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Abstract

Implicit discourse relation classification is
a challenging task due to the absence of
discourse connectives. To overcome this is-
sue, we design an end-to-end neural model to
explicitly generate discourse connectives for
the task, inspired by the annotation process of
PDTB. Specifically, our model jointly learns
to generate discourse connectives between
arguments and predict discourse relations based
on the arguments and the generated connect-
ives. To prevent our relation classifier from
being misled by poor connectives generated at
the early stage of training while alleviating the
discrepancy between training and inference, we
adopt Scheduled Sampling to the joint learning.
We evaluate our method on three benchmarks,
PDTB 2.0, PDTB 3.0, and PCC. Results show
that our joint model significantly outperforms
various baselines on three datasets, demonstrat-
ing its superiority for the task.

1 Introduction

Discourse relations, such as Cause and Contrast,
describe the logical relation between two text spans
(Pitler et al., 2009). Recognizing discourse rela-
tions is beneficial for various NLP tasks, includ-
ing coherence modeling (Lin et al., 2011), read-
ing comprehension (Mihaylov and Frank, 2019),
argumentation mining (Habernal and Gurevych,
2017; Hewett et al., 2019), and machine translation
(Meyer, 2015; Longyue, 2019).

Discourse connectives (e.g., but, as a result) are
words or phrases that signal the presence of a dis-
course relation (Pitler and Nenkova, 2009). They
can be explicit, as in (1), or implicit, as in (2):

(1) [I refused to pay the cobbler the full $95]Arg1
because [he did poor work.]Arg2

(2) [They put the treasury secretary back on
the board.]Arg1 (Implicit=However) [There
is doubt that the change would accomplish
much.]Arg2

When discourse connectives are explicitly present
between arguments, classifying the sense of a dis-
course relation is straightforward. For example,
Pitler and Nenkova (2009) proved that using only
connectives in a text as features, the accuracy of
4-way explicit discourse relation classification on
PDTB 2.0 can reach 85.8%. However, for implicit
cases, there are no connectives to explicitly mark
discourse relations, which makes implicit discourse
relation classification challenging (Zhou et al.,
2010; Shi et al., 2017). Existing work attempts
to perform implicit discourse relation classification
directly from arguments. They range from design-
ing linguistically informed features from arguments
(Lin et al., 2009; Pitler et al., 2009) to modeling in-
teraction between arguments using neural networks
(Lei et al., 2017; Guo et al., 2018). Despite their
impressive performance, the absence of explicit dis-
course connectives makes the prediction extremely
hard and hinders further improvement (Lin et al.,
2014; Qin et al., 2017).

The huge performance gap between explicit and
implicit classification (85.8% vs. 57.6%) (Liu and
Li, 2016) motivates recent studies to utilize implicit
connectives for the training process of implicit rela-
tion classifiers. For instance, Qin et al. (2017) de-
veloped an adversarial model to transfer knowledge
from the model supplied with implicit connectives
to the model without such information, while Kishi-
moto et al. (2020) proposed a multi-task learning
framework to incorporate implicit connectives pre-
diction as another training objective. However, we
argue that these methods are suboptimal since con-
nectives are still not explicitly present in input texts.
This is demonstrated by Kishimoto et al. (2020),
concluding that adding implicit connective predic-
tion as a training objective provides only negligible
gain for implicit relation classification on PDTB
2.0 (we empirically found the conclusion also held
on the adversarial model).

In this paper, we design a novel end-to-end
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model to leverage discourse connectives for the
task of implicit discourse relation classification.
The key inspiration is derived from the annotation
process of implicit discourse relations in PDTB,
which consists of inserting a connective that best
conveys the inferred relation, and annotating the
relation label based on both the inserted implicit
connectives and contextual semantics (Prasad et al.,
2008). We imitate this process by explicitly gene-
rating discourse connectives for the implicit rela-
tion classifier. Specifically, our model jointly learns
to generate discourse connectives between argu-
ments and predict discourse relations based on the
arguments and the generated connectives. A poten-
tial drawback of this joint model is that the poorly
generated connectives at the early stage of joint
training may mislead the relation classifier. One
possible solution is always feeding true connectives
to the implicit relation classifier for training. But
it leads to severe discrepancies between training
and inference (Sporleder and Lascarides, 2008),
since manually-annotated connectives are unavail-
able during evaluation (Prasad et al., 2008). To
address this issue, we adopt Scheduled Sampling
(Bengio et al., 2015) into our method. To be more
specific, our relation classifier is first trained with
hand-annotated implicit connectives and then grad-
ually shifts to use generated connectives.

We evaluate our model1 on two English corpora,
PDTB 2.0 (Prasad et al., 2008), PDTB 3.0 (Web-
ber et al., 2019), and a German corpus, PCC (Bour-
gonje and Stede, 2020), and compare it with other
connective-enhanced approaches and existing state-
of-the-art works. Results show that our method sig-
nificantly outperforms those connective-enhanced
baselines on three datasets while offering compara-
ble performance to existing sota models.

In addition, we perform the first systematic anal-
ysis of different connective-enhanced models to
investigate why our method works better. Our stud-
ies show that: (1) models learn to use connectives
more effectively when putting connectives in the
input rather than using them as training objectives;
(2) end-to-end training can improve models’ ro-
bustness to incorrectly-predicted connectives; (3)
our method shows a better balance between argu-
ments and connectives for relation prediction than
other baselines. Finally, we show that connectives
can effectively improve the predictive performance
on frequent relations while failing on those with

1https://github.com/liuwei1206/ConnRel

limited training instances.

