
mention, the ED module does not identify it as an
event trigger. In the fourth example, DICE identi-
fies “within normal ranges” as the LAB_VALUE for
the two DIAGNOSTIC_PROCEDURE events, which
are not valid LAB_VALUE for tumor marker tests.

6 Experiments in the General Domain

We evaluate DICE’s generalizability by perform-
ing EE on the widely-used news-domain dataset
ACE05 (Doddington et al., 2004), which contains
33 event types and 22 distinct argument roles. We
perform both full-shot and low-resource experi-
ments with 10% of the training data using the same
data pre-processing, data splits and metrics as prior
works (Wadden et al., 2019; Lin et al., 2020), and
we compare with the same set of baselines intro-
duced in §5.1. Baseline selection criteria and more
results are presented in Appendix C.1.

We show the result in Table 6. We observe that
DICE achieves a better performance on both low
and high-resource settings for both trigger and ar-
gument classification tasks. We observe that DE-
GREE’s performance is much closer to our model
than in the clinical domain, which is due to two
factors. First, the benefit of the independent query
design used in DICE is diminished because ACE05
has far fewer argument roles that need to be filled
in for each event type (on average 4.73) compared
with in MACCROBAT-EE (on average 10). Sec-
ond, DEGREE benefits from the implicit argument
role dependencies established in its human-created

Model
10% 100%

Tri-C Arg-C Tri-C Arg-C

Text2Event 47.0‡ 24.9‡ 71.9† 53.8†

OneIE 61.5‡ 26.8‡ 74.7† 56.8†

DEGREE 66.1† 42.1† 72.2† 55.8†

DICE 68.9 44.7 75.5 57.6

Table 6: ED and EAE performance (%) on the general
domain dataset ACE05. We report the numbers from
the original paper (†) or (Hsu et al., 2022) (‡). Boldface
denotes the best results while underscore denotes the
second best. DICE achieves state-of-the-art performance
across both resource settings and tasks.

event templates for ACE05, which were unavail-
able for the clinical domain. We also observe that
mentions in the general domain are easier to iden-
tify as our MI module achieves 92% F1 score for
entity identification on ACE05, while achieving
77% F1 score on MACCROBAT-EE. Although the
mentions in the general domain are not as com-
plex as clinical mentions, the performance of DICE

supports our claim that mention-enhanced event
extraction generalizes to the general domain.

7 Conclusion and Future Work

We present DICE, a generative event extraction
model designed for the clinical domain. DICE is
adapted to tackle long and complicated mentions by
conducting contrastive learning on instances with
mention boundary perturbation, jointly optimizing
EE tasks with the auxiliary mention identification
task as well as the addition of mention boundary
markers. We also introduce MACCROBAT-EE, the
first clinical EE dataset with argument annotation
as a testbench for future clinical EE works. Lastly,
our evaluation shows that DICE achieves state-of-
the-art EE performance in the clinical and news
domains. In the future, we aim to apply transfer
learning from higher-resource domains.
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A Potential Questions

What is the difference between the existing gen-
erative EE model DEGREE and DICE? Com-
pared with DEGREE, our model: 1) further en-
hances the EE model’s specialization in mention
identification by three techniques to learn mention-
related capabilities introduced in §4.2 to handle
long clinical mentions with vague boundaries; and
2) performs an independent query for each argu-
ment role for better long-tail performance in set-
tings with many argument roles as introduced in
§4.1.

Would training and inference efficiency be an is-
sue? As we perform an independent query for
each event type/argument role in the ED/EAE
model, it is a tradeoff between performance and
running cost. Though during training, we only
sample a subset of negative instances to train the
model for faster convergence. For example, to cre-
ate seq2seq input-output pairs for a certain sentence
for ED, we create 1 positive pair (i.e. there is an
event in the sentence for the query event type) and
k (instead of nevent_type, where k is much smaller
than nevent_type) negative pairs (i.e. no event exists
for the query event type).