2 Related Work

Implicit discourse relation classification, as a chal-
lenging part of shallow discourse parsing, has
drawn much attention since the release of PDTB
2.0 (Prasad et al., 2008). Most of the work focused
on predicting implicit relations directly from input
arguments. For example, early statistical methods
have put much effort into designing linguistically
informed features from arguments (Pitler et al.,
2009; Pitler and Nenkova, 2009; Lin et al., 2009;
Rutherford and Xue, 2014). More recently, neural
networks (Zhang et al., 2015; Kishimoto et al.,
2018; Liu et al., 2020; Wu et al., 2022; Long and
Webber, 2022) have been applied to learning useful
semantic and syntactic information from arguments
due to their strength in representation learning. De-
spite achieving impressive results, the absence of
connectives makes their performance still lag far
behind explicit discourse parsing.

The question of how to leverage discourse con-
nectives for implicit discourse relation classifi-
cation has received continued research attention.
Zhou et al. (2010) proposed a pipeline method to
investigate the benefits of connectives recovered
from an n-gram language model for implicit re-
lation recognition. Their results show that using
recovered connectives as features can achieve com-
parable performance to a strong baseline. This
pipeline-based method is further improved by fol-
lowing efforts, including integrating pre-trained
models (Kurfalı and Östling, 2021; Jiang et al.,
2021) and using prompt strategies (Xiang et al.,
2022; Zhou et al., 2022). However, some works
(Qin et al., 2017; Xiang and Wang, 2023) pointed
out that pipeline methods suffer cascading errors.
Recent studies have shifted to using end-to-end
neural networks. Qin et al. (2017) proposed a fea-
ture imitation framework in which an implicit rela-
tion network is driven to learn from another neural
network with access to connectives. Shi and Dem-
berg (2019) designed an encoder-decoder model
that generates implicit connectives from texts and
learns a relation classifier using the representation
of the encoder. Kishimoto et al. (2020) inves-
tigated a multi-task learning approach to predict
connectives and discourse relations simultaneously.
Our method is in line with those recent approaches
exploiting connectives with an end-to-end neural
network. The main difference is that those models
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Figure 1: An overview of the proposed approach. The left part is the connective generation module which generates
a connective at the masked position between arguments (Arg1, Arg2). The right part is the relation classification
module which predicts the relation based on both arguments and the generated connective. We share the embedding
layer and transformer blocks between two modules and train the whole model in an end-to-end manner.

focus on using implicit connectives in a non-input
manner (i.e. they do not input implicit connec-
tives as features but utilize them as another training
signal), whereas our method explicitly generates
connectives and inputs both arguments and the gen-
erated connectives into the relation classifier.

Our method can be viewed as a joint learning
framework. Such a framework has been used to
learn information exchange and reduce error prop-
agation between related tasks (Zhang, 2018). Col-
lobert et al. (2011) designed a unified neural model
to perform tagging, chunking, and NER jointly.
Søgaard and Goldberg (2016) refined this unified
framework by putting low-level tasks supervised
at lower layers. Miwa and Bansal (2016) pre-
sented an LSTM-based model to extract entities
and the relations between them. Strubell et al.
(2018) proposed a joint model for semantic role
labeling (SRL), in which dependency parsing re-
sults were used to guide the attention module in the
SRL task. Compared with these works, our joint
learning framework is different in both motivation
and design. For example, instead of simply sharing
an encoder between tasks, we input the results of
connective generation into the relation classifier.

3 Method

Inspired by the annotation process of PDTB, we
explicitly generate discourse connectives for im-
plicit relation classification. Following previous
work (Lin et al., 2009), we use the gold standard
arguments and focus on relation prediction. Figure
1 shows the overall architecture of our proposed
model. It consists of two components: (1) generat-

ing a discourse connective between arguments; (2)
predicting discourse relation based on arguments
and the generated connective. In this section, we
describe these two components in detail and show
the challenges during training and our solutions.

Formally, let X1 = {x1, ..., xn} and X2 =
{xn+1, ..., xn+m} be the two input arguments
(Arg1 and Arg2) of implicit relation classification,
where xi denotes the i-th word in Arg1 and xn+j

denotes the j-th word in Arg2. We denote the re-
lation between those two arguments as y. Similar
to the setup in existing connective enhanced meth-
ods, each training sample (X1, X2, c, y) also in-
cludes an annotated implicit connective c that best
expresses the relation. During the evaluation, only
arguments (X1, X2) are available to the model.

3.1 Connective Generation

Connective generation aims to generate a discourse
connective between two arguments (shown in the
left part of Figure 1). We achieve this by using bidi-
rectional masked language models (Devlin et al.,
2019), such as RoBERTa. Specifically, we insert a
[MASK] token between two arguments and gene-
rate a connective on the masked position.

Given a pair of arguments Arg1 and Arg2, we
first concatenate a [CLS] token, argument Arg1, a
[MASK] token, argument Arg2, and a [SEP] to-
ken into X̃ = {[CLS] X1 [MASK] X2 [SEP]}.
For each token x̃i in X̃ , we convert it into the
vector space by adding token, segment, and po-
sition embeddings, thus yielding input embed-
dings E ∈ R(n+m+3)×d, where d is the hidden
size. Then we input E into L stacked Transformer
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blocks, and each Transformer layer acts as follows:

G = LN(H l−1 +MHAttn(H l−1))

H l = LN(G+ FFN(G))
(1)

where H l denotes the output of the l-th layer and
H0 = E; LN is layer normalization; MHAttn is
the multi-head attention mechanism; FFN is a two-
layer feed-forward network with ReLU as hidden
activation function. To generate a connective on
the masked position, we feed the hidden state of
the [MASK] token after L Transformer layers into
a language model head (LMHead):

pc = LMHead(hL[MASK]) (2)

where pc denotes the probabilities over the
whole connective vocabulary. However, a nor-
mal LMHead can only generate one word without
the capacity to generate multi-word connectives,
such as "for instance". To overcome this shortcom-
ing, we create several special tokens in LMHead’s
vocabulary to represent those multi-word connec-
tives, and initialize their embedding with the av-
erage embedding of the contained single words.
Taking "for instance" as an example, we create
a token [for_instance] and set its embedding as
Average(embed("for"), embed("instance")).

We choose cross-entropy as loss function for the
connective generation module:

LConn = −
N∑

i=0

CN∑

j=0

Cij log(P
c
ij) (3)

where Ci is the annotated implicit connective of
the i-th sample with a one-hot scheme, CN is the
total number of connectives.

3.2 Relation Classification
The goal of relation classification is to predict the
implicit relation between arguments. Typically, it
is solved using only arguments as input (Zhang
et al., 2015; Kishimoto et al., 2018). In this work,
we propose to predict implicit relations based on
both input arguments and the generated connectives
(shown in the right part of Figure 1).

First, we need to obtain a connective from the
connective generation module. A straightforward
way to do so is to apply the arg max operation on
the probabilities output by LMHead, i.e. Conn =
arg max(pc). However, it is a non-differentiable
process, which means the training signal of rela-
tion classification can not be propagated back to
adjust the parameters of the connective generation

module. Hence, we adopt the Gumbel-Softmax
technique (Jang et al., 2017) for the task. The
Gumbel-Softmax technique has been shown to be
an effective approximation to the discrete variable
(Shi et al., 2021). Therefore, we use

g = − log(− log(ξ)), ξ ∼ U(0, 1)

ci =
exp((log(pci ) + gi)/τ)∑
j exp((log(p

c
j) + gj)/τ)

(4)

as the approximation of the one-hot vector of the
generated connective on the masked position (de-
noted as Conn in Figure 1), where g is the Gumbel
distribution, U is the uniform distribution, pci is
the probability of i-th connective output by the
LMHead, τ ∈ (0,∞) is a temperature parameter.

After we have obtained the generated con-
nective "Conn", we concatenate it with argu-
ments and construct a new input as X̄ =
{[CLS] X1 Conn X2 [SEP]}. This new form of
input is precisely the same as the input in explicit
discourse relation classification. We argue that the
key to fully using connectives is to insert them into
the input texts instead of treating them simply as a
training objective. Like the connective generation
module, we feed X̄ into an Embedding layer and
L stacked Transformer blocks. Note that we share
the Embedding Layer and Transformers between
connective generation and relation classification
modules. Doing so can not only reduce the total
memory for training the model but also prompt the
interaction between two tasks. Finally, we feed the
outputs of the L-th Transformer at [CLS] position
to a relation classification layer:

pr = softmax(Wrh
L
[CLS] + br) (5)

where Wr and br are learnable parameters. Sim-
ilarly, we use cross-entropy for training, and the
loss is formulated as:

LRel = −
N∑

i=0

RN∑

j=0

Yij log(P
r
ij) (6)

where Yi is the ground truth relation of the i-th
sample with a one-hot scheme, RN is the total
number of relations.

3.3 Training and Evaluation

To jointly train those two modules, we use a multi-
task loss:

L = LConn + LRel (7)

A potential issue of this training is that poorly gen-
erated connectives at an early stage of joint training
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Algorithm 1 Scheduled Sampling in Training

Input: relation classifier RelCls, arguments
X1,X2, annotated connective true_conn,
generated connective gene_conn, training step
t, hyperparameter in decay k

Output: logits
1: p = random() ▷ [0.0, 1.0)
2: ϵt =

k
k+exp(t/k)

3: if p < ϵt then
4: logits = RelCls(X1,X2, true_conn)
5: else
6: logits = RelCls(X1,X2, gene_conn)
7: end if

may mislead the relation classifier. One possible
solution is always providing manually annotated
implicit connectives to the relation classifier, simi-
lar to Teacher Forcing (Ranzato et al., 2016). But
this might lead to a severe discrepancy between
training and inference since manually annotated
connectives are not available during inference. We
solve those issues by introducing Scheduled Sam-
pling (Bengio et al., 2015) into our method. Sched-
uled Sampling is designed to sample tokens be-
tween gold references and model predictions with a
scheduled probability in seq2seq models. We adopt
it into our training by sampling between manually-
annotated and the generated connectives. Specific-
ally, we use the inverse sigmoid decay (Bengio
et al., 2015), in which probability of sampling man-
ually annotated connectives at the t-th training step
is calculated as follows:

ϵt =
k

k + exp(t/k)
(8)

where k ≥ 1 is a hyper-parameter to control the
convergence speed. In the beginning, training is
similar to Teacher Forcing due to ϵt ≈ 1. As the
training step t increases, the relation classifier grad-
ually uses more generated connectives, and even-
tually uses only generated ones (identical to the
evaluation setting) when ϵt ≈ 0. We show the
sampling process during training in Algorithm 1.

During inference, we generate a connective
Conn through arg max(pc), feed the generated
Conn and arguments into the relation classifier,
and choose the relation type that possesses the max-
imum value in pr.

4 Experiments

We carry out a set of experiments to investigate the
effectiveness of our method across different cor-

pora and dataset splittings. In addition, we perform
analyses showing that our model learns a better
balance between using connectives and arguments
than baselines.