Why use standalone MI modules to produce
mention candidates? We use standalone trigger
and argument MI modules to create markers for
downstream ED+MI and EAE+MI joint models,
instead of using the MI module jointly trained in
the ED+MI or EAE+MI models because the stan-
dalone one yields better performance.

B Dataset MACCROBAT-EE Details

B.1 MACCROBAT Annotation

MACCROBAT is annotated according to the Anno-
tation for Case Reports using Open Biomedical
Annotation Terms (ACROBAT) defined in (Cau-
field et al., 2019). ACROBAT describes events and
entities as meaningful text spans, but differentiates
events as occurrences that may be ordered chrono-
logically and entities as objects that may modify
or describe events. According to the annotation
guideline, entity text spans are limited to the short-
est viable length. Each event and entity is given
a type such that certain events are associated with
certain argument roles. According to ACROBAT,
Entity text spans are limited to the shortest viable
length. For example, the text span “mild asthma

attack” would be annotated by labeling “asthma
attack” as an event as that is the shortest span that
conveys the occurrence of the event. “Mild” would
be labeled an entity and the annotation would add
a relation indicating that “mild” modifies “asthma
attack”. MACCROBAT contains 12 relation types,
but for our purposes we only consider the MOD-
IFY relation that occurs when an entity describes
or characterizes an event.

B.2 Details of Inferring Event Arguments

According to ACE2005 English Events Guidelines
(AEEG),6 the arguments of events are defined as
entities and values within the scope of an event and
only the closest entities and values will be selected,
where a value is defined to be “a string that fur-
ther characterizes the properties of some Entity or
Event”. The MODIFY relation in the MACCROBAT

dataset connects 2 arguments, and it is defined as
the “generic relationship in which one entity or
event modifies another entity or event, including
instances where an entity is identified following
an event” (Caufield et al., 2019). The MODIFY

relation satisfies the argument definition described
by the AEEG by incorporating within-sentence re-
lationships between an entity that modifies or de-
scribes an event. Thus, given a certain event trigger,
we consider non-event entities that hold a MODIFY

relation with the trigger as arguments of this event.
We take the assigned type of the selected entity
according to MACCROBAT as the role of the argu-
ment. To create an event ontology, which includes
all possible event types and possible argument roles
or each event type, we traverse all (event type, ar-
gument role) pairs to obtain the unique argument
roles possible for each event type.

B.3 Event Ontology

We show the full event ontology, including all event
types and their possible argument roles, in Table 12.

C Additional Experimental Results

C.1 Additional Baselines for General Domain
Event Extraction

Baseline selection criteria. We select published
EE models reporting performance on the ACE05
dataset using ED and EAE training data only with-
out using external resources (e.g. knowledge graph)

6https://www.ldc.upenn.edu/
collaborations/past-projects/ace/
annotation-tasks-and-specifications
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or additional tasks (e.g. relation extraction, entity
recognition) as our baselines for general domain EE
experiments. We use the same data pre-processing,
data splits and metrics as prior works (Wadden
et al., 2019; Lin et al., 2020).

Additional baselines. In addition to the base-
lines we introduced in §5.1, we compare with
DyGIE++ (Wadden et al., 2019), a span graph-
enhanced classification model for EE; BERT_QA
(Du and Cardie, 2020), which formulates EE as
an extractive question answering task with a se-
quence tagging classifier; TANL (Paolini et al.,
2021), which frames EE as a translation task be-
tween augmented natural languages; BART-Gen
(Li et al., 2021), which uses a sequence tagging
model (Hou et al., 2020) with additional keywords
as input for ED and performs EAE by filling in
event template with a conditional generation model;
and GTEE-DynPref (Liu et al., 2022), which tunes
dynamic prefix for generative EE models.