4.1 Experimental Settings

Datasets. We evaluate our model on two English
corpora, PDTB 2.0 (Prasad et al., 2008), PDTB
3.0 (Webber et al., 2019), and a German corpus,
PCC (Bourgonje and Stede, 2020). In PDTB, in-
stances are annotated with senses from a three-level
sense hierarchy. We follow previous works (Ji and
Eisenstein, 2015; Kim et al., 2020) to use top-level
4-way and second-level 11-way classification for
PDTB 2.0, and top-level 4-way and second-level
14-way for PDTB 3.0. As for the dataset split, we
adopt two different settings for both PDTB 2.0 and
PDTB 3.0. The first one is proposed by Ji and
Eisenstein (2015), where sections 2-20, sections
0-1, and sections 21-22 are used as training, de-
velopment, and test set. The second one is called
section-level cross-validation (Kim et al., 2020),
in which 25 sections are divided into 12 folds with
2 validation, 2 test, and 21 training sections. There
are over one hundred connectives in PDTB (e.g.,
102 in PDTB 2.0), but some rarely occur (e.g., only
7 for "next" in PDTB 2.0). To reduce the com-
plexity of connective generation and ensure each
connective has sufficient training data, we only con-
sider connectives with a frequency of at least 100
in the experiments. PCC is a German corpus fol-
lowing the annotation guidelines of PDTB. For this
corpus, we only use the second-level 8-way classifi-
cation since the distribution of top-level relations is
highly uneven (Bourgonje, 2021). A more detailed
description and statistics of the datasets are given
in Appendix A.
Implementation Details. We implement our
model using the Pytorch library. The bidirec-
tional masked language model used in our work
is RoBERTabase, which is initialized with the pre-
trained checkpoint from Huggingface. For hyper-
parameter configurations, we mainly follow the
settings in RoBERTa (Liu et al., 2019). We use
the AdamW optimizer with an initial learning rate
of 1e-5, a batch size of 16, and a maximum epoch
number of 10 for training. Considering the training
variability in PDTB, we report the mean perfor-
mance of 5 random restarts for the "Ji" splits and
that of the section-level cross-validation (Xval) like
Kim et al. (2020). For PCC, we conduct a 5-fold
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Level1 4-way Level2 11-way
Ji Xval Ji Xval

Models Acc F1 Acc F1 Acc F1 Acc F1
Liu et al. (2020) 69.060.43 63.390.56 - - 58.130.67 - - -
Kim et al. (2020) 66.30 56.00 - - 54.730.79 - 52.980.29 -
Wu et al. (2022) 71.18 63.73 - - 60.33 40.49 - -
Zhou et al. (2022) 70.84 64.95 - - 60.54 41.55 - -
Long and Webber (2022) 72.18 69.60 - - 61.69 49.66 - -
RoBERTa 68.610.73 60.890.19 68.661.29 60.491.86 58.840.48 39.310.83 55.401.65 36.512.75
RoBERTaConn 55.340.39 37.472.27 54.282.12 34.712.75 31.972.75 17.102.81 32.122.63 17.912.12
Adversarial 69.430.70 62.440.61 69.131.14 60.631.47 57.631.10 38.812.25 54.431.79 36.792.24
Multi-Task 70.820.72 63.790.82 70.021.40 62.191.84 60.210.94 39.750.70 56.851.13 36.832.42
Pipeline 71.010.89 64.651.03 69.121.03 61.650.89 59.420.54 40.840.39 55.241.72 37.032.83

Our Model 74.590.44 68.640.67 71.331.25 63.841.96 62.750.59 42.360.38 57.981.22 39.053.53

Table 1: Results on PDTB 2.0. Subscripts are the standard deviation of the mean performance.

cross-validation (Xval) on this corpus due to its
limited number of data. We use standard accu-
racy (Acc, %) and F1-macro (F1, %) as evaluation
metrics. We show more detailed settings and hy-
perparameters in Appendix B.
Baselines. To demonstrate the effectiveness of
our model, we compare it with state-of-the-art
connective-enhanced methods and several variants
of our model:

• RoBERTa. Finetune RoBERTa for implicit rela-
tion classification. Only arguments (Arg1, Arg2)
are input for training without using any implicit
discourse connective information.

• RoBERTaConn. A variant of the RoBERTa
baseline. During training, we feed both argu-
ments and annotated connectives, i.e., (Arg1,
Arg2, true_conn), to RoBERTa. During infer-
ence, only arguments (Arg1, Arg2) are input to
the model.

• Adversarial. An adversarial-based connective
enhanced method (Qin et al., 2017), in which an
implicit relation network is driven to learn from
another neural network with access to connec-
tives. We replace its encoder with RoBERTabase
for a fair comparison.

• Multi-Task. A multi-task framework for implicit
relation classification (Kishimoto et al., 2020),
in which connective prediction is introduced as
another training task. We equip it with the same
RoBERTabase as our method.

• Pipeline. A pipeline variant of our method,
in which we first train a connective generation
model, then learn a relation classifier with argu-
ments and the generated connectives. Note that
these two modules are trained separately.

Further, we compare our method against previous
state-of-the-art models on each corpus.

4.2 Overall Results

PDTB 2.0. Table 1 shows the experimental re-
sults on PDTB 2.0. RoBERTaConn shows a
much worse performance than the RoBERTa base-
line on this corpus, indicating that simply feed-
ing annotated connectives to the model causes
a severe discrepancy between training and eval-
uation. This is also somewhat in accord with
Sporleder and Lascarides (2008), which shows
that models trained on explicitly-marked exam-
ples generalize poorly to implicit relation identi-
fication. Discourse connective-enhanced models,
including Adversarial, Multi-Task, Pipeline and
Our Method, achieve better performance than the
RoBERTa baseline. This demonstrates that utiliz-
ing the annotated connectives information for train-
ing is beneficial for implicit relation classification.
The improvement of Adversarial and Multi-task
over the RoBERTa baseline is limited and unsta-
ble. We argue this is because they do not exploit
connectives in the way of input features but treat
them as training objectives, thus limiting connec-
tives’ contributions to implicit relation classifica-
tion. Pipeline also shows limited performance gain
over the baseline. We speculate that this is due to its
pipeline setting (i.e. connective generation → rela-
tion classification), which propagates errors in con-
nective generation to relation classification (Qin
et al., 2017). Compared to the above connective-
enhanced models, our method’s improvement over
the RoBERTa baseline is bigger, which suggests
that our approach is more efficient in utilizing con-
nectives. To further show the efficiency of our
method, we compare it against previous state-of-
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Level1 4-way (PDTB 3.0) Level2 14-way (PDTB 3.0) Level2 8-way (PCC)
Ji Xval Ji Xval Xval

Models Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Kim et al. (2020) 71.30 64.80 - - - - 60.780.24 - - -
Xiang et al. (2022) 74.36 69.91 - - - - - - - -
Long and Webber (2022) 75.31 70.05 - - 64.68 57.62 - - - -

RoBERTa 73.510.69 67.980.97 73.420.90 67.541.40 63.320.40 52.491.26 62.651.32 53.191.20 35.801.13 15.080.97
RoBERTaConn 51.740.76 41.450.69 53.901.71 39.392.74 33.671.78 25.402.11 36.682.39 28.184.11 30.302.86 12.622.06
Adversarial 73.830.28 68.600.75 73.301.32 67.231.85 63.000.48 54.281.76 62.121.46 53.851.46 35.023.18 18.481.51
Multi-Task 74.970.70 69.670.76 73.830.94 68.041.30 64.520.31 53.120.63 62.811.36 53.071.40 40.481.47 21.222.01
Pipeline 74.540.22 69.190.60 73.700.89 68.311.78 63.980.63 52.950.48 63.071.70 53.431.63 42.973.48 22.661.20

Our Model 76.230.19 71.150.47 75.410.89 70.061.72 65.510.41 54.920.81 64.591.21 55.261.32 44.543.06 26.932.06

Table 2: Results on PDTB 3.0 and PCC. Subscripts are the standard deviation of the mean performance.

the-art models on PDTB 2.0 (Liu et al., 2020; Kim
et al., 2020; Wu et al., 2022; Zhou et al., 2022;
Long and Webber, 2022). The first block of Table
1 shows the results of those models, from which
we observe that our model outperforms most of
them, especially on accuracy, achieving the best
results on this corpus. The only exception is that
the F1-score of our method lags behind Long and
Webber (2022), particularly on level2 classification.
This is because our method cannot predict several
fine-grained relations (see Section 4.4), such as
Comparison.Concession, which leads to the low
averaged F1 at the label-level.
PDTB 3.0 / PCC. Results on PDTB 3.0 and PCC
are shown in Table 2. Similar to the results on the
PDTB 2.0 corpus, simply feeding connectives for
training (RoBERTaConn) hurts the performance,
especially on the Level2 classification of PDTB
3.0. Adversarial and Multi-Task perform better
than the RoBERTa baseline, although their im-
provement is limited. Despite suffering cascading
errors, Pipeline shows comparative and even bet-
ter results than Adversarial and Multi-Task on the
two corpora. This indicates the advantage of uti-
lizing connectives as input features rather than a
training objective, particularly on PCC. Consistent
with the results on PDTB 2.0, our method outper-
forms Adversarial, Multi-task, and Pipeline on both
datasets, demonstrating the superiority of inputting
connectives to the relation classifier in an end-to-
end manner and also showing that it works well
on different languages. We further compare our
method with three existing sota models on PDTB
3.0, Kim et al. (2020), Xiang et al. (2022), and
Long and Webber (2022). Results in Table 2 show
that our approach performs better than these three
models.

4.3 Performance Analysis

To figure out why our model works well, we first
perform analyses on its behavior answering two
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Figure 2: Level1 classification results on PDTB 2.0 (Ji
split) when annotated connectives are fed to connective-
enhanced models. "Increase" denotes performance gain
compared to the model with default settings ("Base").

questions: (1) whether it really benefits from dis-
course connectives; (2) whether it can also make
correct predictions when connectives are missing.
We then investigate the relation classifier’s perfor-
mance in the different models when connectives are
correctly and incorrectly generated (or predicted).

We perform the first analysis by replacing the
generated connectives in our model with manually-
annotated ones2, and compare its performance be-
fore and after this setup. Intuitively, if our model
benefits from discourse connectives, accuracy and
F1-macro should increase after the change. For
comparison, we apply the same setup to other
connective-enhanced models. We conduct exper-
iments3 on the Level1 classification of PDTB 2.0
(Ji split), and show the accuracy results in Figure
2. As expected, our model’s performance shows
a substantial improvement, demonstrating that it
does learn to use discourse connectives for implicit
relation classification. Other connective-enhanced
models also perform better in such a setup but with

2In PDTB 2.0 and PDTB 3.0, each instance contains anno-
tated implicit connectives, making this analysis possible.

3We show more detailed results and also case studies in
Appendix C.
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Figure 3: Level1 classification results on PDTB 2.0 (Ji
split). "Remove" denotes the generated connectives are
removed from the original model ("Base").

a different degree of gain. Specifically, models that
use connectives as input features during training
(RoBERTaConn, Pipeline, and Our Method) show
more increase and have higher upper bounds than
models that use connectives as training objectives
(Adversarial and Multi-Task). This aligns with our
assumption that putting connectives in the input is
more efficient for a model learning to use discourse
connectives for implicit relation classification than
treating them as training objectives. However, in-
putting connectives for training can lead to another
severe issue, i.e., the model relies too much on con-
nectives for prediction. For instance, the RoBER-
TaConn’s performance will drop from 96.69% to
55.34% when manually-annotated connectives are
not available.

To probe whether our model suffers such an is-
sue, we perform the second analysis by removing
the generated connectives in our model and observ-
ing changes in its performance. The same setting is
applied to Pipeline for comparison. Figure 3 shows
the Level1 classification results3 on PDTB 2.0 (Ji
split). Both models see a performance drop but still
outperform RoBERTaConn. This is because these
two models’ relation classifiers input the gener-
ated connectives rather than the annotated ones for
training, alleviating their reliance on connectives.
The decrease of Our Method (74.59% → 72.27%)
is much smaller than that of Pipeline (71.01% →
58.15%). We speculate that the end-to-end training
enables our model to learn a good balance between
arguments and discourse connectives for relation
classification. By contrast, Pipeline fails to do so
due to the separate training of connectives genera-
tion and relation classification.