We do not compare with Nguyen et al. (2022b,
2021); Zhang and Ji (2021) because they jointly
learn additional tasks besides ED and EAE (i.e. en-
tity recognition and relation extraction) and there
is no codebase provided by the time of this work.
We do not compare with Wang et al. (2022) since
its performance is worse than DEGREE (Hsu et al.,
2022) and GTEE-DynPref (Liu et al., 2022) accord-
ing to Nguyen et al. (2022b).

# Model
10% 100%

Tri-C Arg-C Tri-C Arg-C

1 DyGIE++ – 15.7 § 70.0‡ 50.0‡

2 BERT_QA 50.1‡ 27.6‡ 72.4† 53.3†

3 TANL 54.8‡ 29.0‡ 68.4‡ 47.6‡

4 BART-Gen – – 71.1† 53.7†

5 GTEE-DynPref – – 72.6† 55.8†

6 Text2Event 47.0‡ 24.9‡ 71.9† 53.8†

7 OneIE 61.5‡ 26.8‡ 74.7† 56.8†

8 DEGREE 66.1† 42.1† 72.2† 55.8†

9 DICE 68.9 44.7 75.5 57.6

Table 7: ED and EAE performance (F1 score, %) on the
general domain dataset ACE05. We report the numbers
from the original paper (indicated by †), (Hsu et al.,
2022) (indicated by ‡) and (Ye et al., 2022) (indicated
by §). Boldface denotes the best results while under-
score denotes the second best. DICE achieves the best
performance across both resource settings and tasks.

Experimental results. Table 7 shows the com-
parison with more baselines.

C.2 Additional Ablation Studies

Input prompt segments. We analyze the impor-
tance of prompt segments in Table 8. For ED, we
find that event type name is more important. For
EAE, removing either the event type description
(Line 5) or the argument role description (Line 9)
leads to the most significant performance decreases.
These results emphasize the benefits of incorporat-
ing the rich semantic information contained in the
names and definitions for both event type and argu-
ment roles.

# Prompt segments Identification Classification
P R F1 P R F1

Event Detection

1 w/o type name 71.19 63.32 67.02 67.41 60.73 63.90
2 w/o type description 66.38 71.00 68.61 62.28 67.19 64.64
3 Vanilla DICE 65.03 74.08 69.26 60.51 70.28 65.03

Event Argument Extraction

4 w/o type name 69.34 77.35 73.13 64.17 73.03 68.31
5 w/o type description 67.80 77.45 72.31 62.94 73.46 67.79
6 w/o trigger phrase 71.20 77.89 74.39 66.21 73.79 69.80
7 w/o trigger marker 68.55 78.53 73.20 64.70 75.51 69.69
8 w/o arg. role name 70.13 77.99 73.85 65.20 73.79 69.23
9 w/o role description 75.22 70.54 72.81 67.91 65.39 66.63

10 Vanilla DICE 70.76 76.48 73.51 66.47 72.71 69.45

Table 8: Ablation study of prompt segments.

Extraction vs typing formulation. We formu-
late ED and EAE as conditional text generation
tasks and consider two designs for our input and tar-
get format. The first is the DICE design in which we
expect the model to extract content given queries
with event type/argument role information. The sec-
ond design formulates a typing task that provides a
query to the generative model for each mention so
that the expected output is the predicted event type
or argument role for the querying mention. This
approach is motivated by the notion that the output
space of the typing formulation is much smaller
than that of the extraction task.

We formulate the ED and EAE tasks as typing
tasks by querying each possible mention. For the
ED task, we first use the standalone mention iden-
tification module introduced in §4.1 to extract all
possible triggers detected by the MI module, and
then we query the generative model with the fol-
lowing example input and output format:

Input: ... calcified <query>plaque</query> ... artery.
Output: Event type is Sign_symptom.
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The output is constrained to belong to the can-
didate pool of event types or the placeholder event
type “<Type>” following the prefix “Event type is
”. For the EAE task, we first extract all possible ar-
gument candidates and then query each candidate
with the input sentence containing event trigger,
event trigger marker, event type name and event
type description:

Input: ... densely <query>calcified</query><trigger>plaque</trigger> ... artery. /n Event type is
Sign_symptom. /n Any symptom or clinical finding./n Event trigger is plaque.
Output: Argument role is Detailed_description.