Finally, we show in Table 3 the results of rela-
tion classifiers in Multi-Task, Pipeline, and Our

Models Correct Group Incorrect Group
BaseMulti-Task 83.67 59.82
Multi-Task 90.60(+6.93) 59.88(+0.06)
BasePipeline 78.87 61.46
Pipeline 89.29(+10.4) 59.81(-1.64)
BaseOur Model 80.28 60.56
Our Model 94.04(+13.8) 62.22(+1.66)

Table 3: Level1 classification results on PDTB 2.0 (Ji
split) when connectives are correctly and incorrectly
generated (or predicted). "+" and "-" denote the increase
and decrease compared to the RoBERTa baseline (Base).

method4 on PDTB 2.0 when connectives are cor-
rectly and incorrectly generated or predicted. Note
that these three models’ results are not directly com-
parable in the correct and incorrect groups since
their predictions on connectives are different3 (not
overlap). To solve this, we calculate the perform-
ance gain of each model over the RoBERTa base-
line and compare them from the gain perspective.
When connectives are correctly generated, Pipeline
and Our Model outperform the RoBERTa base-
line by more than 10% in accuracy, while Multi-
task’s improvement is only 6.9%. This suggests
that Pipeline and Our Model utilize connectives
more efficiently than Multi-Task. On the other
hand, when the connectives’ prediction is incorrect,
Pipeline’s performance is worse than the RoBERTa
baseline by 1.64%. Compared to it, Multi-task and
Our Method achieve comparable performance to
RoBERTa, showing good robustness when exposed
to incorrect connectives. Despite achieving better
results than baselines in both groups, our model
performs significantly worse in the incorrect con-
nective group than in the correct one. This indicates
that its major performance bottleneck originates
from the incorrectly generated connectives. A pos-
sible improvement is first pre-training our model on
a large explicit connectives corpus, like Sileo et al.
(2019). By doing so, the connective generation
module may generate more correct connectives,
thus improving classification performance, which
we leave for future work.

4.4 Relation Analysis

We investigate which relations benefit from the
joint training of connective generation and relation
classification and compare it with other baselines.
Table 4 shows different models’ F1-score for each
second-level sense of PDTB 2.0 (Ji split). Gen-
erally, connectives benefit the prediction of most

4This analysis is not performed on other models (e.g., Ad-
versarial) because they don’t generate or predict connectives.
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Labels RoBERTa Adversarial Multi-Task Pipeline Our Model
Temporal.Asynchronous 54.62 55.01 58.37 55.69 59.48
Temporal.Synchrony 00.00 06.03 00.00 04.00 00.00
Contingency.Cause 60.03 59.00 64.24 65.40 66.35
Contingency.Pragmatic cause 00.00 05.00 00.00 00.00 00.00
Comparison.Contrast 60.44 58.20 61.73 60.78 65.75
Comparison.Concession 00.00 01.14 00.00 01.82 00.00
Expansion.Conjunction 56.03 53.26 58.94 54.79 57.04
Expansion.Instantiation 74.07 72.85 74.12 70.76 73.87
Expansion.Restatement 57.87 56.94 59.68 57.75 60.94
Expansion.Alternative 49.06 44.76 54.82 43.96 51.13
Expansion.List 18.07 11.68 11.43 29.96 25.47

Table 4: F1 results for each second-level relation of PDTB 2.0.

PDTB 2.0 PDTB 3.0
Models Acc F1 Acc F1
Our Model 74.59 68.64 76.23 71.15
- SS 73.42 66.68 75.87 70.68
- SS, LConn 70.63 63.43 74.58 69.17
RoBERTa 68.61 60.89 73.51 67.98

Table 5: Ablation study for Scheduled Sampling and
connective generation loss LConn.

relation types, especially in Multi-Task, Pipeline,
and Our Method. For example, these three models
outperform the RoBERTa baseline by more than 4%
in the F1-score on the Contingency.Cause relation.
On some relations, such as Expansion.Instantiation,
connective-enhanced models show different tenden-
cies, with some experiencing improvement while
others drop. Surprisingly, all models fail to pre-
dict Temporal.Synchrony, Contingency.Pragmatic
cause, and Comparison.Concession despite using
manually-annotated connectives during training.
We speculate this is caused by their limited number
of training instances, making models tend to predict
other frequent labels. One feasible solution to this
issue is Contrastive Learning (Chen et al., 2020),
which has been shown to improve the predictive
performance of these three relations (Long and
Webber, 2022). We leave integrating Contrastive
Learning with our method to future work.

4.5 Ablation Study
We conduct ablation studies to evaluate the effect-
iveness of Scheduled Sampling (SS) and the Con-
nective generation loss LConn. To this end, we test
the performance of our method by first removing
SS and then removing LConn. Note that removing
LConn means that our whole model is trained with
only gradients from LRel.

Table 5 shows the Level1 classification results
on PDTB 2.0 and PDTB 3.0 (Ji split). We can ob-

serve from the table that eliminating any of them
would hurt the performance, showing their essen-
tial to achieve good performance. Surprisingly,
our model training with only LRel performs much
better than the RoBERTa baseline. This indicates
that the performance gain of our full model comes
not only from the training signals provided by
manually-annotated connectives but also from its
well-designed structure inspired by PDTB’s anno-
tation (i.e. the connective generation module and
relation prediction module).

5 Conclusion

In this paper, we propose a novel connective-
enhanced method for implicit relation classifica-
tion, inspired by the annotation of PDTB. We in-
troduce several key techniques to efficiently train
our model in an end-to-end manner. Experiments
on three benchmarks demonstrate that our method
consistently outperforms various baseline models.
Analyses of the models’ behavior show that our
approach can learn a good balance between using
arguments and connectives for implicit discourse
relation prediction.