Similarly, the output is constrained to the candi-
date pool of argument roles possible for the given
event type following the prefix “Argument role is
”.

# Formulation Identification Classification
P R F1 P R F1

Event Detection

1 Typing 74.64 67.19 70.72 69.24 63.82 66.42
2 Extraction 65.03 74.08 69.26 60.51 70.28 65.03

Event Argument Extraction

3 Typing 58.59 44.95 50.87 53.63 41.14 46.56
4 Extraction 70.76 76.48 73.51 66.47 72.71 69.45

Table 9: Ablation study of generative task formulation.

The results in Table 9 show that the typing for-
mulation improves ED performance over extraction
(though still worse than mention-enhanced DICE),
but leads to a much worse EAE performance. This
is likely due to the typing task becoming more diffi-
cult as the number of candidate class increases and
complicated typing spaces varied by event types.

C.3 Full Low-Resource Results

We show the full low-resource experimental results
illustrated in Figure 3 in Table 10.

D Details of Implementation and
Experiments

D.1 Implementation Details

Mention Identification. The sliding window
scans the passage from beginning to end with a
pre-defined window size and step size, which sig-
nificantly boosts the coverage of the predicted men-
tions. During both training and inference, we retain
the original full-length input passage in addition to
the sliding window segments.

Model
10% 25% 50% 75% 10% 25% 50% 75%

Trigger Identification Trigger Classification

Text2Event – – – – 52.54 53.72 59.21 62.78
OneIE 68.22 71.28 73.73 74.47 61.46 65.08 67.54 68.50
DEGREE 62.12 63.78 66.32 69.73 58.31 61.03 63.14 64.77

DICE 71.47 72.79 74.07 74.88 65.82 66.54 67.91 68.72
Argument Identification Argument Classification

Text2Event – – – – 37.74 40.09 46.53 50.37
OneIE 32.13 39.65 43.75 47.12 24.95 32.36 35.70 38.55
DEGREE 26.60 30.41 31.06 31.63 26.60 28.43 29.48 29.59

DICE 49.97 53.55 54.42 55.83 45.67 48.97 50.42 52.83

Table 10: Performance on the downsampled training
sets. We report the F1 score for each task using different
downsampled training data. We create three random
splits for each proportion and report the average perfor-
mance.

Training and evaluation. We select the best
epoch based on the highest F1 score of the most
downstream MI/ED/EAE task on the validation set.
When evaluating correctness, we only accept an ex-
act match between the generated trigger/argument
and the ground-truth trigger/argument as a correct
prediction. We use beam search with 2 beams to
generate the output sequences for all three gener-
ative tasks. The generation stops either when the
“end_of_sentence” token is generated or the output
length reaches 30.

Frameworks. Our entire codebase is imple-
mented in PyTorch.7 The implementations of the
transformer-based models are extended from the
Huggingface8 codebase (Wolf et al., 2020).

D.2 Experiments Details

We report the median result for five runs with differ-
ent random seeds by default. For the low-resources
result shown in Figure 3, we sample different selec-
tions of training data of corresponding proportion
for each run. All the models in this work are trained
on NVIDIA A6000 GPUs on a Ubuntu 20.04.2 op-
erating system.

D.3 Baseline Reproduction

Mention Identification. For results in Table 4,
we use BART-large for Yan et al. because Yan
et al. (2021) only supports a generative model with
absolute position embedding. OneIE uses BERT-
large as its default and we use T5-large for our
proposed DICE-MI module.