6 Limitations

Despite achieving good performance, there are
some limitations in our study. The first is how to
handle ambiguous instances in the corpus. 3.45%
of the implicit data in PDTB 2.0 and 5% in PDTB
3.0 contains more than one label. Currently, we
follow previous work and simply use the first label
for training. But there might be a better solution
to handle those cases. Another is the required time
for training. To mimic the annotation process of
PDTB, our model needs to pass through the embed-
ding layer and transformers twice, so it takes more
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time to train than the RoBERTa baseline. However,
our training time is shorter than Pipeline and Ad-
versarial due to those two models’ pipeline setup
and adversarial training strategy. Also, note that
our method has a similar number of parameters to
the RoBERTa baseline since we share embedding
layers and transformers between the connection
generation and relation classification modules in
our approach. Therefore, the memory required to
train our model is not much different from that
required to train the RoBERTa baseline.
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PDTB 2.0 PDTB 3.0

L1

Comparison Comparison
Contingency Contingency
Expansion Expansion
Temporal Temporal

L2

Comparison.Concession Comparison.Concession
Comparison.Contrast Comparison.Contrast
Contingency.Cause Contingency.Cause
Contingency.Pragmatic cause Contingency.Cause+Belief
Expansion.Conjunction Contingency.Condition
Expansion.Instantiation Contingency.Purpose
Expansion.Alternative Expansion.Conjunction
Expansion.List Expansion.Equivalence
Expansion.Restatement Expansion.Instantiation
Temporal.Asynchronous Expansion.Level-of-detail
Temporal.Synchrony Expansion.Manner

Expansion.Substitution
Temporal.Asynchronous
Temporal.Synchronous

Table 6: Top-level (L1) and second-level (L2) relations
of PDTB 2.0 and PDTB 3.0 used in our experiments.

Train Dev Test
PDTB 2.0 12632 1183 1046
PDTB 3.0 17085 1653 1474

Table 7: Dataset statistics for the "Ji" split.

A Data Description

The Penn Discourse TreeBank (PDTB) is the most
common corpus for the task of implicit discourse
relation classification. The annotation of this cor-
pus follows a specific strategy, which consists of
inserting a connective that best conveys the inferred
relation, and annotating the relation label based on
both the inserted implicit connectives and contex-
tual semantics. Prasad et al. (2008) claimed that
this annotation strategy significantly improves the
inter-annotator agreement. PDTB has two widely
used versions, PDTB 2.0 (Prasad et al., 2008) and
PDTB 3.0 (Webber et al., 2019). In both versions,
instances are annotated with senses5 from a three-
level sense hierarchy. We follow previous work
(Ji and Eisenstein, 2015; Kim et al., 2020) to use
top-level 4-way and second-level 11-way classi-
fication for PDTB 2.0, and top-level 4-way and
second-level 14-way for PDTB 3.0, and show these
relations in Table 6. We show the statistics infor-
mation of Ji and Eisenstein (2015) and Kim et al.
(2020) in Tables 7 and 8, respectively.

The Potsdam Commentary Corpus (PCC) is a
German corpus constructed following the annota-
tion guideline of PDTB (Bourgonje and Stede,
2020). In this dataset, relations are also organized

5Some instances in PDTB have more than one label. We
follow previous work to use the first label for training. While
evaluating, a prediction is regarded as correct if it matches one
of the annotated labels (Xue et al., 2016).

fold splitting PDTB 2.0 PDTB 3.0
1 0-1 / 2-22 / 23-24 1183 / 13678 / 1192 1653 / 18559 / 1615
2 2-3 / 4-24 / 0-1 1154 / 13716 / 1183 1579 / 18595 / 1653
3 4-5 / 6-1 / 2-3 1527 / 13372 / 1154 2039 / 18209 / 1579
4 6-7 / 8-3 / 4-5 1247 / 13279 / 1527 1730 / 18058 / 2039
5 8-9 / 10-5 / 6 -7 881 / 13925 / 1247 1138 / 18959 / 1730
6 10-11 / 12-7 / 8-9 1452 / 13720 / 881 1944 / 18745 / 1138
7 12-13 / 14-9 / 10-11 1589 / 13012 / 1452 2203 / 17680 / 1944
8 14-15 / 16-11 / 12-13 1434 / 13030 / 1589 1940 / 17684 / 2203
9 16-17 / 18-13 / 14-15 1480 / 13139 / 1434 2011 / 17876 / 1940
10 18-19 / 20-15 / 16-17 1241 / 13332 / 1480 1667 / 18149 / 2011
11 20-21 / 22-17 / 18-19 1151 / 13661 / 1241 1585 / 18575 / 1667
12 22-23 / 24-19 / 20-21 1291 / 13611 / 1151 1733 / 18509 / 1585

Table 8: Dataset statistics in cross-validation (Xval).
Numbers are arranged in Dev/Train/Test order. Sections
6-1 denote sections 6-24 and sections 0-1.

Comparison.Concession Comparison.Contrast
Contingency.Cause Expansion.Conjunction
Expansion.Equivalence Expansion.Instantiation
Expansion.Level-of-detail Temporal.Asynchronous

Table 9: Second-level (L2) relations of PCC used in our
experiments.

in a three-level hierarchy structure. However, this
corpus is relatively small, containing only 905 im-
plicit data, and the distribution of its relations is
highly uneven, especially the top-level relations.
For example, the "Expansion" (540) and "Contin-
gency" (246) account for more than 86% of the data
among all top-level relations. Bourgonje (2021)
concluded that two of four relations were never pre-
dicted in his classifier due to the highly uneven dis-
tribution of the top-level relation data. Therefore,
we only use the second-level relations in our ex-
periments. Furthermore, we use a similar setup to
PDTBs for PCC, considering only relations whose
frequency is not too low (over 10 in our setting).
The final PCC used in our experiments contains 891
data covering 8 relations (shown in Table 9). As
for connectives, here, we only consider connectives
with a frequency of at least 5 due to the limited size
of this corpus.