7https://pytorch.org/
8https://github.com/huggingface/transformers
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ED and EAE. We use authors’ codebases to pro-
duce baseline results. OneIE jointly learns ED,
EAE, and MI tasks and we provide entity infor-
mation to its MI module with event types and role
types stripped to equate its training information
with the training information provided to our model
DICE. For DEGREE, human-written templates that
organize the argument roles of an event type in a
sentence are required by the model. We construct
these templates using phrases such as “<Argument
role> is <argument text>” for all potential argument
roles of an event type as the template.

D.4 Hyperparameters
For the ED module, we define positive instances as
(PASSAGE, EVENT TYPE) pairs where the passage
contains one or more event triggers of this event
type. Negative instances are pairs in which the pas-
sage contains no event triggers of the event type.
We create 10 negative instances for each positive
instance. For the EAE module, we define posi-
tive instance as the (PASSAGE, EVENT TRIGGER,
EVENT TYPE, ARGUMENT ROLE) tuple that there
exists an argument text contained in the passage
that meets the query criteria. We create 10 negative
instances for each positive instance. For the MI
module, we use a window size of 10 words, with
a sliding step of 4 words. We retain the original
full sequence in both training and evaluation. We
use an AdamW optimizer with a 1e-5 learning rate
without gradient accumulation. We show the hy-
perparameter search ranges and the final choices in
Table 11.
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Hyperparameter Search Range Best

Negative instance # for ED 1, 2, 3, 4, 5, 8, 10, all 10
Negative instance # for EAE 1, 2, 3, 4, 5, 8, 10, all 10
MI module sliding window size 4, 6, 8, 10, 12 10
MI module sliding window step 2, 4, 6, 8, 10 4
MI module sliding window retains original long sequence during training True, False True
MI module sliding window retains original long sequence during inference True, False False
Batch size 1, 2, 3, 4 4
Learning rate 1e-4, 5e-5, 1e-5, 5e-6, 1e-6 1e-5
Decoding method beam search, greedy beam search
Max epochs 70

Table 11: Hyperparameter search ranges and the best settings.

Event Type Role

Sign_symptom Biological_structure, Detailed_description, Severity, Lab_value, Dis-
tance, Shape, Area, Color, Texture, Frequency, Volume, Quanti-
tative_concept, Qualitative_concept, Biological_attribute, Subject,
Other_entity, History, Mass

Diagnostic_procedure Lab_value, Biological_structure, Detailed_description, Qualita-
tive_concept, Nonbiological_location, Frequency,Distance, Subject,
Shape, Quantitative_concept, Texture, Severity, Age, Color, Area, Vol-
ume, Administration, Mass

Therapeutic_procedure Detailed_description, Biological_structure, Lab_value, Dosage, Nonbi-
ological_location, Frequency, Distance,Qualitative_concept, Subject,
Quantitative_concept, Area, Administration, Other_entity

Disease_disorder Detailed_description, Biological_structure, Severity, Lab_value, Quan-
titative_concept, Distance, Nonbiological_location, Shape, Volume,
Qualitative_concept, Area, Subject, Biological_attribute

Medication Dosage, Administration, Detailed_description, Frequency, Lab_value,
Nonbiological_location, Quantitative_concept, Biological_structure,
Volume

Clinical_event Nonbiological_location, Detailed_description, Frequency, Biologi-
cal_structure, Subject, Lab_value, Quantitative_concept, Volume

Lab_value Biological_structure, Detailed_description, Color, Severity, Frequency
Activity Detailed_description, Nonbiological_location, Biological_structure,

Other_entity, Frequency, Lab_value, Quantitative_concept
Other_event Biological_structure, Quantitative_concept, Nonbiological_location,

Severity, Detailed_description
Outcome Nonbiological_location, Subject, Detailed_description, Age
Date -
Time -
Duration -

Table 12: Event types and corresponding argument roles in MACCROBAT-EE, the argument roles are ordered by
their appearance frequency. The most appeared roles are listed first.
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