B Implementation Details

Table 10 shows the hyperparameter values for our
model, most of which follow the default settings
of RoBERTa (Liu et al., 2019). The value of
temperature τ adopts from the default setting in
Gumbel-Softmax. The k in inverse sigmoid de-
cay is set to 100 for PDTB 2.0, 200 for PDTB 3.0,
and 10 for PCC. We use different k for the three
datasets because of their different sizes, and bigger
datasets are assigned larger values. For a fair com-
parison, we equip baseline models with the same
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Hyperparam Value Hyperparam Value
Learning Rate 1e-5 Batch Size 16
Weigh Decay 0.1 Max Epochs 10
LR Decay Linear Warmup Ratio 0.06
Gradient Clipping 2.0 Max Seq Length 256
τ in Equation (4) 1.0 k in Equation (8) 100, 200, 10

Table 10: Hyperparameters for training our model.

PDTB 2.0
Models Acc F1
RoBERTaConn 96.69(+41.3) 95.58(+58.1)
Adversarial 74.93(+5.50) 68.62(+6.18)
Multi-Task 76.53(+5.71) 70.65(+6.86)
Pipeline 90.13(+19.1) 89.13(+24.5)
Our Model 83.71(+9.12) 79.25(+10.6)

Table 11: Level1 classification results on PDTB 2.0 (Ji
split) when manually-annotated connectives are fed to
connectives enhanced models. The numbers in brackets
are performance gains compared to the default settings.

PDTB 2.0
Models Acc F1
Pipeline 58.15(-12.9) 46.68(-17.9)
Our Model 72.27(-2.32) 65.49(-3.15)

Table 12: Level1 classification results on PDTB 2.0 (Ji
split) when generated connectives are removed from
Pipeline and Our Method. The numbers in brackets are
performance drops compared to the default settings.

RoBERTabase
67 as our method and apply the same

experimental settings (e.g. GPU, optimizer, learn-
ing rate, batch size, etc.) to them. For baselines
that contain model-specific hyperparameters, such
as the adversarial model (Qin et al., 2017), we
follow their default setting described in the paper.

Considering the variability of training on PDTB,
we report the mean performance of 5 random
restarts for the "Ji" split (Ji and Eisenstein, 2015)
and that of section-level cross-validation (Xval)
like Kim et al. (2020). For PCC, we perform a
5-fold cross-validation on this corpus due to its lim-
ited number of data and report the mean results. We
conduct all experiments on a single Tesla P40 GPU
with 24GB memory. It takes about 110 minutes to
train our model on every fold of PDTB 2.0, 150
minutes on every fold of PDTB 3.0, and 5 minutes
on every fold of PCC.

For evaluation, we follow previous work (Ji and
Eisenstein, 2015) to use accuracy (Acc, %) and
F1-macro (F1, %) as metrics in our experiments.

6English version of RoBERTa-Base: https://
huggingface.co/roberta-base

7German version: https://huggingface.co/
benjamin/roberta-base-wechsel-german
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Figure 4: Level1 classification results (F1) on PDTB 2.0
(Ji split) when annotated connectives are fed to models.
"Increase" denotes performance gain compared to the
model with default settings ("Base").
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Figure 5: Level1 classification results (F1) on PDTB 2.0
(Ji split). "Remove" denotes the generated connectives
are removed from the original model ("Base").

C Performance Analysis

Table 11 shows the Level1 classification results
on PDTB 2.0 (Ji split) when manually-annotated
connectives are fed to connective-enhanced models.
Note that for models that do not use generated
connectives, we insert the true connectives into
their input in this setup. We also show the F1 results
in Figure 4.

Table 12 shows the Level1 classification results
on PDTB 2.0 when the generated connectives are
removed from the inputs of relation classifiers in
Pipeline and Our Method. This setting is not ap-
plied to other baselines, such as Multi-Task, be-
cause they either don’t generate connectives or
don’t input the generated connectives into the re-
lation classifiers. We also show the F1 results in
Figure 5.

We investigate relation classifiers’ performance
of Multi-Task, Pipeline, and Our Model when con-
nectives are correctly and incorrectly generated
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Figure 6: Examples on 11-way prediction of PDTB 2.0 from different models. RoBERTa and Adversarial can only
predict relations, while Multi-Task, Pipeline, and Our Model make predictions on both connectives and relations.
Therefore, we show both Connective (Conn) and relation (Rel) prediction results of the latter three models. "Text"
denotes input arguments and the annotated implicit connective, and "Label" means ground truth implicit relations.
Correct predictions are marked in gray background.

(or predicted). Other baselines, such as Adversar-
ial, are not included in this analysis because they
don’t predict or generate connectives. We men-
tioned in Section 4.3 that Multi-task, Pipeline, and
Our Model’s prediction on connective are different.
Specifically, their predictions do not overlap and
show different performances, with a mean accuracy
of 31.30%, 33.21%, and 32.83% for Multi-Task,
Pipeline, and Our Model, on PDTB 2.0, respec-
tively.

Here, we show both good and bad cases of all
models from correct and incorrect connective pre-
diction groups in Figure 6. For comparison, we
also show results from the RoBERTa and Adver-
sarial baselines. In the first example, connective
enhanced models, including Adversarial, Multi-
Task, Pipeline, and Our Model, make the correct
prediction on implicit relation with the help of con-
nective information, while the RoBERTa baseline
gives the wrong prediction. In the second example,
Multi-Task, Pipeline, and Our Model all make the
correct prediction on connectives. However, only
the latter two correctly predict the implicit relations.
We speculate this is because treating connectives
as training objectives can not make full use of con-
nectives. In the third example, all three models
incorrectly predict the connective as "However".
As a result, Pipeline incorrectly predicts the rela-
tion as "Comparison" due to the connective "How-
ever". Compared to it, both Multi-Task and Our

Model correctly predict the relation "Expansion",
showing better robustness. In the fourth example,
all three models predict the connective as "Specifi-
cally", which is wrong but semantically similar to
the manually-annotated connective "In particular".
Consequently, those models all correctly predict
the relation as "Expansion". In the final example,
Multi-Task, Pipeline, and Our Model wrongly pre-
dict the connective as "In fact", "For example",
and "And", respectively. And all three models are
misled by the incorrect connectives, predicting the
relation as "Expansion".
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